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ABSTRACT 
When building software to be used in critical environments, it 

is important that the software behaves as intended. Permission 

based separation logic is a way to specify a concurrent program 

so that the behavior can be verified. In this paper we describe 

the building of a ski lift program and specify it using 

permission based separation logic. We use this case study to 

see what problems arise when trying to use separation logic to 

specify a realistic program.  

This paper starts with an introduction into permission based 

separation logic, after which it describes the building of the 

ski-lift program. After this it explains how we specified the 

program. We explain which choices we made and why we 

made them, after which we explain which problems we found 

while specifying the program and what solutions we used to 

solve the problems. 

Keywords 
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1. INTRODUCTION 
When a computer is used to perform tasks, it is the intention 

that the the computer behaves in a certain way. When a 

computer is used to perform safety-critical applications, it is 

important that the software functions exactly as intended. For 

example when a radiographic image is taken, it is important 

that the correct dose of radiation is used, since too high doses 

can cause human casualties.   

Because of this, when writing software, it is important that a 

program has correct behavior. To define what the correct 

behavior for a program is it is possible to create a specification 

of the software. While it, is possible to specify a program using 

an informal specification, such as human language, there are 

several problems. Since human language can be ambiguous 

and hard for a computer to understand, it is hard to say when a 

program does not follow its specification.  

This is the reason that in the process of verifying the program 

behavior, the program is usually specified using formal 

specifications. In a formal specification the behavior of a 

program is specified using specific formulas, for example 

using mathematical logic. 

For sequential programs, there are techniques to define a 

formal specification of how the program is supposed to work, 

such as Hoare logic, which is further explained in Section 2. 

There are also tools and methods to verify that a program 

conforms to the given specification. When verifying a formal 

specification, it is possible to let a computer check if the 

program conforms to the specifications. Usually this involves 

defining pre- and postcoditions on a method. A precondition is 

a set of conditions the state of a program has to adhere to 

before the execution of the method, and a postcondition gives 

guarantees about the state of the program after the method. In 

Section 2 specifying and verifying programs is explained more.  

While those ways of verifying programs are intended for 

sequential programs, many programs now have some form of 

concurrency. 

The reason for the increased concurrency in programs is that in 

the past few years the improvements in hardware performance 

that is usable for sequential programs are getting slower. A 

large part of the performance increases are gained by adding 

multiple cores to a single processor, and adding more 

processors to certain systems. To make use of these extra 

resources, programs have to make use of those extra cores. 

These so called concurrent programs use multiple threads to 

split the workload over multiple cores 

 With concurrent programs, specifying and verifying the 

behavior is more difficult. Since in concurrent programs the 

order in which concurrent parts of the program are run is not 

predictable, there are extra hurdles in verifying that a program 

does not violate a specification. For example when 

incrementing a counter by one, in a non-concurrent program, 

the precondition could be that the counter must be initialized, 

and the postcondition could be that the counter will be 1 higher 

than before the method was called. In a concurrent example 

this would not be sufficient, since in a concurrent program it is 

possible that two threads increase the counter at the same time, 

which could mean that by the end of one of the increase 

methods, the counter is 2 higher compared to the beginning, 

which will break the postcondition, since that ensured it would 

be exactly 1 higher. 

In this research we are going to use permission based 

separation logic to specify multithreaded programs, which will 

be explained in Section 2. We are going to develop a program 

which models a ski-lift using multiple types of cars, which we 

will explain in Section 3. We chose this program because 

when a ski-lift malfunctions, it could have serious 

implications, therefore it is important for a ski-lift to be 

working correctly.  After developing the model of a ski-lift, we 

will specify it using permission based separation logic to see 
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what problems arise when trying to use separation logic to 

specify a realistic program. 

The research question that will be addressed will be  

“How difficult is it to specify a multithreaded model of a 

complex ski-lift using permission based separation logic?” 

 

This question will be broken down into the following 

subquestions: 

“How can the proposed model be built in a concurrent way 

such that it serves as a good use case to be specified using 

permission based separation logic?” 

 

“What problems arise when trying to specify the built ski-lift 

program using permission based separation logic so it can be 

used to eventually verify the program?” 

 

“How can the problems that arise be solved?” 

