
Automatic Parallelization of Automata
S.H. van Schouwenburg

University of Twente

s.h.vanschouwenburg@student.utwente.nl

ABSTRACT
There exist many modeling languages for model checking,
each with their own verification tools. There have been
efforts to get some better interoperability among modeling
languages, and LTSmin is one such attempt.
LTSmin is a toolset which contains tools to abstract mod-
els in a high level modeling language into a Labelled Tran-
sition System (LTS). This is done by doing a state space
generation. That state space can be stored in ETF (Enu-
merated Table Format).
Since the model checking is then done on the state space
instead of the original model, the question is how much in-
formation this state space contains compared to the orig-
inal high level language. In this work, we investigate this
by transforming high level models in DVE (Distributed
Verification Environment) format into ETF and then con-
vert that ETF back into a DVE model. We then perform
benchmarks to see how much performance we have lost (or
gained).
Model checking on DVE performs best on a model with
parallel processes, as opposed to a monolithic single pro-
cess model. So the transitions in the state space must be
divided over separate parallel processes. Each process can
only write to its own variables, but can read from all of
them. So we need an algorithm which identifies variables
in the state space that can have their own process. It must
be done in such a way that no transition alters more than
one of such variable, or that transition will not fit in any
process.
One way of doing this is by using an independent set algo-
rithm (ISA) to identify (mark) the variables. We have in-
vestigated whether a weighted independent set algorithm
performs better than an unweighted algorithm.
We have benchmarked different models and compared the
originals with the plain (non-parallel), weighted and un-
weighted generated models. The main conclusions are that
generated models never approach the efficiency of the orig-
inals and that the parallel versions usually perform signif-
icantly better than the plain versions.

Keywords
Parallelization, Model Checking, DVE, ETF, LTSmin, In-
dependent Set Algorithm

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
13th Twente Student Conference on IT June 21, 2010, Enschede, The
Netherlands.
Copyright200X, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

1. BACKGROUND
Model checking is one of the methods used nowadays to
check the correctness of digital systems. There are a lot
of different modeling languages, each with its own set of
model checking tools. Examples of modeling languages
include the process algebras like µCRL[9, 4] or state-based
languages like PROMELA[5] or DVE[6, 1].

Each modeling language has their own way of representing
a model, and each of them comes with their own set of
model checking tools. This means that when you have
modelled the system in a certain language, you are more
or less bound by the tools for that language.

There have been attempts to make model checking tools
interoperable, mainly based on language translations.[8,
10] Another approach is one that abstracts the model
checking from the language, like what has been done by
LTSmin.[7, 3]

1.1 DVE
The high level modeling language we have used in this
paper is DVE (Distributed Verification Environment). A
full description of the DVE modeling language is out of
the scope of this paper, but we will present here the basic
building blocks of a DVE model. A DVE model consists
of global variables, several processes and optionally some
channels. Each process has a list of symbolic state names,
an initial state, transitions and optionally some local vari-
ables.

Transitions have a starting and ending state and any of
the following:

1. A guard: a boolean expression, which, in addition
to the starting state limit when the transition can
be taken. Guards can read from local and global
variables, and test whether a specific process is in a
specific state.

2. An effect: one or more assignments on local and/or
global variables.

3. A sync section: a channel end on which this transi-
tion will be synchronized.

Program 1 shows an example of a simple DVE model.

1.2 LTSmin
LTSmin is a toolset for model checking on labelled tran-
sition systems. As its input it has a labelled transition
system (LTS) in a certain specific format (called the DIR
format). It also has some tools to generate those labelled
transition systems from other modeling languages, so the
toolset becomes language independent. LTSmin does a
reachability analysis from the LTS to generate the state

Program 1 Simple DVE example

process X {

byte a,b;

state x0, x1, x2, x3, x4;

init x0;

trans

x0 -> x1 { effect a=0; },

x0 -> x1 { effect a=1; },

x1 -> x2 { effect b=0; },

x1 -> x2 { effect b=1; },

x2 -> x3 { guard a != b; },

x2 -> x4 { guard a == b; },

x3 -> x0 {},

x4 -> x0 {};

}

system async;

space on which model checking can be done. This state
space can then be exported in an Enumerated Table For-
mat (ETF)[2], which is a plain text memory dump. The
generated ETF of our example DVE model is shown in
appendix B.

