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ABSTRACT
As security is an important concern in many areas, of-
ten security policies are defined that applications in these
areas should obey. These policies can be conveniently for-
malized as security automata, which can be used to moni-
tor applications at run time. However, this kind of valida-
tion is not always feasible or desirable, as it only reveals
violations when they are already about to occur.
Static verification is a way to check adherence at compile
time. This requires Hoare logic style annotations to be
provided, which is error-prone and time-consuming. Ear-
lier work [6] provides a method that assists in this by trans-
lating security automata into JML annotations. However,
this method only produces annotations for the methods
included in the automaton, so-called core annotations.
To be able to verify the correctness of the application’s
usage patterns of the core methods, the security policy
should be woven throughout the application: previous
work [9] presents a method that propagates the core an-
notations to the methods (indirectly) invoking the core-
annotated ones. This method, however, has severe limi-
tations. We have developed a very precise algorithm that
overcomes the most important limitations: Where the old
algorithm cannot propagate the kind of annotations the
translation produces, ours can, even when they are getting
complex. Our algorithm supports all types of variables and
considers branching, as opposed to the old one, which can
only propagate static specification-only variables.
We have applied our method to complex examples; where
the old algorithm produced annotated Java code the static
checker could not prove to be correct, our algorithm pro-
duced code the static checker could prove to be correct.

Keywords
security automata, JML, annotations, static verification

1. INTRODUCTION
In many areas, for example in those that deal with privacy-
sensitive information, security is an important concern.
Therefore security policies are often defined for applica-
tions in these areas. These policies can be conveniently
formalized as security automata. Security automata can
for example be used to limit the number of calls to a spe-
cific method, e.g. to limit the number of SMS messages
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that can be sent. Security automata can also specify that
some method should not be called from within some other
method. An example is given in Section 2.2.

By using the corresponding automata to monitor applica-
tions at run time, their adherence to the policies can be
validated [10]: When the monitored application enters or
exits a security-related method, the automaton updates its
internal state. If the automaton reaches an illegal state, it
will report a security violation. However, such a dynamic
verification is not always desirable: usually one wants to
know a priori, not afterwards, whether an application may
violate a given security policy. Another reason is that the
processing power of the platform on which the application
runs, is too limited to make monitoring feasible.

Therefore often other verification methods are to be used.
One approach is to perform a manual code review, but
this is time-consuming and error-prone. Another way is
to verify adherence by static checking: just based on the
source code of the application. To make this work, Hoare
logic style annotations should be provided to the static
checker. These annotations specify the security policies
that should be adhered to by the application. This means
a lot of work; not only the methods directly related to
security need to be annotated, but also the methods that
(indirectly) invoke these ones. Also, the security experts
may fully understand the details of the security automata
they define, but not those of the specification language.

Algorithms and tools have been developed to assist in pro-
viding the required annotations. Pavlova et al. [9] propose
a method in which the user only needs to annotate the
methods directly related to the security policies. These so-
called core annotations are algorithmically propagated to
all methods (indirectly) invoking the directly related ones.
Huisman and Tamalet [6] extend this method by providing
a translation from security automata to core annotations.

However, both methods have limitations: The translation
yields a type of core annotations, which we call inlined
core annotations, that the propagation algorithm cannot
use as input. The algorithm can only propagate so-called
static ghost variables, a kind of specification variables; pro-
gram (static, instance, local and parameter) and instance
ghost variables are not supported. Also, the propaga-
tion algorithm does not consider branching. Consequently,
the checker used for verification may produce many false
alarms; as some proof obligations may be too strong, it is
possible that some of them cannot be discharged.

We have developed a very precise algorithm that over-
comes these limitations: First, it converts the inlined core
annotations to pre- and postconditions of new methods,
which our propagation algorithm can use as input, as it
propagates pre- and postconditions more precisely; the old
algorithm would still be too limited to propagate them cor-



rectly for all but the most simple cases. Our algorithm also
takes care of pre- and postconditions involving method ar-
guments and results. This is an example of our support of
other types of variables (program and instance ghost vari-
ables). Finally, our algorithm now considers branching.

As propagating annotations can be considered as a spe-
cial case of generating annotations, we investigated how
techniques for generating other kinds of annotations could
be used in our algorithm, e.g. the generation of loop in-
variants. Strongest postcondition calculus and, related,
symbolic execution [8], are such techniques. Because of
the strong resemblance with propagating preconditions,
we also used elements from weakest precondition (wp) cal-
culus [7] for the development of our algorithm.

We have applied the old and our algorithm on some com-
plex examples that involve security automata. The in-
put was Java code with inlined core annotations, the out-
put fully annotated Java code: the inlined core annota-
tions converted to pre- and postconditions of new meth-
ods, propagated to all methods (indirectly) invoking the
core-annotated ones. We have given the fully annotated
code as input to a static checker, which was able to prove
that the annotated code produced by our algorithm was
correct, as opposed to the code produced by the old one.

Pavlova et al. [9] used JACK [3] as static checker, but this
tool is no longer maintained. We chose ESC/Java2 [4], as
it is a complete tool and we have experience with it.

This paper is organised as follows. Section 2 introduces
the background concepts of JML and property automata.
Next, Section 3 summarizes the previous work on propa-
gating annotations for security automata and discusses its
limitations. Section 4 presents an overview of our solution.
Section 5 presents our conversion from inlined core anno-
tations to pre- and postconditions of new methods. Next,
Section 6 presents our algorithm for propagating the just
generated annotations. Section 7 summarizes the steps
that are to be taken to go from security automata to fully
annotated code. Section 8 presents related work. We con-
clude in Section 9, where we draw conclusions and discuss
future work. The detailed and formal version of our algo-
rithm is included in the appendices; a version with more
explanation is available online: http://goo.gl/bU1v9

2. BACKGROUND
This section introduces three concepts that are used in the
remainder of this paper: JML, in particular static (class)
ghost variables, and property automata.

2.1 JML
The Java Modeling Language (JML) [2] is considered as
the most important behavioural specification language for
Java programs. By providing JML annotations, program-
mers specify properties of their programs (predicates) in
a generalisation of Hoare logic, adapted to Java. JML’s
syntax is reminiscent of Java’s, but it adds some specific
keywords, such as \forall. Method pre- and postcon-
ditions are specified by requires and ensures clauses,
respectively. So-called assignable clauses specify what
variables the specified method may modify. Invariants,
which need to be preserved by all methods, are specified
by the keyword invariant. Tool support is available for
verifying the provided annotations.

JML supports specification-only variables, so-called ghost
variables, as a means of abstraction. They can be declared
as instance or statically, and can be used in requires,
ensures and assignable clauses. They are assigned to by
a set annotation. An example is given in Section 3.

2.2 Property automata
Figure 1, adapted from [6], shows an example of a security
automaton. It is meant to limit the number of calls to the
method sendSMS: This method can be called successfully
at most N times in between calls to the method reset.
The counter n is only increased on a successful exit from
sendSMS. The method reset resets the counter n to zero;
it should not be called from within sendSMS.

