
Translating Hoare Logic to SMT, the Making of a Proof
Checker
Remco Swenker
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

r.a.swenker@student.utwente.nl

ABSTRACT
Writing the correctness proof of a programme in Hoare
Logic is both tedious and error-prone. But programme
verification, such as Hoare logic, is important. If it is
not used, many computer programmes could be faulty.
To lower the frustration of the learning process of Hoare
logic and help with a better understanding of programme
verification, we made a proof checker that will make this
process easier and faster. We use an SMT checker and
translate Hoare logic to SMT and interpret the answers
from it back to Hoare logic. The prototype of this tool can
handle most standard operators. This tool differs from it
is competitors in that it gives enough feedback to pinpoint
the problem but not spoil the learning process.

1. INTRODUCTION
Programme verification is an important field of computer
science. Being able to tell that a piece of software will not
misbehave can save lives or prevent millions in damage.
Imagine what could happen if the software of a nuclear
reactor was faulty. Not all programme errors have such
dire consequences, but a programmer that understands
verification will avoid a lot of errors.

Hoare logic is one of the methods for program verifica-
tion that has been in use of a long time and been taught
to many students. However, checking the correctness of
Hoare logic is a very tedious and error-prone job leading
to frustration. Therefore we developed a proof checker for
Hoare logic to use in a teaching environment. The student
can run the proof checker on his home PC and see if his
proof is correct. Thus freeing up allot of time for both
teacher and student to do more productive things. How-
ever this gives us restrictions to the amount of feedback
we can give, because the student should not be able to just
ask the checker to do the exercises for them. On the other
hand, we cannot be too brief with our answers either, or
we would deliver no benefit at all.

Before we started there was no proof checker that gave
the type of feedback we were looking for. A program like
Boogie can check if code is correct but it only gives yes/no
answers. Boogie can even do this with hardly any proof
annotations. Then there is a tool called Jape that gives

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
17th Twente Student Conference on IT June 25th, 2012, Enschede, The
Netherlands.
Copyright 2012, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

enough feedback but that is not what we are looking for
either. Because Jape has the problem that it gives to much
feedback and it is no longer a checker but a proof builder.
This defeats our purpose, as it allows for very little error,
and we want people to make errors and learn from them.
A third program KeY is made for Java programs and has a
Hoare logic implementation. But is has the same problem
as Jape; it spoils the learning process by not letting you
make wrong decisions.

Therefore we built our proof checker on top of an SMT
solver. This is because SMT is a proof technique that is
relatively simple to use and understand, and it is easy to
prove the validity of Hoare logic statements when using
it. It takes first order logic like statements and and checks
if there is a way to make those true. Also SMT solvers
give the proper amount of feedback. In this paper and
the checker, we use a simple imperative programming lan-
guage that looks like Java as our input, with Algorithm 1
as a running example. We implemented the tool in Java.

Algorithm 1 Adding one to a non-negative integer.

{x ≥ 0}
x = x + 1;
{x > 0}

The checker can handle a variety of language elements in-
cluding assignment, ifs, while loops, and functions. The
checker was made using a step by step process of imple-
menting one language element at a time to prevent errors
with one of the elements form interfering with the new
elements.

To make a proof with these elements we transformed the
Hoare logic problem into an SMT problem. Then we let
the SMT solver prove that piece of code. If we get an
error we take the results form the SMT solver and translate
these back to Hoare logic. And we then return this counter
example to the user.

We will begin this paper with information about Hoare
logic and SMT. Then we will go on to explain the tools
Boogie, KeY, and Jape. From there, we will continue to
the research goal and questions. Then we will explain how
we planed to perform this research, followed by the results
of implementation and we will end with the conclusion and
future work.

2. BACKGROUND
In this section, we will talk about Hoare logic then some
terminology about logic and finally about SMT.

2.1 Hoare Logic
Hoare logic was developed in 1969 by Sir. C.A.R. Hoare as
a method for proving the correctness of programmes[1, 7].

Hoare logic is built upon triples to prove the correctness
of programmes, this is written like {P} S {Q}. Triples are
made up of what is true at the beginning of the procedure,
a precondition P, then the statement S, and what is true
at the end of the execution of S, a postcondition Q. A
small example of how such a Hoare statement would look
like. In our running example, we increment the integer
x by one so S ≡ x = x + 1. But we only want to do
this for non-negative integers, so {P} ≡ {x ≥ 0}. Finally
we can say something about x when we’re done namely
that it will be larger than 0, so {Q} ≡ {x > 0}. These
statements then make the following Hoare logic statement:
{x ≥ 0}x = x + 1{x > 0}.
In the next part we will talk about five main rules of Hoare
logic.

Assignment axiom
{p[t/x]}x := t {p}

This is the Assignment axiom, where p[t/x] means the
variable x is replaced by the expression t in the assertion
p. When we then assign t to x we may conclude p without
substitution.

