
1

Specifying a Concurrent Program in Java using

Separation Logic
Dennis van der Zwet

University of Twente
P.O. Box 217, 7500AE Enschede

The Netherlands

d.vanderzwet@student.utwente.nl

ABSTRACT
When building software to be used in critical environments, it

is important that the software behaves as intended. Permission

based separation logic is a way to specify a concurrent program

so that the behavior can be verified. In this paper we describe

the building of a ski lift program and specify it using

permission based separation logic. We use this case study to

see what problems arise when trying to use separation logic to

specify a realistic program.

This paper starts with an introduction into permission based

separation logic, after which it describes the building of the

ski-lift program. After this it explains how we specified the

program. We explain which choices we made and why we

made them, after which we explain which problems we found

while specifying the program and what solutions we used to

solve the problems.

Keywords

Prototype, proof of concept, VerCors, specifying concurrent

programs.

1. INTRODUCTION
When a computer is used to perform tasks, it is the intention

that the the computer behaves in a certain way. When a

computer is used to perform safety-critical applications, it is

important that the software functions exactly as intended. For

example when a radiographic image is taken, it is important

that the correct dose of radiation is used, since too high doses

can cause human casualties.

Because of this, when writing software, it is important that a

program has correct behavior. To define what the correct

behavior for a program is it is possible to create a specification

of the software. While it, is possible to specify a program using

an informal specification, such as human language, there are

several problems. Since human language can be ambiguous

and hard for a computer to understand, it is hard to say when a

program does not follow its specification.

This is the reason that in the process of verifying the program

behavior, the program is usually specified using formal

specifications. In a formal specification the behavior of a

program is specified using specific formulas, for example

using mathematical logic.

For sequential programs, there are techniques to define a

formal specification of how the program is supposed to work,

such as Hoare logic, which is further explained in Section 2.

There are also tools and methods to verify that a program

conforms to the given specification. When verifying a formal

specification, it is possible to let a computer check if the

program conforms to the specifications. Usually this involves

defining pre- and postcoditions on a method. A precondition is

a set of conditions the state of a program has to adhere to

before the execution of the method, and a postcondition gives

guarantees about the state of the program after the method. In

Section 2 specifying and verifying programs is explained more.

While those ways of verifying programs are intended for

sequential programs, many programs now have some form of

concurrency.

The reason for the increased concurrency in programs is that in

the past few years the improvements in hardware performance

that is usable for sequential programs are getting slower. A

large part of the performance increases are gained by adding

multiple cores to a single processor, and adding more

processors to certain systems. To make use of these extra

resources, programs have to make use of those extra cores.

These so called concurrent programs use multiple threads to

split the workload over multiple cores

 With concurrent programs, specifying and verifying the

behavior is more difficult. Since in concurrent programs the

order in which concurrent parts of the program are run is not

predictable, there are extra hurdles in verifying that a program

does not violate a specification. For example when

incrementing a counter by one, in a non-concurrent program,

the precondition could be that the counter must be initialized,

and the postcondition could be that the counter will be 1 higher

than before the method was called. In a concurrent example

this would not be sufficient, since in a concurrent program it is

possible that two threads increase the counter at the same time,

which could mean that by the end of one of the increase

methods, the counter is 2 higher compared to the beginning,

which will break the postcondition, since that ensured it would

be exactly 1 higher.

In this research we are going to use permission based

separation logic to specify multithreaded programs, which will

be explained in Section 2. We are going to develop a program

which models a ski-lift using multiple types of cars, which we

will explain in Section 3. We chose this program because

when a ski-lift malfunctions, it could have serious

implications, therefore it is important for a ski-lift to be

working correctly. After developing the model of a ski-lift, we

will specify it using permission based separation logic to see

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

22ndTwente Student Conference on IT, January 23, 2015, Enschede, The

Netherlands.

Copyright 2015, University of Twente, Faculty of Electrical Engineering,

Mathematics and Computer Science.