2. BACKGROUND 

2.1 Methods of verification 
A lot of work has been done to verify the correct behavior of 

programs. The verification that is used nowadays builds on 

Hoare[4] logic. Hoare logic uses the concept of preconditions 

and postconditions to reason about code. Hoare defined a set of 

rules used to prove if a method returns in a state that conforms 

to its specification. To prove this it specified preconditions and 

postconditions. A precondition is a set of conditions, which 

must be adhered to before using a method. A postcondition is a 

guarantee that if at the beginning of a method call the 

preconditions are met, the state of the program after the usage 

of the method conforms to the conditions set in the 

postcondition. If the postcondition can be proved using the 

precondition and the actual code, it is verified that the method 

behaves as specified. 

Because in a sequential system there is no other process 

modifying the variables used by the program, it is possible to 

prove that the outcome will adhere to the specifications.. 

However, since in concurrent programs it is possible that data 

is accessed and modified by another thread during the 

execution of a method, the set of rules in Hoare logic is not 

sufficient to prove the adherence to the postconditions.  

One of the first methods to verify behavior of concurrent 

systems is researched by Owicki and Gries [6]. They used a 

method called rely-guarantee. While it is possible to specify a 

program using rely-guarantee, it provides a considerable 

specification overhead. Since this makes it impractical to use 

on a large scale, alternatives have been researched. An 

alternative that has been researched is separation logic. 

2.2 Separation logic 
Separation logic is an extension of Hoare logic which 

distinguishes between the use store and a heap in the logic[1]. 

When separate threads do not communicate with each other, 

the heaps of the threads will be disjoint, which automatically 

means no data races will occur, since they will not try to use 

the same variables. Since usually it is necessary for different 

threads to communicate during execution of those threads, this 

is too restrictive. Permission based separation logic adds 

permissions to the logic.  

In permission based separation logic, every use of memory 

goes with a certain permission to use that memory, which is a 

number in the range (0,1]. A write operation needs a 

permission level of 1, while a read operation can have a 

permission of every number in this range. The sum of all 

permissions on a variable cannot be higher than 1. This 

enforces that a write operation can only take place in the case 

that it has a permission of 1, while the constraint that the total 

permission of 1 makes sure no other piece of the program can 

read that piece of memory.  

Nowadays there are multiple techniques to verify concurrent 

programs that use verification logic. Many ways to verify 

concurrent programs are either based upon the work of Owicki 

and Gries or using separation logic, for example VerCors[2] 

and Verifast[5]. We will go in detail about the technique we 

used, namely VerCors.  

2.3 VerCors 
A tool that is in development is called VerCors. It uses 

permission based separation logic for the specification of a 

program, and verifies if it follows the specification. It uses the 

constraints specified in the specification and checks if the 

following code actually adheres to those constraints. For this it 

uses the Java modeling language (JML) which it extends with 

additional functionality. 

JML is a language used to add the specification of a Java 

program in the comments of a program. JML is specified in 

comments by using an ‘@’ sign followed by a keyword. 

Keywords are for example requires and ensures, which 

respectively define the precondition and postcondition of the 

following code fragment. 

Vercors extension to JML adds the possibility to reason about 

permissions and separation in the JML. This is done by adding 

the Pointsto(x,v,π)  and Perm(x, π) predicates. Where x is the 

memory to point to, v the value of this memory and π the 

permission level. Of these methods we will use the Perm 

method, which means a permission on x of the value π. So 

when it requires a Perm(x,50), it requires a read permission on 

x, and when it ensures a Perm(y,100), it gives back a certan 

write permission. 

2.3.1 Example 
Below follows a very simple example showing a counter which 

has a method to increase the value of the counter. Because the 

method writes to value x, it needs write permission, which is 

why it needs a permission of 1.  

Note that in the JML instead of a value from 0 to 1 it is an 

integer between 0 and 100. As shown in this example, the 

constructor only has a postcondition, in which it ensures a 

permission. When the constructor creates the object, it has 

control over the variables in the object. The postcondition 

specifies that it indeed has the control over the variable x, 

since it is created in the constructor. 

The method increase requires a permission of 100, which 

means a write permission on x, since it has to increment it. 