The security automaton from Figure 1 is an example of
a so-called property automaton (PA), an extended finite
state machine (FSM). It consists of control points (s1 and
s2), automaton variables (n), program variables (none in
the example) and transitions. The current control point
and the valuation of all automaton variables define the cur-
rent automaton state. PA’s transitions do not only depend
on this state, but also on the program state. Transitions
change the automaton state from one to another. For ex-
ample, the upper transition changes the automaton state
from (s1, n) to (s2, n), but only if n < N upon entry of
the method sendSMS; to indicate a security violation, no
transitions can be applied under the condition n ≥ N . A
security automaton thus specifies all legal traces.

More formally, a transition consists of a guard, an event
and a list of actions. The event specifies the method whose
entry or (exceptional) exit is being monitored. The guard
specifies the condition under which the transition can be
applied. This condition refers to the automaton state,
the program state, and method arguments (entry), result
(normal exit) or exception (abnormal exit). Actions de-
scribe how the transition updates the automaton state. In
the upper transition example, entry(sendSMS) is the event,
n < N the guard and ǫ the (empty) action. [6]

3. PREVIOUS WORK
As mentioned above, Pavlova et al. [9] present an algo-
rithm to propagate core JML annotations to the methods
invoking the core-annotated methods. They suggest seve-
ral core annotations for Java Card applets. Java Card is a
dialect of Java, tailored to smart card applets. Java Card
supports a transaction mechanism to provide atomicity:
if something goes wrong during the transaction (e.g. the
smart card is brutally retrieved from the terminal), the
card will return to the state before the (not completed)
transaction. Transactions are initiated by beginTransac-

tion() and committed by commitTransaction().

Several security policies related to the transaction mecha-
nism can be formulated, such as ‘no nested transactions’.
The corresponding JML core annotations are synthesized
as follows: First, we declare a static ghost variable TRANS

and initialize it to zero:
@ static ghost int TRANS = 0

This variable keeps track of the number of ongoing trans-
actions; initially, this number is zero. The next step is to
annotate the beginTransaction() method:

@ requires TRANS == 0

@ assignable TRANS

@ ensures TRANS == 1

This annotation states that the method should only be
called when there are no ongoing transactions (precon-
dition TRANS = 0), that the TRANS variable may be
changed by the method and that there is exactly one ongo-
ing transaction when the method has returned (postcon-
dition TRANS = 1). The annotation @ set TRANS = 1

should be added to the body, as otherwise the method
would not satisfy its specification. Similar annotations
can be synthesized for commitTransaction().



Figure 1. Property automaton example Figure 2. Automaton of Figure 1, after completion

Providing only core annotations is not enough for static
verification. Consider method m():

Code Snippet 1 Body m()

beginTransaction();

commitTransaction();

The static checker will report an error, as it cannot guaran-
tee that m() will satisfy the precondition of beginTransac-
tion() (TRANS = 0) at the time of calling it; the precon-
dition TRANS = 0 should be propagated to the specifica-
tion of m(). Now the static checker can guarantee that the
precondition of beginTransaction() will be satisfied at
the time of calling it. As beginTransaction() may mod-
ify TRANS, any precondition of commitTransaction() that
involves TRANS is not propagated. Conversely, any post-
condition of commitTransaction() should be propagated;
the postcondition of beginTransaction() (TRANS = 1)
is not propagated, as commitTransaction() may modify
TRANS. Pavlova et al. [9] present such a propagation algo-
rithm, that takes into account this kind of considerations.
The algorithm thus weaves the security policy throughout
the application.

From property automaton to core annotations.
The core annotations still have to be provided by the user,
which can be hard and time-consuming for complex secu-
rity policies. To overcome this limitation, Huisman and
Tamalet [6] present a translation from property automata
to core annotations. Essentially, they consider security
automata as specifications.

First, they translate any partial automaton to its total
one. A PA is partial if for some source control point (cp)
and event there is not always a guard that holds. The
automaton in Figure 1 is partial: for example, if the au-
tomaton is at cp s1, the event entry(sendSMS) occurs and
n ≥ N , no guard holds. A total automaton introduces the
new cp halted and adds transitions to this cp for all “miss-
ing” combinations of source cps, events and guards, which
should be halted, as they indicate a security violation (il-
legal trace). See Figure 2, again adapted from [6], for the
result of translating the partial automaton of Figure 1 to
its total one.

Next, they generate annotations for the methods included
in the total automaton. These capture the behaviour
of the automaton and are so-called method-level CaseSet
annotations that are “evaluated” upon entry and exit of
a method. Finally, they inline these CaseSets into the
method bodies. For example, the method sendSMS from
the total automaton of Figure 2 is converted to1:

1Our CaseSet syntax is different from the one in [6]: our
syntax eliminates the nested CaseSets. The semantics,
however, remain the same.

Code Snippet 2 sendSMS: inlined CaseSets

@ CaseSet[(cp == s1 && n < N, cp = s2),

@ (cp == s1 && n >= N, cp = halted),

@ (cp == s2, cp = halted),

@ (cp == halted, cp = halted)]

// body

@ CaseSet[(cp == s1, cp = halted),

@ (cp == s2, cp = s1; n = n+1),

@ (cp == halted, cp = halted)]

A CaseSet element is a pair: the first part being the condi-
tion (current cp and (possibly the default) guard) and the
second part the new cp and zero or more assignments to
automaton variables. The semantics of the CaseSet are as
follows. First, the condition from every CaseSet element is
evaluated; exactly one condition evaluates to true . Next,
the second part of this CaseSet element is executed, i.e.
updating the cp and possibly automaton variables. The
variables cp and n, and constants N, s1, s2 and halted2

are ghost ones. An invariant states that the cp should not
become the halted one:
@ invariant cp != halted

3.1 Limitations
However, the propagation algorithm in [9] cannot use these
inlined CaseSet annotations as input; it needs method pre-
and postconditions as core annotations. Therefore we need
to adapt the algorithm in such a way that it will accept
the inlined CaseSet annotations as core annotation input.

The propagation algorithm has other limitations as well: It
propagates only static ghost variables; instance ghost and
program (static, instance, local and parameter) variables
are not (explicitly) supported. Also, it does not consider
branching. Consider method branch(boolean b):

Code Snippet 3 Body branch(boolean b)

if (b) beginTransaction();

else commitTransaction();

The old algorithm just propagates the preconditions of
beginTransaction() and commitTransaction()

(TRANS = 0 ∧ TRANS = 1) ≡ false
to the contract of branch(). This precondition is so strong
that it cannot be satisfied. A precise and satisfiable pre-
condition would be:

(b ∧ TRANS = 0) ∨ (¬b ∧ TRANS = 1)
Thus, the old algorithm generates too strong preconditions
and other imprecise annotations. Consequently, the static
checker may reject correct applications, as the too strong
proof obligations cannot be discharged. The algorithm’s
imprecision, however, could not cause incorrect applica-
tions to be accepted by the checker.
2In [6] the constants are variables as well. ESC/Java2,
however, can only handle them as constants, so we adapted
the translation from automaton to annotations slightly.