2

what problems arise when trying to use separation logic to

specify a realistic program.

The research question that will be addressed will be

“How difficult is it to specify a multithreaded model of a

complex ski-lift using permission based separation logic?”

This question will be broken down into the following

subquestions:

“How can the proposed model be built in a concurrent way

such that it serves as a good use case to be specified using

permission based separation logic?”

“What problems arise when trying to specify the built ski-lift

program using permission based separation logic so it can be

used to eventually verify the program?”

“How can the problems that arise be solved?”

2. BACKGROUND

2.1 Methods of verification
A lot of work has been done to verify the correct behavior of

programs. The verification that is used nowadays builds on

Hoare[4] logic. Hoare logic uses the concept of preconditions

and postconditions to reason about code. Hoare defined a set of

rules used to prove if a method returns in a state that conforms

to its specification. To prove this it specified preconditions and

postconditions. A precondition is a set of conditions, which

must be adhered to before using a method. A postcondition is a

guarantee that if at the beginning of a method call the

preconditions are met, the state of the program after the usage

of the method conforms to the conditions set in the

postcondition. If the postcondition can be proved using the

precondition and the actual code, it is verified that the method

behaves as specified.

Because in a sequential system there is no other process

modifying the variables used by the program, it is possible to

prove that the outcome will adhere to the specifications..

However, since in concurrent programs it is possible that data

is accessed and modified by another thread during the

execution of a method, the set of rules in Hoare logic is not

sufficient to prove the adherence to the postconditions.

One of the first methods to verify behavior of concurrent

systems is researched by Owicki and Gries [6]. They used a

method called rely-guarantee. While it is possible to specify a

program using rely-guarantee, it provides a considerable

specification overhead. Since this makes it impractical to use

on a large scale, alternatives have been researched. An

alternative that has been researched is separation logic.

2.2 Separation logic
Separation logic is an extension of Hoare logic which

distinguishes between the use store and a heap in the logic[1].

When separate threads do not communicate with each other,

the heaps of the threads will be disjoint, which automatically

means no data races will occur, since they will not try to use

the same variables. Since usually it is necessary for different

threads to communicate during execution of those threads, this

is too restrictive. Permission based separation logic adds

permissions to the logic.

In permission based separation logic, every use of memory

goes with a certain permission to use that memory, which is a

number in the range (0,1]. A write operation needs a

permission level of 1, while a read operation can have a

permission of every number in this range. The sum of all

permissions on a variable cannot be higher than 1. This

enforces that a write operation can only take place in the case

that it has a permission of 1, while the constraint that the total

permission of 1 makes sure no other piece of the program can

read that piece of memory.

Nowadays there are multiple techniques to verify concurrent

programs that use verification logic. Many ways to verify

concurrent programs are either based upon the work of Owicki

and Gries or using separation logic, for example VerCors[2]

and Verifast[5]. We will go in detail about the technique we

used, namely VerCors.

2.3 VerCors
A tool that is in development is called VerCors. It uses

permission based separation logic for the specification of a

program, and verifies if it follows the specification. It uses the

constraints specified in the specification and checks if the

following code actually adheres to those constraints. For this it

uses the Java modeling language (JML) which it extends with

additional functionality.

JML is a language used to add the specification of a Java

program in the comments of a program. JML is specified in

comments by using an ‘@’ sign followed by a keyword.

Keywords are for example requires and ensures, which

respectively define the precondition and postcondition of the

following code fragment.

Vercors extension to JML adds the possibility to reason about

permissions and separation in the JML. This is done by adding

the Pointsto(x,v,π) and Perm(x, π) predicates. Where x is the

memory to point to, v the value of this memory and π the

permission level. Of these methods we will use the Perm

method, which means a permission on x of the value π. So

when it requires a Perm(x,50), it requires a read permission on

x, and when it ensures a Perm(y,100), it gives back a certan

write permission.