{p}S1{r}, {r}S2{q}
Composition rule

{p}S1; S2{q}

With the Composition rule if you have two statements not
separated with a Hoare predicate, the statements between
curly brackets. When the sequential composition of these
two statements is correct there must be a postcondition
for S1 that is equal to the precondition of S2.

{p ∧ e}S1{q}, {p ∧ ¬e}S2{q}
If then else rule

{p}if e thenS1 else S2 fi{q}

The If-Then-Else rule explains how the pre- and postcon-
ditions, together with the guard e, get split into a then
section and an else section.

{p ∧ e}S{p}
While rule

{p}while e do S od{p ∧ ¬e}

The While rule tells that p is true at the beginning of S
and at the end as well, this is known as the loop invariant.
And that the negation of the guard e in the postcondition
is replaced by e in the precondition.

p→ p1, {p1}S{q1}, q1 → q
Consequence rule

{p}S{q}

The Consequence rule allows for modification on the pre-
condition and the postcondition. This of course under
some constraints namely that the new precondition is im-
plied by the old one. And the new postcondition implies
the old postcondition. This means you can use a weaker
precondition and or a stronger postcondition.

We will not prove the correctness of these rules. For proof
and detailed examples, we reference to Ten years of hoare’s
logic[1].

2.2 Terminology
In this section we will explain a few concepts of logic,
namely validity, satisfiability, and unsatisfiability. We will
also explain the term Hoare predicate in more detail. These
terms are used in this paper so we will explain them to
avoid confusion.

Validity means that in any valuation of a formula the an-
swer is true. For example, p ∨ ¬p is always true.

Satisfiability means that there is at least one valuation of
the formula that is true. An example of this is p ∧ q. If p

is true and q is true, then we have a valuation that gives
true. Note that anything that is valid is also satisfiable
but not everything that is satisfiable is also valid.

Unsatisfiability means that there is no valuation of the
formula that is true. For example, p ∧ ¬p is always false.
Note that if something is unsatisfiable, it is never satisfi-
able, and if something is satisfiable, it is never unsatisfi-
able. The same is true for validity and unsatisfiability.

Hoare Predicate this is the element of Hoare logic that is
placed between curly brackets. When the execution of a
program passes over one of these elements it tells what
should be true at that moment. So elements before it see
it as a postcondition elements after it see it a precondition.

2.3 SMT
SMT stands for Satisfiability Modulo Theories[3, 6]. It is
a decision problem for logical formulas expressed in first
order logic. To be exact a check whether a given logical
formula ϕ is satisfiable, for a background theory T which
constrains the interpretation of the symbols used in ϕ. To
better explain this we will use an example. Suppose we
want to know if x−y < 0 while x+y = 0 is satisfiable, then
ϕ ≡ x−y < 0 and T ≡ x+y = 0. The SMTsolver will then
return a result of satisfiable or unsatisfiable. Our example
is satisfiable: we can give x the value -1 and y the value 1
and have something that does not violate one of the two
statements. Of course SMT does not need two statements
but allows an arbitrary amount of statements. This makes
it possible that more difficult problems can be solved with
hundreds of variables and hundreds of constraints.

A few things to keep in mind when working with SMT
solvers. The first is that they are not like a programming
language. This means that statements like x := x + 1 are
not possible. As := is seen as equality and no number
is equal to it is own successor. The second is that it has
settings that support different data types. Some only allow
integers and reals but others also work with booleans and
others with arrays. Two programmes that perform SMT
logic are called jSMT-LIB and Z3. jSMT-LIB is a Java
program and Z3 is created by Microsoft. However, they
are similar to use, as they both conform to the SMT-LIB
standard. SMT-LIB is an international standard for SMT
and SMTsolvers. SMT-LIB defines how the input and
output between the user and the system should behave
and what it should look like[3].

3. RELATED WORK
In this section of the paper we will talk about three tools,
Boogie, KeY, and Jape, that have capabilities that are
similar to what we have made. However, they lack certain
features that we find very desirable.

3.1 Boogie
Boogie is an intermediate verification language[8], designed
to make the prescription of verification conditions natural
and convenient. It works as an intermediate language be-
tween various source languages and theoremprovers. It
can also be used as input output format for other logic
techniques. Other features of the Boogie language in-
clude being able to handle imperative and mathematical
input. And features like parametric polymorphism, par-
tial orders, logical quantifications, non determinism, total
expressions, partial statements, and flexible control flow.
Boogie is also a tool that can take the boogie language
as input and work like a theorem prover instead of just
an abstraction layer. When it is used as a verification
tool boogie makes use of weakest precondition calculus to

calculate if the given program is valid[2].