4. APPROACH
As the propagation algorithm cannot use the inlined Case-

Sets as core annotation input, we first convert the Case-

Sets: each CaseSet is converted to a new method with ap-
propriate pre- and postconditions; the CaseSet is replaced
with a method call to this new method. See Section 5 for
details. Then, we propagate the just constructed pre- and
postconditions to the contract of the method for which
the (meanwhile replaced) CaseSets were defined. The old
propagation algorithm, however, would still be too limited
to propagate the pre- and postconditions correctly for all
but the most simple cases. Therefore, we have adapted
the propagation algorithm in such a way that it correctly
propagates them, even if they are complex. Additionally,
we have added support for the other types of variables,
such as method parameters, and support for branching.
Our enhanced propagation algorithm is explained in Sec-
tion 6.

5. CONVERSION ALGORITHM
The detailed conversion algorithm is given in Appendix B;
in this section we explain the general idea.

Each CaseSet is converted to a new method with appropri-
ate pre- and postconditions, assignable clause and body;
the CaseSet is replaced with a call to this new method. The
precondition consists of the disjunction of the conditions of
all CaseSet elements that do not set the cp to halted. The
assignable clause consists of cp and all automaton vari-
ables that are assignee in one or more CaseSet elements.
The postcondition states for the condition of each CaseSet

element that does not set the cp to halted, the new cp and
the result of any assignments to automaton variables; if
an automaton variable is not an assignee in a particular
CaseSet element, but is an assignee in another CaseSet el-
ement, the postcondition for the former element addition-
ally states that the automaton variable is not changed. An
unreachable cp, say s, is captured in the additional post-
condition false ⇒ s. The body consists of constructed set

statements that change the cp and automaton variables
according to the second part of all CaseSet elements.

For example, the first CaseSet of the method sendSMS()

(see Code Snippet 2) is converted to the new method _pre-

SendSMS() with Code Snippet 4 as JML method contract;
the second CaseSet is converted to _postSendSMS(), see
Code Snippet 5 for its contract and body.

Code Snippet 4 Contract _presendSMS()

@ requires cp==s1 && n<N

@ assignable cp

@ ensures (\old(cp)==s1 && n<N) ==> cp==s2

@ ensures false ==> cp==s1

Code Snippet 5 Contract and body _postsendSMS()

@ requires cp==s2

@ assignable cp, n

@ ensures \old(cp)==s2 ==> (cp==s1&&n==\old(n)+1)

@ ensures false ==> cp==s2

private void _postSendSMS() {

@ set n = (cp==s2 ? (n+1) : n)

@ set cp = (cp==s2 ? s1 : cp)

}

The CaseSets in the body of sendSMS() are replaced with
method calls to _preSendSMS() and _postSendSMS():

Code Snippet 6 Body sendSMS()

_preSendSMS(); //body _postSendSMS();

Note that in both contracts the antecedent in the first en-
sures clause is equal to the precondition, so the implica-

tion can be optimised away. This is, however, not possible
if the precondition consists of multiple disjuncts: Suppose
that we have an additional cp s3, such that the first Case-
Set (see Code Snippet 2) is extended with element

(cp==s3, cp = s3)

and the second CaseSet with element:
(cp==s3, cp = s1)

The contract of _preSendSMS() is now Code Snippet 7;
the contract of _postSendSMS() Code Snippet 8.

Code Snippet 7 Contract _presendSMS() (extended)

@ requires (cp==s1 && n<N) || cp==s3 (...)
@ ensures (\old(cp)==s1 && n<N) ==> cp==s2

@ ensures \old(cp)==s3 ==> cp==s3 (...)

Code Snippet 8 Contract _postsendSMS() (extended)

@ requires cp==s2 || cp==s3 (...)
@ ensures \old(cp)==s3 ==> (cp==s1 && n==\old(n))

@ ensures \old(cp)==s2 ==> (cp==s1&&n==\old(n)+1)

6. PROPAGATION ALGORITHM
The just constructed core pre- and postconditions need to
be propagated, to the contract of sendSMS() in the first
place. We explain our enhanced propagation algorithm
in stages, adding complexity along the way. The detailed
algorithm is given in Appendix C; in this section we give
the general idea.

6.1 Sequential method calls
6.1.1 Propagating preconditions
The old algorithm does not propagate preconditions of
method calls if they contain variables that are changed
by an “earlier method call”, e.g. in Code Snippet 1, the
precondition of commitTransaction() is not propagated.
It turned out that this approach was too limited for the
purpose of our ‘limited SMS’ example. We adapted the
precondition propagation algorithm in such a way that
preconditions of method calls that contain variables that
are changed by an “earlier method call” are kept, albeit
adapted, when adapted preconditions can be derived from
them by the postconditions of this “earlier method call”.
To this end, the method body is analysed in a sequential
way from end to beginning (in contrast with the oppo-
site sequential way, from beginning to end, of the old al-
gorithm), propagating the preconditions of method calls;
when our algorithm arrives at a method call, it determines
if a precondition that is propagated and contains variables
that are changed by this method, can be transformed to
another condition by the method’s postconditions. If this
is the case, the precondition will be transformed and the
adapted precondition will be kept, i.e. propagated.

We have identified three ways how postconditions can be
used for the deriving of preconditions (assume a propa-
gated precondition a ∧ n < N):

• A (sub)predicate of the propagated precondition is
one of the conjuncts in the consequent of one or more
implications, say I , in the postconditions; this part
can then be replaced with the disjunction of all an-
tecedents of I . For example, assume postconditions
old(b) ⇒ a and c ⇒ (a ∧ d). The precondition can
then be transformed to (b ∨ c) ∧ n < N .

• A part of the propagated precondition is one side of
an equation in a postcondition; this part can then
be replaced with the other side of the equation. For
example, assume postcondition n = old(n) + 1. The
precondition can then be transformed to:

a ∧ (n+ 1) < N



• A part of the propagated precondition is one side of
an equation in an implication in the postconditions;
this part can then be replaced with the other side of
the equation, conditioned on the antecedent of the
implication. For example, assume the postconditions
old(g) ⇒ (n = old(n) + 1) and h ⇒ n = old(n). The
precondition can then be transformed to:

a ∧ (g ⇒ (n+ 1) < N) ∧ (h ⇒ n < N) .

Examples.
Recall the contracts of _pre- and _postSendSMS(), and
the converted body of sendSMS() (Code Snippets 4-6).

The precondition of sendSMS() is calculated as follows.
The precondition of _postSendSMS(), cp = s2 , is trans-
formed to cp = s1 ∧ n < N , which is equivalent to the
integrally propagated precondition of _preSendSMS(), so
it does not strengthen the precondition here; the old algo-
rithm outputs the same precondition.

Now consider the contracts of the extended _pre- and
_postSendSMS() (Code Snippets 7-8). The precondition
of the extended _postSendSMS(), cp = s2 ∨ cp = s3 , is
transformed to (cp = s1 ∧ n < N) ∨ cp = s3, which is
equivalent to the integrally propagated precondition of the
extended _preSendSMS(), so again it does not strengthen
the precondition here; again, the old algorithm outputs
the same precondition.

The old algorithm, however, fails if the precondition of the
extended _postSendSMS() (Code Snippet 8) is changed
to cp = s2 ∨ cp = s1: this precondition is transformed
to (cp = s1 ∧ n < N) ∨ false, which, in fact, strength-
ens the overall precondition of the extended sendSMS() to
cp = s1 ∧ n < N (removing disjunct cp = s3 ); the old al-
gorithm just propagates the precondition of the extended
_preSendSMS() (Code Snippet 7), which means that the
disjunct cp = s3 is (incorrectly) kept.