2.3.1 Example
Below follows a very simple example showing a counter which

has a method to increase the value of the counter. Because the

method writes to value x, it needs write permission, which is

why it needs a permission of 1.

Note that in the JML instead of a value from 0 to 1 it is an

integer between 0 and 100. As shown in this example, the

constructor only has a postcondition, in which it ensures a

permission. When the constructor creates the object, it has

control over the variables in the object. The postcondition

specifies that it indeed has the control over the variable x,

since it is created in the constructor.

The method increase requires a permission of 100, which

means a write permission on x, since it has to increment it.

After the usage of the increase method it ensures the

permission of 100 again, which means it passes the permission

back. In this method \old is defined in the standard JML as the

state of the program before the method started, so old(x) is the

value of x before it was increased by the method.

class Counter{
private int x;

//@ensures Perm(x,100) && (x==0);
public Counter(){
 x = 0;

3

}

//@requires Perm(x,100);
//@ensures Perm(x,100)
&& (x == (\old(x))+1) ;
public void increase(){
 x = x+1;
}}
Listing 1: An example of separation logic

3. SKILIFT PROGRAM

Figure 1: schematic example of ski-lift

The program to be specified is a model of a hybrid ski lift,

which is a ski lift which has multiple types of cars, for

example a gondola for the beginners, and chairs for more

advanced skiers. The reason to go for a ski lift is that it is a

safety critical scenario. Since a ski lift is a form of human

transportation, safety is very important.

There are people who want to get on one of the types of cars to

the top of the ski lift, after which they get off. To get in a car

they join the queue for that specific type of car. When a car is

not needed, it sits in storage, and when it comes out of storage,

it goes to the queue, takes passengers, after which it goes on

the main cable to the top. There is a minimum amount of space

needed between cars, and the cables also have a maximum

amount of cars allowed on it.

The main cable will not stop moving as long as the program is

running, while the cables that are attached to the queues will

wait when a car is at the point to get attached to the

MainCable, but the MainCable does not have a space.

The program is built up in different classes, which is show in

the class diagram in Figure 2. In the next section we will

explain the functionality of the classes.

Figure 1 shows a schematic example of a ski lift. In this

example the round shapes are the cars, the triangles represent

the entrances and exits, and the squares represent the storage

of the cars. The different colours of the shapes, filled blue and

blue with white filling represent two different types of cars.

The code of the program can be found on the site of the

University of Twente[9]

Figure 2: Class diagram of the ski lift program

3.1 Car
The car datatype only holds information about itself, and does

not know anything about the rest of the world, except its

position on the cable it is on. Which cable is not important. It

has setters and getters to get and set the position on the cable,

and how many people are in the car. It also has a CarType

3.2 CarType
A CarType has a name, to differentiate between the different

types of cartypes, and a capacity, which determines how many

people can be in a car of the specific type. The name of a

CarType needs to be unique.

The reason that this construction is used instead of a car

interface which gets implemented by specific types of cars is

that since there is no logic specific to the carTypes, and the

only difference is the name and the capacity, there would be no

clear advantage to use this approach, while there would be the

disadvantage of needing more classes for every time an extra

type of car is needed.

4

3.3 Simulation
The simulation class only provides a timer, which starts at 0 at

the start of the program, and makes sure all the cables are on

the same time.

3.4 MainCable and FeedingCable
The MainCable and FeedingCables are somewhat similar.

Both have cars that ride the cable, which needs to change

position. It would have been possible to make a superclass

Cable which were inherited by MainCable and FeedingCable,

but while some parts work the same, all the functionality has a

different implementation, and also while using the cables, they

should not be used on the same way.

The most important part of both of the cables is the main loop,

which uses the Simulation class to check if the simulationTime

has been increased, and by how much, after which it moves the

cars.

3.4.1 FeedingCable
The FeedingCable has 2 locks. The positionLock is used when

the position of cars is altered, while the queueLock is needed

to add or remove people from the queue.