The difference between boogie and what we made is the
following. Boogie proves the correctness of code indepen-
dent of any provided proof. Our proof checker tells if the
proof given with a piece code is correct. So there is a possi-
bility that the given proof is incorrect but but that boogie
ignores all the given proof and tells you if the program
is right. And we want to check the proof given with the
programme, as we want people to learn something about
proofs, not the programme it self. Another problem with
Boogie is that it gives very little feedback, yes/no answers
are not very descriptive for a problem. So it might tell you
that it is wrong but not where and how the programme
that was tested is wrong.

3.2 KeY
KeY is a proof builder[4]. It guides the user to building
a proof showing for each line what kind of Hoare rules
and statements should be used. The only time that the
user is asked to make more of a addition then clicking
next is when a loop invariant is needed. It uses first-order
Dynamic Logic for Java as it is proving mechanism. But
this has a problem, it is a guided process that will lead
the user to the correct answer. So there is no real way
to make mistakes with this programme and you learn the
most from mistakes. And want people to learn about logic
checking and it is pitfalls. In the learning environment,
KeY is a better tool than Boogie, because you can see the
entire proof as it is being built by KeY.

3.3 Jape
Then there is Jape[5] it is allot like KeY in that it is a
proof builder and a guided process that will lead the user
to the correct answer. It has A strong GUI for viewing of
proof steps. Jape also claims to have a short an shallow
learning curve so that it beginners can work with it with-
out to much instruction. Jape is also capable of handling
other forms of logic including sequent calculus and natural
deduction.

Jape is also more education focussed than Boogie or KeY.
As can be deduced from the short learning curve. The
difference between Jape and what we made is that Jape
helps you make your proof, we check if a proof is correct.
So there is no real way to make mistakes with this pro-
gramme and you learn the most from mistakes. And want
people to learn about logic checking and it is pitfalls.

4. RESEARCH GOAL AND
RESEARCH QUESTIONS

In this chapter we will give our research goal and the re-
lated research questions, with a small explanation.

4.1 Research Goal
The goal was to make an education- and beginner-focussed
diagnostic tool that can check Hoare proofs. The idea of
the tool is to allow the user to enter Hoare logic annotated
Java like code and receive feedback on the correctness of
the Hoare proof. This to prevent the wasting of time by
the teacher having to check each proof by hand. And also
giving the student a shorter feedback cycle on the work
they did.

There are a few difficulties with this. The first is that
we need to strike a balance between enough feedback and
too much feedback. As explained in the introduction, you
want to be useful but not give the entire game away right
at the beginning. Related to that, we have our counterex-
ample in SMT and not Hoare logic. We need to find out

Listing 1. Adding one to a non-negative integer in
SMT

(1) (dec la re−fun x () Int)
(2) (dec la re−fun y () Int)
(3) (a s s e r t (>= x 0))
(4) (a s s e r t (= y (+ x 1)))
(5) (a s s e r t (not (> y 0)))
(6) (check−sa t)

how to make a counterexample in Hoare logic from the
SMT counterexample.

4.2 Research Questions
The main research question is:

• How do we get useful errors for Hoare Logic?

and the sub-questions related to that are:

• What are useful errors for Hoare logic?

What kind of response should the system give to the
user so that they can figure out what they did wrong
with there Hoare logic, while not giving away the
answer to the problem and have them learn nothing?

• How do you match the SMT counterexample to Hoare
logic?

Because SMT gives output and input in a slightly
different style then Hoare logic, we need to trans-
late between them. Therefore we need to match the
counterexample from SMT to the Hoare logic that
we are checking.

5. RESEARCH METHOD
In this section we will explain the research method by
means of the following elements: how to go from Hoare
logic to SMT, how we use the results form SMT, which ex-
isting pieces of software we used, the pieces of software we
made during the research, how the elements interact with
each other, and finally what our input language grammar
and syntax is like.

5.1 Hoare logic to an SMT problem
To make a Hoare problem usable for an SMT solver we
need to perform two transformations to the Hoare proof.
We will use our running example from Algorithm 1. First
we need to check if the Hoare triple contains an assignment
with the same variable on both sides of the assignment.
Our example contains such a variable, namely x. If it
contains such a variable, we substitute the variable before
the assignment with a new one, and we also do this in the
postcondition. In this case we will use y, it does not occur
in the rest so it is safe to use. Now we need to negate
the postcondition, so that when we find that the SMT
problem is satisfiable, we have found a way to make the
postcondition false. This is because we wish to prove that
T → ϕ is valid, that happens when ϕ is always true. This
means that T → ¬ϕ must be unsatisfiable. Then we fill
in T and ϕ T ≡ (x ≥ 0) ∧ (y = x + 1) and ϕ ≡ (y > 0).
If the problem is unsatisfiable, there is no counterexample
and we have found that the postcondition is true in all
interpretations of the precondition and the program. In
Algorithm 1 we show how our SMT program would look
like with the running example. In line one and two the
integers x and y are initiated, line three the precondition,
four the statement, five the post condition, and finally the
command to check for satisfiability.