In the state section it enumerates all the variables in a
name:type format. Then comes an edge section which
is not used for DVE models. After that an init section
containing the initial values of the variables. Then come
the most important trans sections, which define all the
transitions. They contain lines like the following:

* 1/1 3/5 *

This represents a transition from any state where the sec-
ond variable is 1, the third variable is 3 and the first and
fourth variables don’t matter, to a state where the third
variable becomes 5 and all the rest stays the same.1 A
variable in a transition is either completely ignored, or
fully specified. There cannot be a transition like */2 (i.e.:
It does not matter what variable 3 was before, but after
this transition it is 2). If, for example, the variable can
take on 5 different values (0-4) then there would be 5 lines:
one for each source value (e.g.: 0/2, 1/2, 2/2, 3/2, 5/2).

The transitions are grouped in sections, and within a sec-
tion the variables that are ignored and those that are spec-
ified are always the same. These groupings can play a large
role in performance for LTSmin utilities. This transition
grouping is also one of the identifying features of LTSmin
and is explained in more detail in Bridging the Gap be-

tween Enumerative and Symbolic Model Checkers.[7]

Finally there are some sort sections. They provide a
translation for symbolic variable types from values to sym-
bols. They can be seen as 0-based arrays. In DVE, the
only symbolic types are the states, with the symbols being
the state names.

The question is how effective this state space representa-
tion is compared to the higher level representation. Since
this representation is much more basic than the original
high level model we might have lost some information.

To check this, we can try to convert the generated ETF
back into the higher level language (see figure 1), and com-
pare model checking on the generated model with model
checking on the original model.

1You could say the second variables “becomes” 1, but it
already is 1

Figure 1. Process of converting higher level mod-
eling languages into ETF and back again. The grey
box is to be filled in.

2. PROBLEM STATEMENT
The main problem for this paper is converting the ETF
generated by a tool like LTSmin back to the original model.
We then benchmark the new model and compare it to the
original model to see how the new model performs com-
pared to the old model. In this paper we will be focussing
on DVE (Distributed Verification Environment[6, 1]) as
the language for the original models.

At the basic level this is not that hard, since you can just
generate one DVE process containing all the transitions
in the ETF. However, such a monolithic structure is not
efficient for model checking. The goal is then to get the
most efficient parallelization possible.

2.1 Parallelization
The simplest way of converting the ETF to DVE is to
make all variables global, and have one process with all
the transitions. Since none of those variables are state-
transitions, the process has only the initial state and all
transitions are self-transitions.

It is more efficient if state variables can be identified2 for
separate parallel processes. We will call these variables
marked variables. Since other processes cannot write to
state variables, this implies that no transition can alter
more than one marked variable.3 So whenever a transition
alters two or more variables, at most one of them can be
marked.

The transitions can then be distributed over the processes
identified by their marked variable (which is its state vari-
able). Whenever a transition alters a marked variable it
will go to the process of that variable. It could be that
some transitions do not alter a marked variable. In that
case we create one additional process called the bucket

process which will contain all those transitions.

Note that the simple way described at the beginning of
the subsection is equal to marking no variables, so that all
transitions will go into the bucket process.

Taking our example, we have the following transitions
(variable names and line numbers added for clarity):

v: a b x

1: 0/0 * 0/1

2: 0/1 * 0/1

3: 1/0 * 0/1

4: 1/1 * 0/1

5: * 0/0 1/2

6: * 0/1 1/2

7: * 1/0 1/2

8: * 1/1 1/2

9: 0/0 0/0 2/4

10: 0/0 1/1 2/3

11: 1/1 0/0 2/3

2A state variable is the virtual variable representing the
state of a process
3Technically this could be done by synchronization, but
that is out of the scope of this paper

12: 1/1 1/1 2/4

13: * * 3/0

14: * * 4/0

One way to mark these is by marking the variables a and
b. Transitions 1 to 4 will go into process A, transitions 5
to 8 will go into process B, and the rest will go into the
bucket process. Another way will be to mark variable x,
in which case all transitions will go into process X.