The moveCars method of the FeedingCable first needs to

check if the cable is allowed to move, after which it actually

moves. It first loops through all cars that are on the cable, and

if it should go to the MainCable, it checks if there is actually

space on the MainCable, and adds a car if there is space by

using the addCar method. If there is no space, the cable is not

allowed to move. If the cable is allowed to move, it locks the

positionLock, after which it moves every car one position, and

releases the lock.

3.4.2 MainCable
The moveCars method of the MainCable does not have to

check if it is allowed to move, since it will always move, so

after it checks every car if it can be passed over the other

cable, it moves all cars one position.

The addCar method of the MainCable checks if a car can be

placed on a specific position. The difference between the

addCar method of the FeedingCable is that it also keeps track

of failed attempts to add a carriage. When a carriage is

attempted to add, the position plus the time of the attempt is

stored. When there actually is space on the cable, but another

FeedingCable is waiting for a longer time, it will not be

allowed to put a car on the cable, to avoid starvation of some of

the FeedingCables.

A typical run of the application will be explained using a

sequence diagram [Figure 3].

First the application needs to be initialized. In the sequence

diagram this is somewhat simplified, but the administrator

creates the application by creating a MainCable and the

amount of FeedingCables it wishes to use, after which it adds

the FeedingCables to the MainCable. After that it starts the

threads of the FeedingCables and the MainCable.

When the application is running, if a user wishes to use the ski

lift, he enters the queue, represented in the program by the

AddToQueue method. After getting in the queue, the user gets

in the carriage. In the program, the corresponding

FeedingCables take care of putting users in the Cars, after

which they get to the top, after which the user exits the lift. As

shown in the sequence diagram, the order of which the

different users get out of the lifts, does not necessarily have to

be the same as the order in which they got in.

Figure 3: A sequence diagram specifying a run of the

program with 4 people that wish to use the ski lift.

Figure 4: A sequence diagram specifying the trip of one

person from the queue to the exit at the top of the ski-lift

A more detailed view of the program will be explained using

the sequence diagram in Figure 4.

When a user enters the queue, the user will have to wait until

he is at the top of the lift. The FeedingCable will check the

queue for passengers every time a Car is at the position of the

queue. It will then put passengers in the Car. After this the

FeedingCable will call moveCars until the car is at the position

of the MainCable. When the car is at the MainCable, it will

add the car with the person in it to the MainCable. The

MainCable also keeps calling moveCars, until the car is at the

top, at which point the user exits the Car.

5

3.5 Threads
The purpose of this program is to be able to specify a larger

concurrent program using permission based separation logic.

This program has two important classes that can be

multithreaded. The MainCable, which can have multiple

FeedingCables, and the class FeedingCable. There can be

multiple FeedingCables,

The cables move separately from each other, and they have to

interact when a Car needs to pass from the FeedingCable to

the MainCable or the other way around. It acquires permission

to variables from the other classes by using Locks, which are

created in the class to which its locks hold. It waits for the

permission by using the .lock method, which waits until it

acquires the lock before returning. We chose for this because

the methods are not supposed to hold the locks long, and the

acquiring of the locks are necessary for the thread to continue.

The program can have a single MainCable and multiple

FeedingCables, each one being a separate thread. There is no

limit in the amount of FeedingCables, and every instantiation

of the FeedingCable also means using a new thread, so the

program can be scaled to an unlimited amount of threads. It is

assumed that once a cable exists, it won’t be deleted anymore,

so the threads will not end unless the entire program will stop.

To shutdown the program, the MainCable and FeedingCable

have a shutdown method. The run method is a loop that checks

every time if the Boolean running is still true, and if it is false,

it stops the loop, and thereby ending the run method, and

gracefully exiting the thread.

Since, as stated above, the program uses multiple threads,

which do a non-trivial task and since the program is a model of

real-life scenario that has safety critical aspects, since a ski-lift

is a form of transportation of humans, which makes safety very

important, we may conclude the answer to the first subquestion

is that this program is a suitable case study to try to specify

using permission based separation logic.