Listing 2. A possible counterexample of the proof
checker

e r r o r : po s t cond i t i on v i o l a t e d
in f i l e : example on l i n e 3 column 1 u n t i l
l i n e 3 column 5
with v a r i a b l e va lue s :
x = 0
new x = 1

5.2 Solving SMT
To go to the solving part of our proof checker, we needed to
decide which solver to use for our programme. We used the
following criteria for this: feedback of the solver, ease of
use, and ease of implementation. The advantage of jSMT-
LIB is it is a Java program, so it is platform-independent.
Z3 is a Microsoft programme and maybe not as portable.
For the rest, both programmes have the same amount and
quality of feedback and ease of use, as they are both made
to conform to the SMT-LIB standard. As a Java pro-
gramme jSMT-LIB is also easy to programme with when
there is an API, which unfortunately is not available. So
a command line interface would have had to be made for
both of the programmes. Fortunately someone was al-
ready working on that for Z3; this makes Z3 the favourite
out of these two because of ease of implementation. A
third candidate is Boogie which can also be used as an
SMT solver. It has the advantage of being quite power-
ful and capable of checking an entire programme at once.
However it gives far less feedback then the SMT solvers
which can return variable values and therefore give better
feedback. As we want to give proper feedback, we will use
Z3 instead of Boogie or jSMT-LIB.

5.3 SMT Errors to Hoare logic
From the SMT solver, we get the result satisfiable or un-
satisfiable. If the result from the SMT solver turns out to
be unsatisfiable, we are done and can continue to the next
step in the Hoare proof. The SMT problem generated for
our running example is unsatisfiable so our Hoare triple
is valid. If it is satisfiable, we can show a counterexam-
ple. We do this by querying the values of all the variables
from the SMT solver and entering them into the postcon-
dition. Then we output to the user the location of the
Hoare triple we are checking, together with the variables
and there values. To show an example of SMT feedback
we will change the zero from line 5 in Listing 1 to one.
Then we can add in a line 7, (get-value(x y)), and we get
our counterexample ((x 0)(y 1)). Using this we make our
own counterexample in Listing 2.

5.4 Components
In Figure 1, the system parts of the proof checker are
shown. Because the checker is part of a bigger system, the
VERCORS project by the FMT group at the University of
Twente, some parts have already been made or are some-
one else’s responsibility. These parts have been marked
with ovals. Hoare annotated Java like code is given to the
parser, which outputs an abstract syntax tree. it is the job
of the translator together with the SMT interface to get
the Hoare triples from the AST to the SMT solver in the
correct form(see section 5.1). Then it is the job of Brain
to decide what needs to be done with the response from
the SMT solver. It has the choice to stop when a coun-
terexample has been found and give that counterexample
to the user, as described in section 5.3 and a counterexam-
ple like Listing 2, or to continue to the next Hoare triple
if the current Hoare triple is correct.

5.5 Grammar and semantics of the tool

Figure 1. System design. The boxes are elements
that were made during the research. The ovals
were elements that already existed.

Listing 4. The appearance of a function

/∗@ r e q u i r e s <expres s ion>
ensure s <expres s ion>

@∗/
pub l i c <re turn type> <name>(<parameters >){

<body>
re turn <expres s ion>

}

In Listing 3 the grammar of the input language is de-
scribed. It can handle most binary operators and is ca-
pable of several statements. These include: assignment,
if, while, and Java like functions. It should be noted that
while loops have an invariant explicitly linked with them
this means that it does not follow the Hoare rule exactly
as it has an explicit precondition and and explicit post-
condition. In Listing 4 function is shown to show more
explicitly then Listing 3 how it works. Listing 4 shows
the language looks allot like Java but it is not. the Gram-
mar does not force it but every statement should have a
precondition and a post condition.

6. IMPLEMENTATION & ANALYSIS
In this chapter we will talk about how the programme
was implemented and some of the problems that came
with the implementation. We start with the high level
overview of the implementation. Then the elements that
were needed to handle the input. then some problems that
were discovered during the implementation. Then how we
made counterexamples for faulty Hoare triples. And lastly
we will present some testing information.