2.2 Independent Set
An independent set is a set of nodes in a graph such that
no node in the set neighbors another node in the set. For-
mally: Given an graph G with nodes V and edges E, the
independent set I is defined as

IS(I) := I ⊆ V ∀v, w ∈ I : (v, w) /∈ E

A maximal independent set is an independent set such
that there exists no node that, when the node is added to
the set, it is still an independent set. Formally: a maxi-
mum independent set Im is defined as

mIS(Im) := IS(I) ∧ ∀v ∈ V \Im ∃w ∈ Im : (v, w) ∈ E

A maximum independent set is an independent set such
that there exists no independent set with more nodes in it.
By definition a maximum independent set is also a max-

imal independent set. Formally, a maximum independent
set IM is defined as

MIS(IM) := IS(IM) ∧ ¬∃Im IS(Im) ∧ |Im| > |IM |

Essentially the marking of the variables comes down to an
independent set problem. When you create a graph where
the nodes represent the variables and the edges represent
two variables being altered in one transition, then every
independent set represents a marking of the variables as
described in the previous subsection.

The trick here is finding the best independent set algo-
rithm for this problem. Note that a maximum indepen-
dent set algorithm might not be the best since it can (and
probably will) mark secondary variables which are only
used sparingly. This will result in a main variable (which
probably was a state variable in the original process) not
being marked. This in turn can result in a lot of unmarked
transitions, resulting in a big bucket process. This not
necessarily a drawback and its impact is investigated.

A maximal independent set however, is always optimal.
If a set is not maximal, this means there are additional
variables which could be marked. If they are not marked,
all transitions writing them would go in the bucket process.
This would make the bucket process unnecessarily large.

Since a maximum independent set algorithm is probably
not optimal, we might need a weighted independent set
algorithm. We can then assign weight to the variables
such that variables which are used more frequently get
more weight.

It must be noted that the independent set problem is NP-
complete. For small number of variables an exponential
algorithm might be feasible, but for larger models approx-
imations might be necessary.

3. RESEARCH GOALS
The goal of this paper is to create an algorithm to convert
an ETF model, created by LTSmin from a DVE model,
back to an as efficient as possible DVE model. This is done
by parallelizing the ETF model into separate processes.

Figure 2. Process of converting ETF back to DVE.

3.1 Research Questions
The research goal spawns some extra research questions:

1. Will a normal independent set algorithm do? Or
should a weighted independent set algorithm be used?

2. In case of weighted independent set algorithms, how
should the weights be defined? And in what way
should they be optimized? (e.g.: Maximum sum,
maximum product)

3. Which independent set algorithm performs better?
An exhaustive search, or fast but suboptimal one.
In the latter case, which one?

4. RESEARCH TOOL
The chain of converting ETF into DVE is shown in fig-
ure 2. The Parser parses the ETF and output a list of
transitions, specifically which variables are read (transi-
tion guards) and which variables are altered (transition
effects). Then the Independent Set Algorithm will select
from those variables a list of variables to be marked. The
Converter will then use the variable list to convert the
ETF into a DVE.

4.1 Parser and Converter
Since one of the input languages in most LTSmin tools is
ETF, we reused the parser from LTSmin and modified it
to output the transition list. Each transition section in the
ETF gets a line stating which variables are read, which are
written and the number of transitions that section has.

For the converter we reused the ETF parser again, but
we had to build the DVE from scratch. First the pro-
cesses had to be identified, but since the input is the list
of marked variables, they would be the basis for the pro-
cesses. Furthermore an additional bucket process was de-
fined.

Next, all transitions were distributed over the processes.
When a transition writes a marked variable it will go to
its respective process. When it does not write a marked
variable, but when it reads any one marked variable, it will
also go to its respective process. This is an optimization
so that self-transitions will also go to their own process.
When no marked variable is written, and either no marked
variable or two or more marked variables are read, then
the transition goes to the bucket process.

Then all variables are scoped. There are three scopes:
global variable, local variable and process variable. All
the marked variables become process variables, the vari-
ables who are specified only in transitions belonging to
one process are local variables. All the others are global
variables.

At last the DVE output is generated. With the above
information this is rather trivial. The main concern is
skipping empty processes. Processes can be empty for
two reasons: it is the bucket process, but all transitions

have a proper process, or a variable was defined but never
used. In the last case that variable will automatically be
marked, because there exists no transitions which alters
that variable along with another (potentially marked) vari-
able. Thus it will become a process, but have no transi-
tions.

One of the left over problems is the naming of the variables
and state names. Since ETF does not limit characters in
variable names, all variables names have to be converted to
legal DVE identifiers. We converted all non-alphanumeric
characters to underscores. Should an identifier start with
a numeric character, an underscore is prepended.