After the usage of the increase method it ensures the 

permission of 100 again, which means it passes the permission 

back. In this method \old is defined in the standard JML as the 

state of the program before the method started, so old(x) is the 

value of x before it was increased by the method. 

class Counter{ 
private int x; 
 
//@ensures Perm(x,100) && (x==0); 
public Counter(){ 
    x = 0; 
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}     
     
//@requires Perm(x,100); 
//@ensures Perm(x,100)  
&& (x == (\old(x))+1)  ;     
public void increase(){ 
    x = x+1; 
}} 
Listing 1: An example of separation logic 

3. SKILIFT PROGRAM 

 

Figure 1: schematic example of ski-lift 

The program to be specified is a model of a hybrid ski lift, 

which is a ski lift which has multiple types of cars, for 

example a gondola for the beginners, and chairs for more 

advanced skiers. The reason to go for a ski lift is that it is a 

safety critical scenario. Since a ski lift is a form of human 

transportation, safety is very important. 

There are people who want to get on one of the types of cars to 

the top of the ski lift, after which they get off. To get in a car 

they join the queue for that specific type of car. When a car is 

not needed, it sits in storage, and when it comes out of storage, 

it goes to the queue, takes passengers, after which it goes on 

the main cable to the top. There is a minimum amount of space 

needed between cars, and the cables also have a maximum 

amount of cars allowed on it.  

The main cable will not stop moving as long as the program is 

running, while the cables that are attached to the queues will 

wait when a car is at the point to get attached to the 

MainCable, but the MainCable does not have a space. 

The program is built up in different classes, which is show in 

the class diagram in Figure 2. In the next section we will 

explain the functionality of the classes. 

Figure 1 shows a schematic example of a ski lift. In this 

example the round shapes are the cars, the triangles represent 

the entrances and exits, and the squares represent the storage 

of the cars. The different colours of the shapes, filled blue and 

blue with white filling represent two different types of cars. 

The code of the program can be found on the site of the 

University of Twente[9] 

 

  

Figure 2: Class diagram of the ski lift program 

3.1 Car 
The car datatype only holds information about itself, and does 

not know anything about the rest of the world, except its 

position on the cable it is on. Which cable is not important. It 

has setters and getters to get and set the position on the cable, 

and how many people are in the car. It also has a CarType 

3.2 CarType 
A CarType has a name, to differentiate between the different 

types of cartypes, and a capacity, which determines how many 

people can be in a car of the specific type. The name of a 

CarType needs to be unique. 

The reason that this construction is used instead of a car 

interface which gets implemented by specific types of cars is 

that since there is no logic specific to the carTypes, and the 

only difference is the name and the capacity, there would be no 

clear advantage to use this approach, while there would be the 

disadvantage of needing more classes for every time an extra 

type of car is needed. 
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3.3 Simulation 
The simulation class only provides a timer, which starts at 0 at 

the start of the program, and makes sure all the cables are on 

the same time. 

3.4 MainCable and FeedingCable  
The MainCable and FeedingCables are somewhat similar. 

Both have cars that ride the cable, which needs to change 

position. It would have been possible to make a superclass 

Cable which were inherited by MainCable and FeedingCable, 

but while some parts work the same, all the functionality has a 

different implementation, and also while using the cables, they 

should not be used on the same way.  

The most important part of both of the cables is the main loop, 

which uses the Simulation class to check if the simulationTime 

has been increased, and by how much, after which it moves the 

cars. 

3.4.1 FeedingCable 
The FeedingCable has 2 locks. The positionLock is used when 

the position of cars is altered, while the queueLock is needed 

to  add or remove people from the queue. 

The moveCars method of the FeedingCable first needs to 

check if the cable is allowed to move, after which it actually 

moves. It first loops through all cars that are on the cable, and 

if it should go to the MainCable, it checks if there is actually 

space on the MainCable, and adds a car if there is space by 

using the addCar method. If there is no space, the cable is not 

allowed to move. If the cable is allowed to move, it locks the 

positionLock, after which it moves every car one position, and 

releases the lock. 

3.4.2 MainCable 
The moveCars method of the MainCable does not have to 

check if it is allowed to move, since it will always move, so 

after it checks every car if it can be passed over the other 

cable, it moves all cars one position.  

The addCar method of the MainCable checks if a car can be 

placed on a specific position. The difference between the 

addCar method of the FeedingCable is that it also keeps track 

of failed attempts to add a carriage. When a carriage is 

attempted to add, the position plus the time of the attempt is 

stored. When there actually is space on the cable, but another 

FeedingCable is waiting for a longer time, it will not be 

allowed to put a car on the cable, to avoid starvation of some of 

the FeedingCables. 

A typical run of the application will be explained using a 

sequence diagram [Figure 3].  