6.1 Element Interaction
The brain element controls and starts the entire logic check-
ing process. It gets called when the VERCORS tool is
started with the option for the Hoare logic checker. Dur-
ing this call it also gets the file that needs to be checked
in the form of an Abstract Syntax Tree. Brain then makes
an SMTInterface to handle the communication with the
SMT solver. Then it makes the Translator to translate
the elements from AST format to SMT format. During a
check the Translator will send Hoare triples towards the
Brain who then makes sure some forbidden characters are
removed from the Hoare triple and sends it on to the SMT-
Interface. The SMTInterface then returns the result of the

Listing 3. The grammar of the proof checker

program : := func t i on ∗

f unc t i on : := cont rac t type ident (parameter ∗) block−statement

block−statement : := (hoare−p r e d i c a t e [statement]) ∗ [hoare−p r e d i c a t e re turn]

statement : := if exp r e s s i on block−statement [else block−statement]
| i n v a r i a n t while exp r e s s i on block−statement
| i dent = expr e s s i on
| i dent = ident (exp r e s s i on ∗)

cont rac t : := requires exp r e s s i on ensures exp r e s s i on

hoare−p r e d i c a t e : := / ∗ { exp r e s s i on } ∗ /

i n v a r i a n t : := (//@ loop invariant exp r e s s i on)+

expr e s s i on : := ident
| const
| unary−operator expr e s s i on
| exp r e s s i on operator expr e s s i on

parameter : := type ident

operator : := + | − | ∗ | > | < | >= | <= | == | | | | &&

unary−operator : := − | !

type : := boolean | i n t

check on the Hoare triple to the Brain who transforms any
counterexamples to something that is useful in Hoare logic.

6.2 Language elements
The language elements will be discussed in the following
order:

1. Assignments.

2. If-statements.

3. While loops.

4. Functions.

In Translator we have two main function namely SMT
and verify. The function SMT can handle an arbitrary
amount of of statements. To the components in transla-
tor the SMT function looks like it is the SMT solver, as
it is the component that tells this is satisfiable or it is
unsatisfiable. A call to verify a system that find the cor-
rect function among all the verify functions to handle that
type of statement. The verify function takes input in the
form of a precondition with some statement and a post
condition. It will then tell if that input is part of a valid
program or not.

6.2.1 Skip-Statements
In a skip-statement the postcondition is directly impli-
cated by the precondition. So we send to the Z3 solver
the precondition and the negated post condition as can be
seen in Algorithm 2. This is a use of the rule of conse-
quence from Hoare logic were we try to see if P implies Q.
The declaration of variables happens in a similar manner
as an assignment since the state does not change into a
state that cannot be implied by the previous state. This
only happens when a value is assigned to these variables.
therefore variable declaration is also handled by the skip
statement.

Algorithm 2 the skip statement

verify(P, skip,Q){
SMT (P,¬Q)
}

6.2.2 Assignment-Statements
The assignment-statement is related to the skip-statement
as they are some of the few things that sends something
to SMT directly. This can be seen in Algorithm 3. Also
a small modification was made to the statement here, as
mentioned in section 2.3 Z3 has no changing variables, the
name S0 was substituted with S′

0. The same substitution
was done in the postcondition Q.

Algorithm 3 the assignment statement

verify(P, assign,Q){
S0 = assign.getV araible()
e = assign.getExpression()
SMT (P, S′

0 == e,¬Q[S0 := S′
0])

}

6.2.3 Block-Statements
To handle longer pieces of linear code there is the Block-
Statement. As can be seen in Algorithm 4 we loop over
all elements in the block-statement(4). It looks for the
Hoare predicates(5) to combine the previous statements
into Hoare triples(6). If it is a normal element in the
body then it is stored in search of the Hoare predicate
that follows it(10). When the no execution statement
exist between two Hoare predicates it performs a skip-
statement(7).

6.2.4 If-Statements
The if -statement is not that complex to understand. As
can be seen in Algorithm 5 first we get the guards and
bodies(2,3,4). Then we check the If -body with the guard

Algorithm 4 the Block statement

(1)verify(P,BlockStatement,Q){
(2) newP = P
(3) currentBody = skip
(4) for all elements e of BlockStatement
(5) if (e equalsHoarePredicate){
(6) verify(newP, currentBody, e)
(7) currentBody = skip
(8) newP = e
(9) } else {
(10) currentBody = e
(11) }
(12) }
(13) verify(newP, currentBody,Q)
(14)}

and P as precondition and Q as postcondition(5). Then
we check if there is an else part(6) and if it exists we check
it with the P and negation of the if guard as precondition
and Q as postcondition(7). When the else body does not
exist we check skip with P and negation of the if guard
as precondition and Q as postcondition(9).

Algorithm 5 the if statement

(1)verify(P, If,Q){
(2) guard = If.getIfGuard()
(3) body = If.getIfBody()
(4) elsebody = If.getElseBody()
(5) verify(P ∧ guard, body,Q)
(6) if (elsebody 6= null){
(7) verify(P ∧ ¬guard, elsebody,Q)
(8) } else {
(9) verify(P ∧ ¬guard, skip,Q)
(10) }
(11)}

6.2.5 While-Statements
Then we got while loops the function on how the loops are
handled can be seen in Algorithm 6. First the invariants
are combined(2) then there is a check to see if the invari-
ant can follow from the precondition(5). Then the body
of the loop is checked(6). And finally we check if the in-
variants together with the negation of the guard produces
the postcondition(7).