From DVE -> ETF -> DVE conversion there are two main
sources of non-alphanumeric characters: local variables
and arrays. A local variable a of process X will be en-
coded as X.a in the ETF and thus as X_a in the generated
DVE. Since the ETF only provides simple numeric types
(only nonnegative integers) this means arrays will be split
into separate variables. An array byte fork[3] will be
split into three variables: fork[0], fork[1] and fork[2]

in the ETF, and fork_0_, fork_1_ and fork_2_ in the gen-
erated DVE. They cannot easily be joined together as one
array again, because they can be local variables in separate
processes or even become process variables themselves.

The last problem is that of state names. One simple so-
lution is to just give them names like s0, s1, s2, etc. But
when possible we try to reuse the old state names, should a
process variable in the original DVE also become a process
variable in the generated DVE.

4.2 Independent Set Algorithm
The other major component in the tool chain is the inde-
pendent set algorithm. It has to convert a transition list
into a marked variable list. Independent set algorithms
come in two major flavors: normal (i.e.: non-weighted)
and weighted. The normal algorithms are easier to imple-
ment, but the weighted versions give more control of the
final list.

4.2.1 Normal Independent Set Algorithms
The first few algorithms to test are normal (i.e. non-
weighted) independent set algorithms (ISA). Since they
are not weighted, they are prone to selecting secondary
variables. They are however easy to write and they don’t
need a list of read variables (transition guards).

ISA 1: Exhaustive Search.
This will be a simple algorithm which just checks all com-
binations of variables and outputs the largest set. This
will guarantee a maximum independent set, but runs very
slowly in O(2n).

Indication in benchmark: complete

ISA 2: Most Neighbors.
This is a greedy algorithm which iteratively removes the
variable with the most neighbors from the graph, until
none of the variables have any more neighbors. This is
a relatively fast algorithm (O(n2)), but it will not always
return a maximum independent set.

This algorithm was not implemented.

ISA 3: Least Neighbors.
This is a greedy algorithm which iteratively marks a vari-
able with the least number of neighbors and then removes
that variable and all its neighbors from the graph. This

algorithm is potentially faster than the most neighbors
algorithm, since it removes more than one node each it-
eration. However it is more prone to selecting secondary
variables.

Indication in benchmark: min

4.2.2 Weighted Independent Set Algorithms
The normal independent set algorithms have a tendency
to mark secondary variables because they can have very
few neighbors. Aside from the fact that the resulting DVE
model will probably differ from the original model,4 it will
also result in transitions not writing a marked variable.
Since these transitions will go in the bucket process, this
will make the bucket process bigger.

So we need an independent set algorithm which will pre-
fer main variables (variables which are often accessed) over
secondary variables (variables which are very sparsely ac-
cessed). This will be a weighted independent set algorithm
(wISA).

For the weighted independent set algorithms we have a
few things to worry about: How should the weights be
calculated? In what way should the weights be optimized?
And which algorithm should we use?

As for how to calculate the weights: the first heuristic we
thought of is to use the number of transitions the variable
is read from and written to.

As for how to optimize the weights: the default is to max-
imize the sum of the weight of the variables in the inde-
pendent set, since that is how weighted independent set
algorithms in literature are used.

The main objective of this setup is to minimize the bucket
process. However, this setup has one major problem: sup-
pose a variable is read and/or written in about every tran-
sition (e.g.: a counter variable), then that variable will get
a lot of weight, probably bigger than any other indepen-
dent set, making it the best maximal weighted indepen-
dent set. This will result in one big process however, which
is undesired.

There are a few alternatives to this:

1. Optimize for product instead of the sum of the weights.

2. Optimize the sum of the weight multiplied by the
number of variables.

3. Minimize the maximum weight of a node in the set.

4. Let the node weight be the square root of the number
of transitions.

All these options have the goal of avoiding “heavy” vari-
ables resulting in big processes. They do this by favoring
more light variables over a few heavy ones.

Options 1 and 2 have the problem of there being no clear
greedy version of the algorithm which performs better
than the greedy version of maximizing the sum. One way
would be to just randomly select a lot of independent sets
and pick the best one. This will not provide consistent
results.

Option 3 has the problem that it selects very light variables
(in fact, those same secondary variables which we tried to
avoid) at the cost of a big bucket, unless you also try to

4When the resulting DVE model differs from the original
DVE model it is not necessarily a drawback. It can even
be beneficial if the new model would perform better than
the original.

minimize the bucket somehow. But we have not found a
way to do that.

Option 4 has none of the above drawbacks, so we have
chosen to implement this option.

wISA 1: Exhaustive Search.
This one is equivalent to the non-weighted version, except
it uses weights to find the best set.