4. SPECIFICATION
After building the program, it needed to be specified. When

specifying the program, we focused on the occurrence of data

races. When trying to specify functional behavior, there were

some problems as explained in Section 4.4. We started

specifying the program by analyzing which variables would

need which permissions.

In a multithreaded program, the amount of access a thread has

on a reference varies between the different threads. Some

references will only be accessed by one thread, while other

references will be accessed by multiple threads. The

specification of the references used by only one thread is fairly

straightforward, any method that uses this reference can

request full write permission. The references which are not

final and which are accessed by multiple threads need more

complicated solutions, for example by using locks. To see

which references needed those solutions, we started by

identifying the variables that are shared between threads. The

parts that are using multiple threads are MainCable and

FeedingCable.

We created a diagram showing which variables were used by

which method, including the usage of how MainCable and

FeedingCable uses each others methods. In this diagram,

straight lines are write acces and method invocations, while

blocked lines are read access. After creating the diagram, we

colored the variables which are shared, where red means write

acess, and yellow means read access.

Appendix A shows a diagram including the variables in both

the MainCable and the FeedingCable. As shown in the

diagram, we found that distanceBetweenCars and carsOnCable

in the MainCable are shared variables that are only read from

other threads, while buffer is a shared variable that requires

write access from another thread. In FeedingCable

distanceBetweenCars and carsOnCable requires read access

from other threads, while buffer and Queue requires read and

write access. It is shown that in both classes addCar is used

from different threads and needs write-access to buffer. This

means the addCar methods in both classes needed the most

work.

4.1 Specifying the permissions

4.1.1 Non shared variables
When a variable is not shared between threads, the thread that

holds it always has a permission of 100 on it, meaning it has

write permsission on it. Methods that need that variable still

needs to require a permission in the specification, on the

variable, but this will not be a problem, since it always has

permission. The permission on variables are with the thread

that creates the variable. The constructor of a method does not

require any permissions, but ensures all permissions on the

object, since at that point they are in possession of that thread.

The permissions can be taken by another thread by using a

lock. As will be explained in the next section. An example

used in the program is the method isBlocking, which checks

based on two positions, if these positions are blocking legal

positions to have cars on at the same time, based on the

permitted distance cars minimally need to have. For this it

needs the distanceBetweenCars variable, which contains the

minimum distance two cars need to keep of each other.

/*@
 requires Perm (distanceBetweenCars,50) **
incomingPosition > 0 && carPosition > 0;
 ensures Perm (distanceBetweenCars,50);
@*/
private boolean isBlocking(int
incomingPosition, int carPosition)

Listing 2: example of requiring and ensuring permissions

on a reference not shared with other threads.

4.1.2 Shared variables
When a variable is used in between different threads, a method

is necessary to pass the permission between threads. In this

program we used locks to specify this permission. The

specification of the locks grant permission to the variables

when locking, and releases the permission to the lock when

unlocking. In this scenario, a method can’t require and ensure

a certain permission, since it is possible another thread also

uses a method that requires the same permission. The

specification of lock ensures a certain permission (100 for

write locks, and a low number for read locks), and the

specification of unlock requires the same permission, thereby

releasing the permission the thread had of the reference. The

specification of the Lock class and it’s methods can be found

in the document Formal Specifications for Java’s

Synchronisation Classes[3].

In listing 3 is an example of how locks are used in the

6

program. In the FeedingCable, the buffer and carsOnCable

variables are shared. Since they both are dependent on each

other,they are protected by the same lock. As seen in Listing 3,

the lock gets the resource posLock, which handles the

permission on both buffer and carsOnCable. It also gets passed

the value true as the second parameter, which means it is a

reentrant lock. After locking the permissionLock, it assumes

permission over the variables, which it gives back after using

unlock. In this snippet, carsOnCablePerm is a predicate to

make sure it has permissions on the entire array, as will be

shown in the next section.