Algorithm 6 the while statement

(1)verify(P,While,Q){
(2) inv = While.getInvariants()
(3) guard = While.getGuard()
(4) body = While.getBody()
(5) verify(P, skip, inv)
(6) verify(inv ∧ guard, body, inv)
(7) verify(inv ∧ ¬guard, skip,Q)
(8)}

6.2.6 Function-Statements
The function-statement works like a combination of the
assignment-statement and some new elements, this can
be seen in Algorithm 7. It checks if the precondition of
the method− invocation, this is how procedures and func-
tions are know to the AST, matches the requirement of
the contract(9). And it looks to see if the assurance of
the contract matches the postcondition(10). To make this
matching work the variables of the contract need to be

substituted with the variables of the pre- and postcondi-
tion(9,10). The part where it borrows from assignment is
in the postcondition Q where S0 is replaced by result(10).

Algorithm 7 the function statement and function decla-
ration
(1)req : P1(~x)
(2)ens : Q1(~x, result)
(3)type F (~x);
(4)
(5)verify(P, S0 := F (~e), Q){
(6) contract = F.getContract()
(7) contP = contract.getRequirement()
(8) contQ = contract.getAssurance()
(9) verify(P, skip, contP [~x := ~e])
(10) verify(contQ[~x := ~e], skip,Q[S0 := result])
(11)}

6.3 Implementation problems
During the implementation an problems was found when
making the function that handled the If statement. Orig-
inally reading the assignments and variables was done in a
linear fashion. The Hoare predicates and the statements
were added to a list and when two Hoare predicates were
read the last one was negated and everything was checked.
With the help of a visitor pattern, that walked the AST,
this was simple and effective and found all the mistakes.
Variables when declared are added to a variable list that
keeps track of all variables used up to that point in the
code.

Then we got to the if -statements and we found a problem
with the previous implementation for reading the AST.
The if -statement allowed a path to split and merge. Be-
cause of that some Hoare predicates had to be checked
twice. This was not feasible with the normal visitor pat-
tern because pre and postcondition had to be given as
arguments for the visit method. And since the visitor pat-
tern of Java does not contain this it had to be made. This
meant that the entire programme that we had built up to
that moment had to be changed.

6.4 Making counterexamples
We will show how the counter example is made by using
an example that contains an error. In Listing 5 there is
a small error in the Hoare predicate on line 13 a minus
was forgotten so it says y = x instead of y = -x. This is
reported by the SMT checker who will report it found a
violation and with what values the violation was possible.
This is then transformed to the output from Algorithm 6.
The filling in of the code with the found variables is a bit
tricky. This is because the piece of code that reads the file
and the piece of code that makes the counter example are
not directly linked. The filling in of the counterexample
has therefore been left to future work. The variables that
are not used in the error state are shown like the variable
result this is something for future work. The y variable
is the new y. This is the solution for the no variables in Z3
problem, this solution is applied even when the problem
would not occur.

6.5 Testing
To test our system, we used exercises from several courses
on formal methods. We use the answers from these ex-
ercises and see if our logic checker agrees, and also if it
finds errors we introduce on purpose. Testing was done
on a computer with: AMD Phenom II X6 1090T Proces-
sor at 3.2GHz with 8GB of RAM and running Windows 7

Listing 5. error example.java

(1)/∗@ r e q u i r e s t rue ;
(2) ensure s \ r e s u l t >= 0 ;
(3)@∗/
(4) pub l i c s t a t i c i n t M(i n t x){
(5) /∗{ t rue }∗/
(6) i f (x >= 0){
(7) /∗{x >= 0}∗/
(8) y = x ;
(9) /∗{y >= 0 && y = x}∗/
(10) } e l s e {
(11) /∗{x < 0}∗/
(12) y =−x ;
(13) /∗{y > 0 && y = x}∗/
(14) }
(15)/∗{y >= 0}∗/
(16) re turn y ;
(17)}

Listing 6. error output

The pos t cond i t i on at :
f i l e e r ror example . java from l i n e 13
column 25 u n t i l l i n e 13 column 50
was v i o l a t e d with the f o l l o w i n g va lue s :
r e s u l t = 0
x = −4
y = 0

y = −4

64bit version. One of the things that was noticed during
the testing that we did at the end of each phase of con-
struction was that Z3 calls take a while. Some calls of Z3
took up to three seconds to return with a result. In the
appendix some other test cases with results are presented.

7. CONCLUSIONS
In this chapter we will look at the results of this research in
relation to the research questions. We also give some ideas
for future work that give expansions to the functionality
of the programme.