Indication in benchmark: w-complete

wISA 2: Greedy Maximum.
This is a generalized version of the Most Neighbors algo-
rithm. Instead of selecting the node with the most neigh-
bors, it selects the node v which minimizes W (v)/dG(v).

This is the GWMAX algorithm by Sakai, Togasaki and
Yamazaki.[12]

This algorithm was not implemented.

wISA 3: Greedy Minimum.
This is a generalized version of the Least Neighbors algo-
rithm. Instead of selecting the node with the least num-
ber of neighbors, it selects the node v which maximizes
W (v)/[dG(v) + 1].

This is the GWMIN algorithm by Sakai, Togasaki and
Yamazaki.[12]

Indication in benchmark: w-min

5. BENCHMARKING METHOD
The algorithms in the previous subsection must be bench-
marked and compared to each other to figure out how
well they perform. There are two issues here which can be
benchmarked: the cost of generating an independent set
(in terms of generation time) and the effective quality of
the parallelization by the resulting independent set.

The cost of generating an independent set turned out not
to be an issue. The greedy algorithms were so fast that
even for the bigger models we tested (> 200 variables)
the generation time was only fractions of a second. The
exhaustive searches were heavily exponential in nature,
so there was only a very small band where generation
time was longer than fractions of a second, but still short
enough to wait for it. Since initial results suggested that
complete searches did not significantly outperform greedy
searches, we have used greedy algorithms for every model
having more than 20 variables. This was only based on a
few tests, so we have not thoroughly benchmarked this.

To measure the effective quality of the parallelization we
have compared the effective running times of the following
programs:

divine.precompile Precompiling using DiVinE.

divine.generator Enumerate all states in DiVinE.

divine.reachability Reachability analysis in DiVinE col-
lecting all sorts of data.

divine2-compile Compile model using DiVinE 2.

divine2-metrics Enumerate all states in DiVinE 2.

dve-reach Reachability analysis in LTSmin, optionally
writing out an ETF file.

dve2lts-grey Enumerate all states in LTSmin.

DiVinE is the model checker for DVE models. It can do
reachability analysis, but also property checking. How-
ever, we could not do property checking on the generated
models because we lost two important pieces of informa-
tion: accepting states and proper variable translation.

Acceptance of states is something which ETF simply does
not store. Future versions might be able to do that, but
modifying LTSmin in this way was out of the scope of this
paper. The variable translation (e.g.: X.a => X_a) should
be pretty straight forward, but a problem arises when a
normal variable is converted to a process. Because whereas
for variables you can use any mathematical expression,
for processes you can only check whether or not it is in a
certain state. This conversion is possible, but was also out
of the scope of this paper.

DiVinE 2 is a new experimental version which works in
a completely different way. So it will be interesting to
compare performance.

dve-reach is the tool used to generate ETF files but it is
also the best tool to benchmark DVE modes. dve2lts-grey
simply enumerates all the states, but can also be used to
generate diagnostic information, particularly about tran-
sition grouping.

As stated earlier, transition grouping can play a large role
in performance, especially for dve-reach in both steps
(generating ETF and benchmarking DVE). Therefore most
LTSmin utilities have regrouping options to generate a
more optimal transition grouping. The ones used dur-
ing benchmarking are no regrouping, -rgs (Group Safely)
and -rga (Group Aggressively). Especially the latter is a
trade-off between longer regrouping time and shorter exe-
cuting time.

Something which was a bit counter-intuitive was the fact
that aggressive regrouping at the ETF-stage might ac-
tually hinder rather than help performance. The main
reason is that aggressive regrouping will sometimes opt
to combine groups of different variables. This makes the
variable graph more connected and in turn make the in-
dependent sets smaller.

For example, where in one group the variables a, b and f
were used, and in another the variables a, b and x, then
they might be combined into a group with the variables
a, b, f and x. This might mean there will be a connection
between x and f in the new group, so they can no longer
be both in the independent set.

All the programs are ran 3 times and the results were
averaged.

5.1 Models
The models we benchmarked were taken from the BEEM
(Benchmarks for Explicit Model Checkers)[11] site. To
benchmark we needed models which did not run too quickly,
but didn’t take forever either. Since we wanted to check
a lot of different combinations of models, algorithms and
programs we targeted for a maximum running time of 10
minutes for any step in the process. For reachability anal-
ysis this came down to no more than 1,000,000 states, but
at least 100,000 states.