//@resource posLock(frac p) = (Perm(buffer, p)
** Perm(carsOnCable,p) ** carsOnCablePerm(p)
);

private ReadWriteLock
/*@ <posLock,true> @*/positionLock = new
ReentrantReadWriteLock();/*@<posLock> @*/
/*@
 requires cablesPerm(50) ** i > 0;
 ensures cablesPerm(50) ** true ;
 @*/
private void moveCars(int i)
{
//Here there is no permission on buffer or
carsoncable
//Some code...
positionLock.writeLock().lock();
//Here there is write permission on
carsOnCable
carsOnCable[carID] = null;

positionLock.writeLock().unlock();
//Here there is no write permission anymore

}

Listing 3: An example of the positionLock.

Another lock we used is for the queue, as shown in Listing 4.

The queueLock is also a readwrite lock. In the sample in

Listing 4, we see a usage of the readlock. After calling

queueLock.readLock.lock(), the thread will have permission to

read the amount of people in the queue, but won’t be allowed

to write to it. As shown in the examples, both using a readLock

and a writeLock are fairly straightforward, however, as will be

shown in the next sections, there were some other technical

problems that had to be solved to create the specification.

//@resource qLock(frac p) = (Perm(queue,
p));
private ReadWriteLock/*@ <qLock,true>
@*/queueLock = new
ReentrantReadWriteLock/*@<qLock> @*/();
/*@
 requires Perm(placeOfMainCable,100)**
Perm(cable,100) ** Perm(storage,100) **
position > 0;
 ensures Perm(placeOfMainCable,100)**
Perm(cable,100) ** Perm(storage,100);
 @*/
private void moveCars(int position){
//more code

queueLock.readLock().lock();
if (storage.getCapacity() >
storage.Count() && car.getLoad() == 0 &&
queue > 0)
{
 storage.addCar(car);
 carsOnCable[i] = null;
}
queueLock.readLock().unlock();

//more code
}

Listing 4: An example of the queueLock

4.2 Dynamic structures
While building the application, we used dynamic structures

like ArrayLists and Stacks in several classes. When specifying

these it was found out that it is hard to specify the permissions

for dynamic structures.

4.2.1 The problem
When specifying a permission on a dynamic structure, the

permission only applies to the reference of the structure, not

the references inside the structure. Listing 5 shows an example

of a permission on an ArrayList. In this example, if another

thread has access to one of the elements inside the ArrayList,

this thread can still get permission on the ArrayList, but when

trying to acces one of the variables inside, a data race can still

occur. Originally, a List was used to specify which cars exist

on the cable, as shown in Listing 5. In this example, the

method isLegalEmptyPosition requires permission for

carsOnCable, however, in this specification it does get

permission for the items that are inside of the list.

private List<Car> carsOnCable = new
ArrayList<Car>();

/*@
requires Perm(buffer, 100) **
Perm(carsOnCable,100) **
Perm (distanceBetweenCars,50);
ensures Perm(buffer, 100) **
Perm(carsOnCable,100) **
Perm (distanceBetweenCars,50);
@*/

private boolean isLegalEmptyPosition()

Listing 5: Example for dynamic structures

4.2.2 Solution
A solution to specify a program with dynamic structures is to

use predicates, as shown by M. Roo[7]. A downside of this

method is that for every different dynamic type, another

predicate solution is needed.

Since we used multiple dynamic structures, such as Hashmaps,

stacks and arraylists, we looked for a different solution. The

solution we used was to rewrite the dynamic structures to

arrays. To still make the program manageable, we created

some helper functions that fills and reads the data from the

array. To convert the stack to an array, we used an array with

Cars, and used an index. Every time a car is added the car is

added to the position of the index, and the index is increased.

Changing the dictionary to an array was also quite

straightforward. Since the maximum size of the array is known

7

at the instantiation, it doesn’t need to be expanded. And since

the dictionary was already used with integer based indexes, all

the get(i) could just be replaced by [i].