6.1.2 Propagating postconditions
The old algorithm propagates postconditions in a similar,
but converse, way as it propagates preconditions, e.g. in
Code Snippet 1, the postcondition of beginTransaction()
is not propagated. It again turned out that this approach
was too limited for the purpose of our ‘limited SMS’ exam-
ple. We adapted the postcondition propagation algorithm
in such a way that postconditions, say P1, of method calls
that contain variables that are changed by a“later method
call”, are integrated into the postconditions, say P2, of this
“later method call”: if a postcondition p1 ∈ P1 is an equa-
tion a = b, it is integrated into a postcondition p2 ∈ P2

by replacing in p2 any pre-invocation value of either side
of the equation (old(a) and old(b)) by the other side of
the equation (b and a, respectively). For example, if p1 is
n = old(n) + 1 and p2 is n = old(n) + 2, old(n) in p2 is re-
placed with old(n)+1, resulting in n = (old(n)+1)+2. Our
precondition propagation algorithm analyses the method
body from end to beginning ; for similar reasons, our post-
condition propagation algorithm analyses it from begin-
ning to end (in contrast with the opposite way, from end
to beginning, of the old postcondition propagation algo-
rithm).

As postconditions of method calls may involve implica-
tions (i.e. are conditional), we use a variant of symbolic
execution and keep track of path conditions. This condition
is used to determine if the hitherto followed path implies
the antecedent of a method call postcondition implication.

We first determine the possible precondition combinations
of the method (body) for which we need to determine the

appropriate postcondition; a possible precondition combi-
nation is the conjunction of an element from the Cartesian
product of the disjuncts of all precondition conjuncts, e.g.
if the precondition of a method is (a∨b)∧(c∨d), its Carte-
sian product is {a, b}×{c, d} = {[a,c], [a,d], [b,c], [b,d]} and
the conjunction of one of its elements is a ∧ c.

The method body is evaluated for each possible precondi-
tion combination, i.e. for each element from the Cartesian
product, from beginning to end: First, the path condition
is initialized with this combination. As the body is being
evaluated, the path condition is updated with postcondi-
tions from method calls, but only if they do not involve an
implication or if the path condition implies the antecedent
of the implication. If a method call changes variables V ,
they are invalidated in the path condition by renaming
them; any pre-invocation value {old(v) | v ∈ V } in the
method call postconditions is replaced with the just re-
named variable name. The ultimate goal of keeping track
of the path condition is to determine which consequents
from method call postcondition implications can be in-
ferred and thus be propagated (and possibly integrated
into (inferred) postconditions from later method calls).
The resulting postcondition for the method body is an
implication, with the original path condition, i.e. precon-
dition combination, as antecedent and the postcondition
“at the end of the method body” as consequent.

Examples.
Recall the contracts of _pre- and _postSendSMS(), and
the converted body of sendSMS() (Code Snippets 4-6).

The postcondition of sendSMS() is calculated as follows.
The only possible precondition combination is

cp = s1 ∧ n < N
and the path condition is initialized herewith. This con-
dition implies the antecedent of the postcondition

(old(cp) = s1 ∧ n < N) ⇒ cp = s2
of _preSendSMS(), so the path condition is updated to

cp0 = s1 ∧ n < N ∧ cp = s2
and the consequent cp = s2 is propagated. The updated
condition implies the antecedent of the postcondition

old(cp) = s2 ⇒ (cp = s1 ∧ n = old(n) + 1)
of _postSendSMS(), so the path condition is updated to
cp1 = s1 ∧ n0 < N ∧ cp0 = s2 ∧ cp = s1 ∧ n = (n0 + 1)

and the propagated postcondition cp = s2 is integrated
into the consequent cp = s1 ∧ n = old(n) + 1; as old(cp)
does not occur in the consequent, the consequent is not
changed and is integrally propagated. The resulting post-
condition for sendSMS() is an implication with the original
path condition, i.e. precondition combination,

cp = s1 ∧ n < N
as antecedent and the inferred postcondition

cp = s1 ∧ n = old(n) + 1
as consequent. The full contract of sendSMS() is:

Code Snippet 9 Contract sendSMS()

@ requires (cp==s1 && n<N)

@ assignable cp, n

@ ensures (\old(cp)==s1 && \old(n)<N) ==>

@ (cp==s1 && n==\old(n)+1)

The old propagation algorithm outputs
old(cp) = s2 ⇒ (cp = s1 ∧ n = old(n) + 1)

as postcondition, which is incorrect. Note, however, that
if the implications in the contracts of _pre- and _post-

SendSMS() (Code Snippets 4-5) are optimised away, the
old propagation algorithm will output a correct postcondi-
tion, as our enhanced algorithm will do. It is, however, not
always possible to optimise away implications, see the con-



tracts of the extended _pre- and _postSendSMS() (Code
Snippets 7-8). Our propagation algorithm outputs the cor-
rect contract for the extended sendSMS():

Code Snippet 10 Contract sendSMS() (extended)

@ requires (cp==s1 && n<N) || (cp==s3) (...)
@ ensures (\old(cp)==s1 && \old(n)<N) ==>

@ (cp==s1 && n==\old(n)+1)

@ ensures \old(cp)==s3 ==> (cp==s1 && n==\old(n))

Note that our postcondition propagation algorithm evalu-
ates the method body twice, as the precondition consists of
two disjuncts. The old algorithm just propagates the post-
condition of the extended _postSendSMS() (Code Snippet
8), which is not valid for the extended sendSMS().

6.1.3 Complex example
Consider method thrice() which calls the extended send-

SMS() (Code Snippet 10) thrice:
sendSMS(); sendSMS(); sendSMS();

Our propagation algorithm outputs an enormous contract
for thrice(), with multiple requires clauses and multiple
implications in them, and even bigger ensures clauses,
each involving more than ten implications. However, the
contract is equivalent to requiring

(cp = s1 ∧ (n+ 2) < N) ∨ (cp = s3 ∧ (n+ 1) < N)
and ensuring
old(cp = s1 ∧ (n+ 2) < N) ⇒ (cp = s1 ∧ n = old(n) + 3)
old(cp = s3 ∧ (n+ 1) < N) ⇒ (cp = s1 ∧ n = old(n) + 2)
The contract can be used to prove, using ESC/Java2, that

@ assume (cp==s3 && n==3 && N==5)

thrice();

@ assert (cp==s1 && n==5)

and

@ assume (cp==s1 && n==2 && N==5)

thrice();

@ assert (cp==s1 && n==5)

are correct, and that

@ assume (cp==s1 && n==3 && N==5)

thrice();

@ assert (cp==s1 && n==6)

is incorrect. (The assume statement tells ESC/ Java2 that
the given predicate is assumed to be true; the assert

statement tells ESC/Java2 to check that the given predi-
cate is true at the given point.)

The old propagation algorithm just outputs the same con-
tract for thrice() as for sendSMS() (Code Snippet 10).
As it does not incorporate (n + 2) < N (if cp = s1 )
and (n + 1) < N (if cp = s3 ) into its preconditions, and
not n = old(n) + 3 (if old(cp) = s1 ) and n = old(n) + 2
(if old(cp) = s3 ) into its postconditions, this contract of
thrice() cannot be used to prove that the first two “as-
sume/assert”s are correct.