However, some of the easier models took very long to
compile. In particular these were models which had very
complex transitions and resulted in very large ETF files.
Luckily we already had a collection of ETF files for all the
BEEM models, so we selected the models which had an
ETF size of less than 5000 lines.

The resulting list of 20 models is in appendix C.

For every model we benchmark the original, the plain ver-
sion (one big process with all transitions, equivalent to
an empty independent set), a non-weighted ISA version,
and a weighted ISA version. If the number of variables in
the model is small enough we take the exhaustive search,
otherwise we take greedy minimum.

5.2 Summary of the benchmark variants
Summarizing we check the running times of the following
cross product of options:

• 20 different models

• ETF with no regrouping, and -rgs and -rga options

• Original, plain, non-weighted and weighted ISA

• 7 different programs (2 compilers, 3 enumerators, 2
reachability analyzers)

• For the LTSmin programs no regrouping, and -rgs

and -rga options

All these were run 3 times.

5.3 Test setup
The tests were run on a cluster of 10 equal machines. They
run on Dual Intel E5520 processors with 24GB RAM mem-
ory. Every benchmark for one model ran completely on
one of the machines, so standard deviations only checked
on conditions on one machine, not performance differences
between machines. But since we have not compared mod-
els to each other anyway, this is not an issue.

6. RESULTS
Relevant result graphs are shown in the appendix. Here
the results are explained in words. All running times are
in CPU seconds of user time.

6.1 Regrouping on ETF level
The effect of regrouping on the original ETF varied by
program. Graph 3 summarizes the effects over all the
programs. For compiling no regrouping or safe regroup-
ing provided the best results. Aggressive regrouping was
slower. The same goes for the DiVinE reachability ana-
lyzer. For both enumerators it mattered very little what
kind of regrouping was done.

For dve-reach the results varied more significantly. There
are spikes to both sides where aggressive regrouping is
between 10 times faster to 2 times slower. The spikes for
safe regrouping are smaller. On average, both regrouping
options are faster than no regrouping for dve-reach.

Important note: dve-reach is used two times in the whole
chain, and both have regrouping options. We are talking
about the effect of regrouping at the first dve-reach at
the start of the chain, on the last dve-reach at the end of
the chain.

For the rest of the benchmark results we have used no
regrouping on ETF level, since that is the most neutral.

6.2 Programs
6.2.1 Compilers
The DiVinE compiler is generally around twice as fast as
the DiVinE 2 compiler (see figure 4). It did not matter
what method was used for generating the DVE for com-
pile times, as can be seen in figure 8 (figure for DiVinE
2 compiler is similar). Only the original model was often
much faster. This is probably because all models gener-
ated from the same source model have similar transition
lines. Only the ordering and grouping was different.

6.2.2 Enumerators
The DiVinE generators were always faster than dve2lts-grey,
but quite loosely correlated (see figure 5). The difference
between the DiVinE enumerator and the DiVinE 2 enu-
merator was not very big.

The enumerators are all fairly oblivious to what ISA is
used. The running times for original (best case) and plain
(worst case) are about equal.

Furthermore using the regrouping options on dve2lts-grey

had no effect except for a very large spike with fire_wire.4,
which could be explained by the large number of variables.
Because even though it had no effect on enumeration, us-
ing the regrouping options still caused the regrouping to
be calculated, which was a very expensive operation with
such a large number of variables.

6.2.3 Reachability Analyzers
There is not much to say about the reachability analyzers
in particular. There was practically no correlation between
the analyzers (see graph 6). dve-reach averaged about 40
seconds for a run, and the DiVinE reachability analyzer
averaged about 100 seconds.

6.3 The algorithms
Since both the enumerators as the compilers were fairly
oblivious to the algorithm used, we will only compare the
reachability analyzers.

6.3.1 Algorithm vs Original
When we check the running times of using a particular in-
dependent set algorithm and compare them to the running
times of the original, there is not much of a correlation.
The only real result is that the original is in almost all
cases a lot faster than all the generated DVE models.

An example graph for the DiVinE Reachability Analyzer
is in figure 7. The graph for dve-reach is similar.

6.3.2 Algorithm vs Plain
For the DiVinE Reachability Analyzer there was a strong
correlation between the generated models (see figure 9).
The ISA models (all except the originals and plain version)
all performed about equally well, but they were all about
30-50% faster than the plain version.