The list was slightly less straightforward. Since Cars in the

carsOnCable list can be added anytime, and Cars can be taken

out in any order, Cars can be spread over the array, so when

adding a new Car, a new place needs to be found. To handle

this we created the helper method addCarToArray, which loops

over the array and takes the first open spot. Since ordering

doesn’t matter, this can be done without a problem.

By using an array, it is possible to request permission on the

separate entries in the array. Since we have methods that need

access to entire arrays, we created helper methods to do so, as

shown in Listing 6. It loops over every position in the array,

and calls Perm on it. A usage of this method can be seen in

Listing 3, where the positionLock uses this.

//@resource carsOnCablePerm(frac p) =
(\forall* int i ; 0 <= i && i <
carsOnCable.length ; Perm(carsOnCable[i],p));
Listing 6: An example of a helper predicate to specify the

permissions

Everywhere where a method needs access to the all the entries

in the array, a similar predicate has been used. However, when

only one place in the array will need to be edited, it only needs

access to that specific location in the array. This has been used

by the method getCar, which takes a car out of the storage and

passes it over. Since the array is built as a stack, and the index

points to the next free slot, it only needs permission to the

position of index-1. Also, since it changes the index, it needs

write permission on the index. This is shown in Listing 7.

/*@
 requires Perm(cars[index-1],100) **
Perm(index,100);
 ensures Perm(cars[index-1],100) **
Perm(index,100);
 @*/
public Car getCar()
{
 Car retval = null;
 if (index > 0)
 {
 retval = cars[--index];
 }
 return retval;
}

Listing 7: Example of the usage of only one position of the

array

4.3 Specifying functional behavior
The specification that we written for this program focuses on

data races. However, we also looked at specifying more of the

behavior of the program. The problem that arises here, is that

other threads can change variables before the method has been

returned. For example, the moveCars methods in both the

FeedingCable and the MainCable move the cars a specific

amount of places around the cable. However, when we tried to

specify this in a post-condition, we ran into a problem. Since

the lock gets released before the method is finished, there can

be changes to the Cars on the Cable, for example a new Car

can be added, before the method returns, thereby invalidating

the postcondition. Research has been done to verify functional

behavior of a program [8], which uses histories of variable

assignments to be able to reason about a program. This is a

time consuming process, therefore we did not do this during

this research.

4.4 Using VerCors
After specifying the program we also tried to run the program

through VerCors, so it could also be verified. We started with

the option –passes=java, so it would not try to verify the

program, but it would only run through the specification. We

found that the program would need severe changes to make

VerCors even run through the program. We found that VerCors

would not allow the using of packages, or the using of import.

Also the usage of annotations, of which we used the

@Override annotation, would not let VerCors run through the

code. This means that for a program to be verified using

VerCors after specifying the program using permission based

separation logic, it would still need work to be able to run it

through VerCors.

4.5 Specification overview
The second and third subquestions are what problems arise

while specifying the program, and how the problems that arise

can be solved.

We successfully managed so specify the ski-lift program using

permission based separation logic and use reoccurring

specification patterns. The problems we found were as stated

in Section 4.3 and Section 4.4 to specify permissions on

dynamic structures, and the specification of formal behavior.

As shown in Section 4.3, it is possible to avoid dynamic

structures, thereby avoiding this problem, or use predicates, as

used in specifications of other programs.

We did not specify much functional behavior, although as

showed in Section 4.4, there are methods to still make

statements about the functional behavior [8].

5. RELATED WORK
Proof of concepts exists for both VerCors and VeriFast. The

proof of concepts from VeriFast also includes more complex

and larger examples. For example there are drivers and kernel

modules that have been verified using VeriFast. The case

studies that exist for VeriFast are more complex. An example

of case studies made for VeriFast is a game server for rock-

paper-scissors, and parts of the C runtime library.