6.2 More language constructs
So far, we have only defined rules for sequential method
calls with no arguments or result values. In this subsec-
tion, we add rules for more constructs of Java: method
arguments and results, assignments and branching. We
also explain how we deal with local variables that may
appear in the calculated postcondition of a method body.

6.2.1 Method arguments and results
Methods may have arguments, which may appear in their
contracts. The same applies to the return values of meth-
ods. Consider the methods y() and z() (where d is a
static ghost int)

Code Snippet 11 Signature of method y()

@ ensures \result==(a+2) && d==(a+3)

static int y(int a);

Code Snippet 12 Signature of method z()

@ requires b>5

@ ensures d==(\old(d)+b)

static void z(int b);

and method x(), which calls y() and z():

Code Snippet 13 Method x()

static int x(int c) { z(y(c)); }

We want to propagate the pre- and postconditions of y()
and z() to x(). As formal params have no meaning out-
side the method, we need to relate them to the actual
params. E.g. in the method call y(c) (in x()) we relate
the formal param a of y() to actual param (expression) c
and we replace all occurrences of a with the postcondition
of y() by c: result = (c+ 2) ∧ d = (c+ 3).

Note that method calls may appear in the actual params
of other method calls, e.g. y(c) in z(y(c)) (method x()).
This makes that we need to propagate the pre- and post-
conditions of the former, e.g. the ones of y(c). Also, as
methods may exhibit side effects, we cannot relate formal
params directly to method calls; instead, we try to relate
it to any result = expr postcondition of the called method.
For example, in the method call z(y(c)) we relate the for-
mal param b of the method z() to the result = c+2 post-
condition of actual param y(c), which yields c+2 and not
a+2, as formal param a is related to c in y(c) itself. As b is
related to c+2, the precondition (c+2) > 5 is propagated
to x(); the postcondition of y(c), d = (c+3), is integrated
into the postcondition of z(y(c)), d = (old(d) + (c+ 2))
(b related to c + 2), which results in x()’s postcondition
d = ((c + 3) + (c + 2)). We were able to prove, using
ESC/Java2, that the contract of x() was indeed correct.

If the postcondition of y() is result ≥ (a + 2) instead of
result = (a+2), the method call y() in z(y(c)) cannot be
related. However, we can generalise the previous solution
in such a way that it gives

(∀r0.r0 ≥ (c+ 2) ⇒ r0 > 5) ≡ (c+ 2) > 5
as x()’s precondition, where r0 is a symbolic variable de-
noting the result of y(). Unfortunately, ESC/Java2 says
that the precondition of z() is possibly not satisfied, prob-
ably due to limitations of its theorem prover Simplify.
Therefore, this generalisation is not used in our algorithm.

We have also defined propagation rules for the return

expr1 statement: we simply propagate the precondition
of expr1 ; we add to the postcondition of expr1 the post-
condition result = expr1 , trying to relate any method calls
in expr1 to their result = expr2 postcondition. Essentially,
a return statement is nothing more than a simplified as-
signment, to a result variable.

6.2.2 Assignments
Consider the assignment v := expr1 . Like ordinary wp
calculus, all occurrences of the target, v, in the prop-
agated preconditions are replaced with the RHS, expr1 .
Essentially, the propagating postconditions part of our al-
gorithm updates the path condition with postcondition
v = expr1 and integrates propagated postconditions with
occurrences of v into v = expr1 , which is propagated; as
occurrences of v may appear in the RHS, we replace them
with old(v). As method calls may appear in the RHS,
we try to replace them in expr1 with expr2 from their
result = expr2 postconditions. This also makes that we
need to propagate pre- and postconditions of method calls.



For example, consider assignment x := x+ y(e) (see Code
Snippet 11) and propagated precondition x > 1 (x and e
ints): the occurrence of x in the precondition is replaced
with the adapted RHS of the assignment, x + (e + 2), so
the precondition is changed to (x + (e + 2)) > 1. Now
consider the same assignment x := x+ y(e), but now with
x = (old(x) + 1) as the path condition and the propa-
gated postcondition: the assignment is converted into the
postcondition x = (old(x)+ (e+2)); accordingly, the path
condition is updated to x0 = (old(x)+1)∧x = (x0+(e+2))
and the propagated postcondition x = (old(x)+1) is inte-
grated into the postcondition x = (old(x)+(e+2)), which
yields x = ((old(x) + 1) + (e + 2)) as postcondition. The
postcondition d = (e+ 3) of y() is also propagated.

6.2.3 Branching
Consider the branching if expr then s1 else s2. Like wp
calculus, our propagating preconditions algorithm is ap-
plied to both branches, s1 and s2, and both outcomes are
combined: expr and the precondition from s1 or ¬expr
and the precondition from s2 should be satisfied. As for
the postcondition part of our algorithm, the path condi-
tion is used to determine whether can be inferred which
branch will be taken. If this is the case, our propagating
postconditions algorithm is simply applied to this branch
and the other branch is ignored. If not, the algorithm is
applied to both branches and the outcomes are combined:
the postconditions and path conditions from s1 or from s2
are valid. Before the algorithm is applied to a branch, the
path condition and any propagated postconditions are ex-
tended by expr or its negation. Method calls may appear
in expr ; they are replaced in the same way as is done for
assignments. This also makes that pre- and postconditions
of method calls in expr need to be propagated.

For convenience, we repeat here Code Snippet 3:

Code Snippet 14 Body branch(boolean b)

if (b) beginTransaction();

else commitTransaction();

Where the original algorithm outputs
(TRANS = 0 ∧ TRANS = 1) ≡ false

as precondition, ours outputs the precise precondition:
(b ∧ TRANS = 0) ∨ (¬b ∧ TRANS = 1)

Our propagating postconditions algorithm evaluates the
method body for each precondition combination. In one
of these evaluations, the path condition is initialized to
b ∧ TRANS = 0. As this implies the condition of the if

statement, b, the algorithm only considers the first branch.
Our algorithm generates

(b ∧ old(TRANS) = 0) ⇒ TRANS = 1
(¬b ∧ old(TRANS) = 1) ⇒ TRANS = 0

as postcondition for branch(), where the old algorithm
outputs the imprecise predicate:

TRANS = 1 ∨ TRANS = 0
Now suppose that the calculated precondition of branch()
would be true , so the method body would be evaluated
only once and the path condition would be initialized to
true . As the path condition now would not imply the
if condition, the algorithm would consider both branches
and would output as postcondition:

true ⇒ ((b ∧ TRANS = 1) ∨ (¬b ∧ TRANS = 0))

For simplicity, we treat while loops as an if branch with
only the then part; an extensive treatment would require
fixed point calculations, which are outside the scope of
this research, and/or user-provided loop invariants, which
contradicts our intention that the user should not have to
provide any annotations. Further investigation is neces-
sary for determining whether the loop invariant generation
techniques from [8] could be useful for our purposes.