For dve-reach however the correlation was very weak, as
can be seen in figure 10 (with save and aggressive regroup-
ing the graphs are a little bit more extreme, but otherwise
similar). But we can see that on average the non-plain
models were faster than the plain models. Compared to
the plain version the span for no regrouping is from 6
times slower to about 30 times faster. The span for safe
regrouping is from around 3 times slower to almost 150
times faster.

6.3.3 Weighted vs Non-weighted
For the DiVinE reachability analyzer it mattered very lit-
tle whether a weighted or non-weighted version of the In-
dependent Set Algorithm was used, as can be seen in figure
11.

For dve-reach the correlation is much less clear, as can
be seen in figure 12. Especially for the complete search
the results differ a lot. One explanation could be that the
running times were too low, and that other factors (like
initialisation) were too dominant. Another explanation
could be that the weight function was a poor choice. Or
maybe a combination of both.

6.3.4 Regrouping on dve-reach on benchmarking
step

Using any of the -rga or -rgs options on dve-reach during
benchmarking can make a lot of difference. Speeds can
improve from around 36 seconds to under 1 second, or
from 327 seconds to around 41, though most of the timing
stayed around the same. See figure 13.

The difference between either regrouping option is however
less pronounced. On average the speed increase of -rga

over -rgs is less then 10%. See also figure 14.

7. CONCLUSIONS
The first conclusion is that the generated DVE seldom
approach the efficiency of the originals. This could be be-
cause the translation is still relatively simple. You could
for example try to detect */N transitions (transitions where
the source value for a variable does not matter). Also syn-
chronisation might make the model simpler.

Another conclusion is that parallelizing the generated DVE
indeed results in a significant improvement of performance,
from about 30-50% faster on the DiVinE Reachability An-
alyzer to up to 150 times faster on dve-reach with re-
grouping.

Another result is that, even though parallelizing is bene-
ficial, the exact independent set algorithm used does not
matter very much for the DiVinE reachability analyzer.

The results for dve-reach are still very inconclusive. Re-
sults vary wildly from model to model. More research
might be needed on that.

Finally the enumerators are not sensitive to how the model
was put together, just how many states they had. For the
compilers the size of the input model was most important.
But since the size of the generated states was based solely
on the transitions, it was independent of the way they were
combined, and therefore the ISA used.

8. FURTHER RESEARCH
This research did not go really deep in the different inde-
pendent set algorithms, nor the different weight functions
for the weighted independent sets. More research could be
done on that front. Also, the running times for some of
the measurement times were too low. There were a lot of
running times of less then a few seconds or even less than
a second. Higher running times could mean more accurate
results for comparison. The problem here was that there
were too many dimensions too consider. Now that the in-
teresting dimensions have been identified, one could dive
deeper into them.

Something else which might still be interesting in bench-
marking is comparing actual model checking on the differ-
ent versions of the models. Model checking on DiVinE is
done by combining LTS properties and a DVE model into
a new DVE model. This is done by converting states to
accepting states. However, this acceptance property is not
preserved in the ETF format, it is not possible to check for
the properties in the generated model. An alternative is
to combine the properties on the generated models. But
because of name and type translations on the variables
there must be additional processing on the properties to
make them valid for the new models.

Another potential performance increase could be the ad-
dition of synchronisation. This opens the possibility of
having a maximum of two marked variables written per
transition, which are synchronized on a channel. However,
this would need a modified version of the independent set
definition to work, complete with new algorithms.

9. ACKNOWLEDGEMENTS
I would like to thank Stefan Blom for his help and for
writing the first versions of the Parser and Converter.

10. REFERENCES
[1] DiVinE project website.

http://divine.fi.muni.cz/, per 22 March 2010.

[2] Enumerated table format. Available at
http://fmt.cs.utwente.nl/tools/ltsmin/etf.html,
per 22 March 2010.

[3] LTSmin. Available at
http://fmt.cs.utwente.nl/tools/ltsmin/, per 22
March 2010.

[4] µCRL website. http://homepages.cwi.nl/~mcrl/,
per 22 March 2010.

[5] Spin website. http://spinroot.com/, per 22 March
2010.

[6] J. Barnat, L. Brim, I. Černá, P. Moravec, P. Ročkai,
and P. Šimeček. DiVinE – A Tool for Distributed
Verification (Tool Paper). In Computer Aided

Verification, volume 4144/2006 of LNCS, pages
278–281. Springer Berlin / Heidelberg, 2006.