7.1 Research answers
We asked ourselves how do we get useful errors for Hoare
problems. And we had three sub questions with that. The
first what are useful errors for Hoare Logic. It turns out
that it is useful to give the values of variables and the con-
text where these values were found. Any form of parsing
information is just to much information and not relevant.
It also leads to cluttering of the command line by to much
information that we don’t need.

The second one was how do you match SMT counter ex-
amples to Hoare logic? Matching the counter examples to
Hoare logic was not that difficult as variables can be freely
moved between Z3 and Hoare logic. So the matching was
done by taking the variable values form SMT and the lines
of code where the problem occurred this was handed over
to the user. And that is how the counter examples were
matched.

So the main question of how we get useful errors for Hoare
logic turned out to be. Transform the problem into and
SMT problem check that for errors. And place the values
of any violation back into the source code and show this
to the user.

7.2 Future work
Here we have a few ideas for future expansion to the logic
checker. In short they are more language elements so that

our function can handle them and maybe even more in-
put languages. They are explained in more detail in the
following sections.

7.2.1 New Language Elements
One of the things that could be added to the checker in
future work is the addition of several extra language ele-
ments. Elements like global variables, Arrays, For loops,
Do While loops, Universal Quantifier for arrays, Enumera-
tors, and Object Orientation handling. These would allow
for more functions to be used and give a little more free-
dom in the use of the tool. These are common language
elements and being able to check them and let people learn
how to properly verify them is useful. The implementa-
tion of procedures and functions was not done during the
research so this is something that needs to be done along
with the suggested new language elements.

7.2.2 Array-Statements
Unfortunately arrays statements were not implemented.
Despite that the SMT standard gives room for array types.
To reason about them in a decent way we require for-all
statements, Universal Quantification, and related state-
ments that reason over groups of data. And that was not
on the planning to be implemented. This made it so that
arrays would take to much time to implement.

7.2.3 Missing Preconditions
People can sometimes forget that Hoare logic only reasons
about one Hoare triple at a time. This together with the
Consequence rule, leads to forgotten preconditions, where
something that was proved earlier is not copied over to the
procedure that needs it. For example in Algorithm 8 we
forgot to copy the y ≥ 0 to a later precondition(5). This
is allowed by the Consequence rule because {y ≥ 0} is
implied by {x > 0∧y ≥ 0}. And several long manipulation
before that one it was decided that y wasn’t needed any
more. This would then lead to an error in the last Hoare
triple because there is no precondition to constrain y and
therefore y can be any value including one that violates
the postcondition.

Algorithm 8 Forgotten precondition example

(1) {x ≥ 0 ∧ y ≥ 0}
(2) x = x + 1;
(3) {x > 0 ∧ y ≥ 0}
(4) ...//some long manipulation of x
(5) {x > 0}
(6) y = y + 1;
(7) {x > 0 ∧ y > 0}

This problem can be handled by our program without
spoiling the learning process because it a simple oversight
and not a big error. These were also not implemented be-
cause of time constraints and finding the correct bit of a
precondition to use turned out to be very difficult. The
tool would have to look at every precondition that came
before this one and attempt to find a bit of the older pre-
conditions that would restrict enough to make the Hoare
triple valid again. This could have quite a severe effect on
the performance of our tool. As there could be easily ten
calls of Z3 before the missing bit was found. These Z3 calls
take quite some time as was discovered during testing and
implementation. Having to wait around thirty seconds if
the tool needed to check ten combinations of preconditions
is quite long. This is such an effect on the performance
that it is notable to mention.

Listing 7. An ideal counterexample of the proof
checker

e r r o r : t r i p l e not v a l i d
in f i l e : example on l i n e 1 column 1 u n t i l
l i n e 3 column 5
{x >= 0}
x = x + 1 ;
{x > 1}
counter example :
{0 >= 0}
1 = 0 + 1 ;
{1 > 1}

7.2.4 Formatting counterexamples
The counter example has some variables that are not used
during some of the calls of Z3. These will have to be
removed to improve readability of the return. The other
problem is that only the line of code is given and not the
piece of code that is in violation. These line of code should
also be returned to the user with the variables filled in to
the violation values. This ideal can be seen in Listing 7.
An other extension to the counter example would be the
direct pointing out the part of a state that is in violation.
This by pulling it apart at the conjunctions and seeing if
the elements on there own are in violation.

7.2.5 Extra Functionality
Other elements that might be interesting in the future is
the checking of code in other languages than our Java like
code. As not all code is written in Java and having options
to check other models like scripting languages would add
allot of versatility. A second thing that would be interest-
ing in the language department is the adding of different
checkers. An example of this would be when jSMT-LIB
releases an API this has the potential to reduce the com-

plexity of the SMTInterface.

8. REFERENCES
[1] K. R. Apt. Ten years of hoare’s logic: A survey part i.

ACM Trans. Program. Lang. Syst., 3(4):431–483,
Oct. 1981.