6.2.4 Externalizing contract
Local variables may appear in postconditions. As long
as their names are unique, e.g. not equal to instance vari-
ables, they are not a problem in the mathematical abstrac-
tion. However, a JML implementation requires a more
careful treatment. Consider ext(), which returns an int:

Code Snippet 15 Body ext()

int a=2, b=3;

return (a+b);

The postcondition propagation algorithm we developed so
far, gives a = 2 ∧ b = 3 ∧ result = (a+ b). However, a and
b cannot be used in the JML contract of ext() as they
are local to ext(). We solve this issue by introducing a
ghost variable for each local variable in the postcondition;
every occurrence of this local variable in the postcondition
is replaced with its ghost counterpart. In the example, the
ghost variables a0 and b0 are introduced (declared) and
the JML postcondition is changed to:
@ ensures a0==2 && b0==3 && \result==(a0+b0)

We now need to ensure that a0 = 2 and b0 = 3 are estab-
lished by ext()’s body; just before the return statement,
we set the ghost variables to their non-ghost counterparts:
@ set a0 = a, b0 = b

6.3 Comparison to old algorithm
We have seen a number of examples where our algorithm
outperforms the old one. We give a summary here.

• When the second CaseSet in a method in fact adds
a condition that (eventually) leads to the halted cp,
our algorithm strengthens the precondition, where
the old algorithm does not (Section 6.1.1).

• When the implications in the postconditions of the
generated _pre*() and _post*() methods cannot be
optimised away, the old algorithm gives an incorrect
contract for the method *, where our algorithm out-
puts a correct contract (Section 6.1.2).

• In the complex thrice() example, the preconditions
and postconditions of the three method calls all need
to be integrated with each other. Our algorithm does
this, resulting in a strengthened precondition and a
precise postcondition; the old algorithm does not,
resulting in a too weak, thus incorrect, precondition
and an incorrect postcondition. (Section 6.1.3)

• In the branching example, the old algorithm out-
puts an unsatisfiable precondition and a postcondi-
tion that always evaluates to true, in other words a
useless contract; our algorithm outputs a useful and
precise contract (Section 6.2.3).

6.4 Relation with wp calculus
Pavlova et al. [9] defined a relation between their pre-
condition propagation algorithm and an abstract version
of wp calculus: a version that only considers static ghost
variables. Our precondition propagation algorithm bears
a strong resemblance to normal, non-abstract, wp calcu-
lus, e.g. our algorithm mimics the wp calculus way of
evaluating a method body: from end to beginning.

We want to highlight the relation concerning sequential
method calls. Consider the contract of sendSMS() (Code
Snippet 9) with the implication optimised away, and a
method that calls sendSMS() twice. Wp calculus [7] gives

pre(sendSMS)∧
∀mod(sendSMS).post(sendSMS) ⇒ pre(sendSMS)

as wp, resulting in:
(cp = s1 ∧ n < N)∧

∀cp0 ,n0 .(cp0 = s1 ∧ n0 = n+ 1) ⇒ (cp0 = s1 ∧ n0 < N)
Our precondition propagation algorithm outputs:

(cp = s1 ∧ n < N) ∧ (n+ 1) < N .



It turns out that the predicates are equivalent to each
other, but the advantage of the latter is the absence of
the universal quantification; a large number of universal
quantifications are difficult to read and can be difficult
for static checkers to handle. Also note that the wp that
wp calculus gives contains “internal”proof obligations, e.g.
∀cp0 .(cp0 = s1) ⇒ (cp0 = s1); our algorithm extracts the
“external” part of the wp that wp calculus gives.

7. FROM PROPERTY AUTOMATA TO
FULLY ANNOTATED CODE

In this section, we outline the steps that are to be taken to
go from property automata to fully annotated code. The
first three steps are explained in detail in [6]; the last two
steps are new and explained in this paper (Sections 5-6).

• A partial PA is converted to its total one.
• The total PA is translated to method-level CaseSets.
• These CaseSets are inlined into the bodies.
• These inlined CaseSets are converted to methods with

appropriate annotations and bodies; the inlined Case-

Sets are replaced with calls to these methods.
• These core annotations are propagated to all meth-

ods (indirectly) invoking the core-annotated ones.

The fully annotated code is given as input to the checker.

8. RELATED WORK
Aktug and Naliuka [1] developed a security policy specifi-
cation language, called ConSpec, that is similar to prop-
erty automata. They proved that a monitor can be inlined
into the application’s bytecode and then use a wp compu-
tation that essentially works the same as our propagation
algorithm. In contrast, our algorithm is defined for source
code and JML, which makes that we can use JML static
checkers; if the checker discovers a possible violation of a
security policy, it will be much more clear in what way
this policy is violated if the error is given at source code
level rather than at bytecode level.

Houdini [5] is a JML annotation assistant. It generates
many candidate annotations, based on heuristics, e.g. it
adds preconditions to methods that requires that a refer-
ence parameter is not null. It could be used in tandem with
our algorithm: our algorithm weaves the security policy
throughout the application, where Houdini adds annota-
tions that are not security related, but need to be provided
to make the full application verifiable.

For more related work, see the relevant sections in [6, 9].

9. CONCLUSIONS
We have developed an algorithm that overcomes the most
serious limitations of the old algorithm: It supports the
inlined CaseSets and propagates (core) pre- and postcon-
ditions more precisely, taking into account many concerns,
such as implications in the conditions; our algorithm can
perfectly handle complex (core) pre- and postconditions,
where the old algorithm cannot. Essentially, our algorithm
generates the correct wps and strongest postconditions in
many cases, where the old algorithm generates too weak
wps and incorrect postconditions too often.

We have identified a relation between the precondition
part of our algorithm and wp calculus, especially a rela-
tion concerning sequential method calls; where wp calcu-
lus introduces universal quantification, our algorithm does
not, which makes the preconditions simpler. They are also
simpler because our algorithm extracts only the“external”
proof obligations; wp calculus includes the“internal”proof
obligations as well.

We have applied the algorithm to complex examples, which
demonstrated that our algorithm was able to infer correct
and precise method contracts, where the old algorithm
failed in all but the most simple cases, resulting in many
false alarms by the checker. We have used our algorithm
to prove that in the ‘limited SMS’ example correct usages
were indeed correct and to reveal a security violation.

9.1 Future work
The correctness of our conversion and propagation algo-
rithm is not yet proved. Also, we have not yet imple-
mented the algorithm in a tool. This tool is needed to
apply our algorithm on larger examples and case studies,
which would validate our method more extensively. To
this end, more language constructs have to be supported:
try-catch-finally statements and, related, exceptional
postconditions.

The to be developed tool should accept (inlined) core JML-
annotated code and output fully JML-annotated code. Its
output is to be given as input to a checker; the results
will indicate to what extent our method is able to reveal
security violations in larger examples and case studies.