[7] S. C. C. Blom, J. C. van de Pol, and M. Weber.
Bridging the gap between enumerative and symbolic
model checkers. Technical Report TR-CTIT-09-30,
Centre for Telematics and Information Technology,
University of Twente, 2009.

[8] M. Bozga, S. Graf, and L. Mounier. If-2.0: A
validation environment for component-based
real-time systems. In In Proceedings of Conference

on Computer Aided Verification, CAV.02, pages
343–348. Springer Verlag, 2002.

[9] J. Groote and A. Ponse. The syntax and semantics
of µCRL. Technical Report CS-R9076, CWI,
Amsterdam, 1990.

[10] T. Margaria, R. Nagel, and B. Steffen. Remote
integration and coordination of verification tools in
jeti. In ECBS ’05: Proceedings of the 12th IEEE

International Conference and Workshops on

Engineering of Computer-Based Systems, pages
431–436, Washington, DC, USA, 2005. IEEE
Computer Society.

[11] R. Pelánek. Beem: Benchmarks for explicit model
checkers. In Proc. of SPIN Workshop, volume 4595
of LNCS, pages 263–267. Springer, 2007.

[12] S. Sakai, M. Togasaki, and K. Yamazaki. A note on
greedy algorithms for the maximum weighted
independent set problem. Discrete Applied

Mathematics, 126(2-3):313 – 322, 2003.

APPENDIX

A. DEFINITIONS

DVE Distributed Verification Environment. The high
level model used in this paper.

ETF Enumerated Table Format. The low level labelled
transition system dump used by LTSmin.

independent set A set of nodes on a graph such that
for every two distinct nodes in the set, there exists
no edge between them.

LTSmin A toolset for manipulating labelled transition
systems.

main variable A variable playing a big role in a transi-
tion system. Usually a state variable.

maximal independent set An independent set such that
there exists no node on the graph which can be added
to the set so that the set is still independent (i.e.: a
local maximum).

maximum independent set An independent set such
that there exists no other independent set on the
graph containing more nodes (i.e.: a global maxi-
mum).

secondary variable A variable playing a small role in a
transition system. Usually a local variable.

state variable The variable saying what state a process
is in.

B. EXAMPLE MODEL IN ETF
Example model in ETF

begin state

X\.a:byte X\.b:byte X:X

end state

begin edge

end edge

begin init

0 0 0

end init

begin trans

0/1 * 0/1

0/0 * 0/1

1/1 * 0/1

1/0 * 0/1

end trans

begin trans

* 0/1 1/2

* 0/0 1/2

* 1/1 1/2

* 1/0 1/2

end trans

begin trans

0/0 0/0 2/4

0/0 1/1 2/3

1/1 0/0 2/3

1/1 1/1 2/4

end trans

begin trans

* * 3/0

end trans

begin trans

* * 4/0

end trans

begin sort byte

end sort

begin sort X

"x0"

"x1"

"x2"

"x3"

"x4"

end sort

C. MODELS
The following is a list of models used from the BEEM[11]
site:

• bakery.4

• brp.3

• cyclic scheduler.3

• cyclic scheduler.4

• exit.5

• firewire tree.4

• lamport.2

• lann.4

• lann.5

• leader election.3

• leader election.4

• mcs.3

• mcs.6

• msmie.3

• peterson.3

• phils.4

• phils.5

• production cell.4

• protocols.4

• protocols.5

D. GRAPHS
On the next pages is a series of graphs extracted from the
benchmarks. All values are in CPU seconds of user time.
Some graphs feature one or two regression lines, together
with regression formula’s (in the form of f(x) = Ax + b)
and a Pearson correlation coefficients (R2).

Figure 3. ETF grouping

Figure 4. Compilers

Figure 5. Enumerators

Figure 6. Reachability Analyzers

Figure 7. DiVinE Reachability Analyzer: Alg vs.
Orig

Figure 8. DiVinE compiler: Alg vs. Plain

Figure 9. DiVinE Reachability Analyzer: Alg vs.
Plain

Figure 10. dve-reach (no regrouping): Alg vs.
Plain

Figure 11. DiVinE Reachability Analyzer:
Weighted vs. Unweighted

Figure 12. dve-reach (aggressive regrouping):
Weighted vs. Unweighted

Figure 13. dve-reach: regrouping vs. no regroup-
ing

Figure 14. dve-reach: comparing regrouping