[2] M. Barnett, B.-Y. Chang, R. DeLine, B. Jacobs, and
K. Leino. Boogie: A modular reusable verifier for
object-oriented programs. In F. de Boer,
M. Bonsangue, S. Graf, and W.-P. de Roever, editors,
Formal Methods for Components and Objects, volume
4111 of Lecture Notes in Computer Science, pages
364–387. Springer Berlin / Heidelberg, 2006.

[3] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB
Standard: Version 2.0. In A. Gupta and D. Kroening,
editors, Proceedings of the 8th International
Workshop on Satisfiability Modulo Theories
(Edinburgh, England), 2010.

[4] B. Beckert, R. Hähnle, and P. H. Schmitt, editors.
Verification of Object-Oriented Software: The KeY
Approach. LNCS 4334. Springer-Verlag, 2007.

[5] R. Bornat and B. Sufrin. Animating formal proof at
the surface: The jape proof calculator. The Computer
Journal, 42(3):177–192, 1999.

[6] D. R. Cok. The smt-libv2 language and tools: A
tutorial. Technical report, GrammaTech, Inc.,
February 2011.

[7] C. A. R. Hoare. An axiomatic basis for computer
programming. Commun. ACM, 12(10):576–580, Oct.
1969.

[8] K. R. M. Leino. This is boogie 2. Technical Report
KRML 178, Microsoft Research, Redmond, WA,
USA.

Listing 10. loop error.java

(1)/∗@ r e q u i r e s n > 0 ;
(2) ensure s \ r e s u l t == n∗n ;
(3)@∗/
(4) pub l i c s t a t i c i n t f e r r (i n t n){
(5) i n t r e s ;
(6) /∗{n > 0}∗/
(7) i n t i ;
(8) /∗{n > 0}∗/
(9) r e s = 0 ;
(10) /∗{ r e s == 0 && n > 0}∗/
(11) i = 0 ;
(12) /∗{ r e s == 0 && n > 0 && i == 0 }∗/
(13) //@ l o o p i n v a r i a n t r e s == i ∗n ;
(14) //@ l o o p i n v a r i a n t i < n ;
(15) //@ l o o p i n v a r i a n t n > 0 ;
(16) whi l e (i < n) {
(17) r e s = r e s + n ;
(18) /∗{ r e s == (i +1)∗n && i < n &&

n > 0}∗/
(19) i = i +1;
(20) }
(21) /∗{ r e s == n∗n && i == n && n > 0}∗/
(22) re turn r e s ;
(23)}

Listing 11. loop error output

The pos t cond i t i on at :
f i l e loop \ e r r o r . java from l i n e 13 column
36 u n t i l l i n e 13 column 45
was v i o l a t e d with the f o l l o w i n g va lue s :
r e s u l t = 0
n = 2
r e s = 4
i = 1

r e s = 0
i = 2

Listing 8. loop example.java

(1)/∗@ r e q u i r e s n > 0 ;
(2) ensure s \ r e s u l t == n∗n ;
(3)@∗/
(4) pub l i c s t a t i c i n t f ok (i n t n){
(5) i n t r e s ;
(6) /∗{n > 0}∗/
(7) i n t i ;
(8) /∗{n > 0}∗/
(9) r e s = 0 ;
(10) /∗{ r e s == 0 && n > 0}∗/
(11) i = 0 ;
(12) /∗{ r e s == 0 && n > 0 && i == 0 }∗/
(13) //@ l o o p i n v a r i a n t r e s == i ∗n ;
(14) //@ l o o p i n v a r i a n t i <= n ;
(15) //@ l o o p i n v a r i a n t n > 0 ;
(16) whi l e (i < n) {
(17) r e s = r e s + n ;
(18) /∗{ r e s == (i +1)∗n && i < n &&

n > 0}∗/
(19) i = i +1;
(20) }
(21) /∗{ r e s == n∗n && i == n && n > 0}∗/
(22) re turn r e s ;
(23)}

Listing 9. loop example output

No e r r o r s found

APPENDIX
In Listing 8 we show a simple loop statement that calcu-
lates n2.
Since this is a good example of valid code the output, as
seen in Listing 9, is trivial and uninteresting.
In Listing 10 a small mistake was made in line 14. instead
of having i <= n we wrote i < n.
This error is a bit harder to read from the return. It speaks
about line 13 only but this is part of the loop invariant and
it test all elements of that at once. This is a limitation on
the system. The Hoare triple that is checked here is the
following.
P ≡ /*{ res == (i+1)*n && i < n && n > 0 }*/
S ≡ i = i+1;
Q ≡ //@ loop invariant res == i*n; ∧ //@ loop invariant
i < n; ∧ //@ loop invariant n > 0;