10. ACKNOWLEDGMENTS
I would like to thank Lodewijk Bergmans, Stefan Blom,
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APPENDIX
An extended version, with the branching rules and some
explanations, is available online: http://goo.gl/bU1v9

A. DEFINITIONS
A.1 Domains

• BinOp of binary and UnOp of unary operators

• CSE of CaseSet elements (pairs)

• CPC of control point constants

• CPCs of control point constants, except halted

• Expr of expressions

• GhostAssign of assignments to ghost variables

• GhostVar of ghost variables

• MethDecl of method declarations
[name : MethName, decls : VarDecl∗, resType : Type]

• MethName of method names

• Pred of predicates

• SetStmt of JML set statements

• Stmt of Java statements

• Type of types (including primitive ones)

• VarDecl of variable declarations [name : Var, type : Type]

• Var of variables (names)

A.2 Auxiliary functions
• body : MethName → Stmt; denoting method body

• call; denoting method call (with ≥ zero arguments)

• curr : Pred → Pred; returns the predicate with all pre-
invocation values replaced with their current values

• fv : Pred → P(Var); returns the set of free variables

• lVars : MethName → P(Var); returns the names of all
local variables declared in the given method

• methDecl; returns method declaration

• mod; returns all assigned variables in the given state-
ment/expression/method (see online for definition)

• modP, notModP; returns those of the given predicates
in which the given variables do not appear (see online
for formal definition)

• old : Pred → Pred; returns the given predicate with all
variables replaced with their pre-invocation values

• recent : Var → Pred → Var; returns the highest of the
(un)numbered versions of the variable in the given
predicate, e.g. recent(n, n0 = (n+ n1)) = n1 and
recent(n, n = 2) = n (if no (un)numbered version of
the variable exists in the predicate, its pre-invocation
value is returned, e.g. recent(n, x = 2) = old(n))

• subp : Pred → P(Pred); returns the set of all (sub)
predicates of the given predicate

• type : Expr → Type; returns type of given expression

• unique : Var → Pred → Var; counterpart of recent;
returns lowest of the numbered versions of the given
variable name that do not (currently) exist in the
given predicate and do not exist as ghost variables (in
the class) either, e.g. unique(n, n0 = (n+ n1)) = n2

A.3 Notation
We will use the subscripts conj and disj to take a predicate
as the set of conjuncts and disjuncts, so (p = 1 ∧ q)conj =
{p = 1, q} and (p = 1 ∨ q)disj = {p = 1, q}. We introduce
the boolean ∼ operator which returns true iff a predicate
(first operand) has a particular format (second operand),
so (c = 1 ⇒ (d = 2 ∧ e)) ∼ [a ⇒ b] returns true, while
(c = 1) ∼ [a ⇒ b] returns false. We use ⊥ to denote the
outcome of an expression whose evaluation is undefined.
We denote Hilbert’s choice operator with ε.

B. CONVERSION ALGORITHM
For every method [m : MethName, decls : VarDecl∗ and
res : Expr] that has (two) CaseSets:

rewrite [CaseSet E1; body;CaseSet E2] to:
[call(m1, declsnames); body; call(m2, res)]
where E1, E2 : P(CSE), body : Stmt and m1,m2 :
MethName (new) names of two new methods:
• methDecl(m1) = [m1, decls, void], pre(m1) =

csPre(E1), mod(m1) = csMod(E1), post(m1) =
csPost(E1), body(m1) = csSetAutVars(E1); csSetCP(E1)

• methDecl(m2) = [m2, [[result, type(res)]], void],
pre(E2) = csPre(E2), mod(m2) = csMod(E2),
post(m2) = csPost(E2),
body(m2) = csSetAutVars(E2); csSetCP(E2)

( s, s1, s2, s3 : CPC, A : P(GhostAssign) and g : Pred):

• csPre : P(CSE) → Pred

csPre(E) =
∨

{cp = s1 ∧ g |
[cp = s1 ∧ g, cp := s2 ;A] ∈ E ∧ s2 6= halted}

• csMod : P(CSE) → P(GhostVar)
csMod(E) =

⋃

[cp=s∧g, A]∈E
{n | [n := expr ] ∈ A}

• csPost : P(CSE) → P(Pred)
csPost(E) = csPost1(E) ∪ { csPost2(E)}

• csPost1 : P(CSE) → P(Pred)
csPost1(E) =

⋃

[cp=s1∧g, cp:=s2 ;A]∈E∧s2 6=halted

old(cp = s1 ∧ g) ⇒
∧

(cp = s2, {n = old(expr1 ) |
[n1 := expr1 ] ∈ A}, {n2 = old(n2) |
n2 ∈ csMod(E)\{cp} ∧¬∃[n3 := expr2 ] : A.n2 = n3})

• csPost2 : P(CSE) → Pred

csPost2(E) = false ⇒
∧

{cp = s1 |
s1 ∈ cpcs ∧ ¬∃[cp = s2 ∧ g, cp := s3 ;A] : E.s1 = s3}

• csSetAutVars : P(CSE) → P(SetStmt)
csSetAutVars(E) =

⋃

[cp=s1∧g, cp:=s2 ;A]∈E∧s2 6=halted

{set n := (cp = s1 ∧ g) ? expr : n | [n := expr ] ∈ A}
• csSetCP : P(CSE) → SetStmt

csSetCP(E) = set cp := csCPExpr(E)
• csCPExpr : P(CSE) → Expr

csCPExpr(∅) = cp

csCPExpr({[cp = s1 ∧ g, cp := s2;A], ...}) =
{

csCPExpr(...) if s2 = halted

(cp = s1 ∧ g) ? s2 : csCPExpr(...) if s2 6= halted

C. PROPAGATION ALGORITHM
( exprs : Expr∗ and n : MethName):

• expr : Expr → Expr

expr(expr) = expr [ expr(call(n, exprs))/call(n, exprs)
for each call(n, exprs) in expr ]

• expr : Expr → Expr

expr(call(n, exprs)) =
{

curr(expr) if ∃!p : post(n, exprs).p ∼ [result = expr ]
⊥ otherwise

(where [result = expr ] = ε p : post(n, exprs).p ∼ [result =
expr ])

• rnm : P(Pred) → Expr∗ → VarDecl∗ → P(Pred)
rnm(P, exprs , decls) = {p[expr(expr)/name for each

expr in exprs(where [name : Var, type : Type] of corre-
sponding variable declaration in decls)] | p ∈ P}

C.1 Propagation of preconditions
C.1.1 Sequential method calls
We define functions pre : MethName → P(Pred) and pre :
Stmt → P(Pred) → P(Pred) by rules like (m,n :
MethName, PRE : P(Pred) and s1, s2 : Stmt):

pre(m) = pre(body(m), ∅)
pre(s1;s2,PRE ) = pre(s1, pre(s2,PRE ))
pre(call(n),PRE ) = pre(n) ∪ notModP(PRE ,mod(n)) ∪
⋃

pre∈modP(PRE,mod(n)) prsrv(pre , post(n),mod(n))



• prsrv : Pred → P(Pred) → P(Var) → P(Pred)
prsrv(pre,POST , V ) =






prsrv(pre ,POST ) if all occurrences of V in pre
can be transformed by POST

∅ otherwise

• prsrv : Pred → P(Pred) → P(Pred)
prsrv(pre,POST ) =
prsrv3(prsrv2(prsrv1(pre,POST ),POST ),POST )

• prsrv1 : Pred → P(Pred) → Pred

prsrv1(pre ,POST ) = pre[{
∨

A/subp | subp ∈
subp(pre) ∧ A = antcdnts(POST , subp) ∧A 6= ∅}]

• antcdnts : P(Pred) → Pred → P(Pred)
antcdnts(POST , conseq) = {curr(a) |
post ∈ POST ∧ (post ∼ [a ⇒ b] ∧ conseq ∈ bconj )}

• prsrv2 : Pred → P(Pred) → Pred

prsrv2(pre ,POST ) =
pre[

⋃

post∈POST∧post∼[a=b]{curr(b)/a, curr(a)/b}]