For VerCors the existing programs are mostly small examples.

These examples are useful to see how specific situations can

be proved using VerCors, and have been useful in the creation

of this program. This project was done to try the specification

method of VerCors on larger projects than the small samples

that already exist.

6. CONCLUSION
In this section we will first start by answering the

subquestions, after which we will answer the main research

question.

 How can the proposed model be built in a concurrent way

such that it serves as a good use case to be specified using

permission based separation logic?

In this paper we showed a model of the ski-lift, which has

more complexity than a simple example program, using

multiple threads. Furthermore, because of the safety critical

characteristics of the program it is very suitable as a case study

for specifying it using permission based separation logic.

8

What problems arise when trying to specify the build ski-

lift program using permission based separation logic so it

can be used to eventually verify the program?

In this paper we showed two problems that risen, the

specification of dynamic types and the specification of more

specific behavior. We discussed a solution for the first

problem, and pointed to a solution for the second problem.

How can the problems that arise be solved?

The problems we ran into with dynamic structures could be

solved by changing the dynamic types to arrays. While that

worked in this example, there could be cases that this solution

would not be sufficient, for example when there are reasons to

stick with the dynamic types, for example because of

performance reasons.

The problem that the specification cannot be used to cover

functional behavior has been solved by making the

specification less specific and skipping the functional behavior

specifications, but this solution is not preferable. Given a

larger timeframe for the project, the solutions staded by M.

Zaharieva-Stojamovski, M. Huisman and S. Blom [8] could be

applied to fully specify the behavior of the ski-lift.

How difficult is it to specify a multithreaded model of a

complex ski-lift using permission based separation logic?

In this paper we showed that is possible to specify a more

complex program, although some modifications need to be

made to the program in order to build a correct specification.

Future attempts to specify a larger program can use the

solutions used in this project, as well as the solutions we did

not use, but did discuss for their project.

7. FUTURE WORK
In this paper we created a program and a specification that can

be used to verify it using the VerCors toolset. However, we did

not verify it. Future research could try to verify the program we

build. Another recommendation for future work is to extend

the specification to also cover the functional behavior of the

program.

8. REFERENCES
[1] A. Amighi, S. Blom, S. Darabi, M. Huisman, W.

Mostowski, and M. Zaharieva-Stojanovski 2013

Verification of Concurrent Systems with VerCors

DOI=http://doi.acm.org/10.1007/978-3-319-07317-0_5

[2] A. Amighi, S. Blom, M. Huisman, M. Zaharieva-

Stojanovski. 2012. The VerCors Project: Setting up

basecamp. DOI=

http://doi.acm.org/10.1145/2103776.2103785.

[3] A. Amighi, S. Blom, M. Huisman, W. Mostowski, M.

Zaharieva-Stojanovski 2013 Formal Specifications for

Java’s Synchronisation Classes

[4] C.A.R Hoare 1969 An axiomatic basis for computer

programming

DOI=http://dx.doi.org/10.1145/363235.363259

[5]]B. Jacobs and F. Piessens 2011 Expressive modular fine-

grained concurrency specification. In POPL, pages 271–

282, 2011.

DOI=http://dx.doi.org/10.1145/1926385.1926417

[6] Susan Owicki and David Gries 1976 Verifying properties

of parallel programs: An axiomatic approach. Commun.

ACM, 19(5):279–285, 1976 DOI=

http://dx.doi.org/10.1145/360051.360224

[7] M. Roo 2014 Specifying Concurrent Programs: a Case

Study in JML and Separation Logic

[8] M. Zaharieva-Stojanovski , M. Huisman, S. Blom 2014

Verifying Functional Behaviour of Concurrent Programs

DOI=http://dx.doi.org/10.1145/2635631.2635849

[9] D. Zwet 2014 The code with the specification of the ski-

lift http://fmt.cs.utwente.nl/education/bachelor/132/

9

APPENDIX

A. Diagram