• prsrv3 : Pred → P(Pred) → P(Pred)
prsrv3(pre ,POST ) =
{

{pre} if prsrv3(pre,POST ) = ∅
prsrv3(pre,POST ) if prsrv3(pre,POST ) 6= ∅

• prsrv3 : Pred → P(Pred) → P(Pred)
prsrv3(pre ,POST ) = {curr(a) ⇒ prsrv3(pre, conseq) |
post ∈ POST ∧
(post ∼ [a ⇒ conseq ] ∧ prsrv3(pre , conseq) 6= pre)}

• prsrv3 : Pred → Pred → Pred

prsrv3(pre , conseq) =
pre[

⋃

p∈conseqconj∧p∼[a=b]{curr(b)/a, curr(a)/b}]

C.1.2 More language constructs

Method arguments and results.
The rule pre(call(n),PRE ) from C.1.1 is deprecated and re-
placed with ( exprs : Expr∗, n : MethName and PRE : P(Pred)):
pre(call(n, exprs),PRE) = pre(exprs , pre(call(n, exprs),PRE))

We also define functions pre : Stmt → P(Pred) → P(Pred),
pre : MethName → Expr∗ → P(Pred), pre : Expr∗ → P(Pred) →
P(Pred) and pre : Expr → P(Pred) → P(Pred) by rules
like ( bop : BinOp, expr , expr1 , expr2 : Expr, exprs : Expr∗,
n : MethName, PRE : P(Pred) and uop : UnOp):

pre(call(n, exprs),PRE ) = pre(n, exprs) ∪
notModP(PRE ,mod(n)) ∪
⋃

pre∈modP(PRE,mod(n)) prsrv(pre , post(n, exprs),mod(n))

pre(n, exprs) = rnm(pre(n), exprs , decls)(where [name :
MethName, decls : VarDecl∗, resType : Type] = methDecl(n))
pre([expr∗1 , expr2 ],PRE ) = pre(expr∗1 , pre(expr2 ,PRE ))
pre(expr1 bop expr2 ,PRE ) = pre(expr1 , pre(expr2 ,PRE))
pre(uop expr ,PRE) = pre(expr ,PRE )

We add to pre : Stmt → P(Pred) → P(Pred) the rule
( expr : Expr): pre(return expr ,PRE ) = pre(expr , PRE)

Assignments.
We add to pre : Stmt → P(Pred) → P(Pred) the rule
( expr : Expr and v : Var):
pre(v := expr ,PRE ) =
pre(expr , {pre[expr(expr)/v] | pre ∈ PRE})

C.2 Propagation of postconditions
C.2.1 Sequential method calls
We define functions post : MethName → P(Pred) and post :
Stmt → [Pred, P(Pred)] → [Pred, P(Pred)] by rules (m,n :
MethName, path : Pred, POST : P(Pred) and s1, s2 : Stmt):

post(m) = {old(
∧

pre ′) ⇒
∧

POST | pre ′ ∈ ×{predisj |
pre ∈ pre(m)}∧[path, POST ] = post(body(m), [

∧

pre ′, ∅])}

post(s1;s2, [path , POST ]) = post(s2, post(s1, [path , POST ]))
post(call(n), [path, POST ]) =
[updPath(path , applicable(path , post(n)),mod(n)),
notModP(POST ,mod(n)) ∪

⋃

post∈applicable(path,post(n))

integrate(modP(POST ,mod(n)), post)]

• applicable : Pred → P(Pred) → P(Pred)
applicable(path ,POST ) = {b |
post1 ∈ POST∧(post1 ∼ [a ⇒ b]∧path ⇒ curr(a))}∪
{post2 | post2 ∈ POST ∧ post2 6∼ [a ⇒ b]}

• updPath : Pred → P(Pred) → P(Var) → Pred

updPath(path ,POST , V ) =
updPath(path [{unique(v, path)/v | v ∈ V }],POST )

• updPath : Pred → P(Pred) → Pred

updPath(path ,POST ) = path ∧
∧

{ updPath(path , post) | post ∈ POST}
• updPath : Pred → Pred → Pred

updPath(path , post) =
post [{recent(v, path)/old(v) | v ∈ fv(post)}]

• integrate : P(Pred) → Pred → Pred

integrate(PROPPOST ,mPost) = mPost
[
⋃

propPost∈PROPPOST∧propPost∼[a=b]{b/old(a), a/old(b)}]

C.2.2 More language constructs

Method arguments and results.
The rule post(call(n), [path , POST ]) from C.2.1 is dep-
recated and replaced with ( exprs : Expr∗, n : MethName,
path : Pred and POST : P(Pred)):

post(call(n, exprs), [path, POST ]) =
post(call(n, exprs), post(exprs , [path , POST ]))

We also define functions post : Stmt → [Pred, P(Pred)] →
[Pred, P(Pred)], post, postf : MethName → Expr∗ → P(Pred),
post : Expr∗ → [Pred, P(Pred)] → [Pred, P(Pred)]) and
post : Expr → [Pred, P(Pred)] → [Pred, P(Pred)] by rules
( bop : BinOp, expr , expr1 , expr2 : Expr, exprs : Expr

∗, n : MethName,
path : Pred, POST : P(Pred) and uop : UnOp ):

post(call(n, exprs), [path, POST ]) =
[updPath(path , applicable(path , postf(n, exprs)),mod(n)),
notModP(POST ,mod(n)) ∪
⋃

post∈applicable(path,postf(n,exprs)) integrate(modP(POST ,mod(n)), post)]

postf(n, exprs) = {p | p ∈ post(n, exprs)∧p 6∼ [result = expr ]}
post(n, exprs) = rnm(post(n), exprs , decls)(where [name :
MethName, decls : VarDecl∗, resType : Type] = methDecl(n))
post([expr1 , expr

∗
2 ], [path , POST ]) =

post(expr∗2 , post(expr1 , [path , POST ]))
post(expr1 bop expr2 , [path, POST ]) =
post(expr2 , post(expr1 , [path, POST ]))
post(uop expr , [path, POST ]) = post(expr , [path, POST ])

We add to post : Stmt → [Pred, P(Pred)] → [Pred, P(Pred)]
the rule ( expr : Expr): post(return expr , [path1 , POST1 ]) =
[path2 , POST2 ∪ {result = expr(expr)}]
(where [path2 , POST2 ] = post(expr , [path1 , POST1 ]))

Assignments.
We add to post : Stmt → [Pred, P(Pred)] → [Pred, P(Pred)]
the rule ( expr : Expr and v : Var): post(v := expr , [path , POST ]) =
post(v := expr , post(expr , [path , POST ]))

We add to post : Stmt → [Pred, P(Pred)] → [Pred, P(Pred)]
the rule ( expr : Expr and v : Var): post(v := expr , [path , POST ]) =
[updPath(path , v = expr [old(v)/v], {v}), notModP(POST , {v})∪
integrate(modP(POST , {v}), v = expr [old(v)/v])]

Externalizing contract.
The rule post(m) from C.2.1 is renamed to post(m) and
the rule itself is replaced with: post(m) =
post(m)[{unique(l,

∧

post(m))/l | l ∈ lVars(m)}]