First the application needs to be initialized. In the sequence 

diagram this is somewhat simplified, but the administrator 

creates the application by creating a MainCable and the 

amount of FeedingCables it wishes to use, after which it adds 

the FeedingCables to the MainCable. After that it starts the 

threads of the FeedingCables and the MainCable.  

When the application is running, if a user wishes to use the ski 

lift, he enters the queue, represented in the program by the 

AddToQueue method. After getting in the queue, the user gets 

in the carriage. In the program, the corresponding 

FeedingCables take care of putting users in the Cars, after 

which they get to the top, after which the user exits the lift. As 

shown in the sequence diagram, the order of which the 

different users get out of the lifts, does not necessarily have to 

be the same as the order in which they got in.  

 

Figure 3: A sequence diagram specifying a run of the 

program with 4 people that wish to use the ski lift. 

 

Figure 4: A sequence diagram specifying the trip of one 

person from the queue to the exit at the top of the ski-lift 

A more detailed view of the program will be explained using 

the sequence diagram in Figure 4.  

When a user enters the queue, the user will have to wait until 

he is at the top of the lift. The FeedingCable will check the 

queue for passengers every time a Car is at the position of the 

queue. It will then put passengers in the Car. After this the 

FeedingCable will call moveCars until the car is at the position 

of the MainCable. When the car is at the MainCable, it will 

add the car with the person in it to the MainCable. The 

MainCable also keeps calling moveCars, until the car is at the 

top, at which point the user exits the Car. 
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3.5 Threads 
The purpose of this program is to be able to specify a larger 

concurrent program using permission based separation logic. 

This program has two important classes that can be 

multithreaded. The MainCable, which can have multiple 

FeedingCables, and the class FeedingCable. There can be 

multiple FeedingCables,   

The cables move separately from each other, and they have to 

interact when a Car needs to pass from the FeedingCable to 

the MainCable or the other way around. It acquires permission 

to variables from the other classes by using Locks, which are 

created in the class to which its locks hold. It waits for the 

permission by using the .lock method, which waits until it 

acquires the lock before returning. We chose for this because 

the methods are not supposed to hold the locks long, and the 

acquiring of the locks are necessary for the thread to continue. 

The program can have a single MainCable and multiple 

FeedingCables, each one being a separate thread. There is no 

limit in the amount of FeedingCables, and every instantiation 

of the FeedingCable also means using a new thread, so the 

program can be scaled to an unlimited amount of threads. It is 

assumed that once a cable exists, it won’t be deleted anymore, 

so the threads will not end unless the entire program will stop. 

To shutdown the program, the MainCable and FeedingCable 

have a shutdown method. The run method is a loop that checks 

every time if the Boolean running is still true, and if it is false, 

it stops the loop, and thereby ending the run method, and 

gracefully exiting the thread. 

Since, as stated above, the program uses multiple threads, 

which do a non-trivial task and since the program is a model of 

real-life scenario that has safety critical aspects, since a ski-lift 

is a form of transportation of humans, which makes safety very 

important, we may conclude the answer to the first subquestion 

is that this program is a suitable case study to try to specify 

using permission based separation logic. 

4. SPECIFICATION 
After building the program, it needed to be specified. When 

specifying the program, we focused on the occurrence of data 

races. When trying to specify functional behavior, there were 

some problems as explained in Section 4.4. We started 

specifying the program by analyzing which variables would 

need which permissions.  

In a multithreaded program, the amount of access a thread has 

on a reference varies between the different threads. Some 

references will only be accessed by one thread, while other 

references will be accessed by multiple threads. The 

specification of the references used by only one thread is fairly 

straightforward, any method that uses this reference can 

request full write permission. The references which are not 

final and which are accessed by multiple threads need more 

complicated solutions, for example by using locks. To see 

which references needed those solutions, we started by 

identifying the variables that are shared between threads. The 

parts that are using multiple threads are MainCable and 

FeedingCable. 

 

We created a diagram showing which variables were used by 

which method, including the usage of how MainCable and 

FeedingCable uses each others methods. In this diagram, 

straight lines are write acces and method invocations, while 

blocked lines are read access. After creating the diagram, we 

colored the variables which are shared, where red means write 

acess, and yellow means read access.  

Appendix A shows a diagram including the variables in both 

the MainCable and the FeedingCable. As shown in the 

diagram, we found that distanceBetweenCars and carsOnCable 

in the MainCable are shared variables that are only read from 

other threads, while buffer is a shared variable that requires 

write access from another thread. In FeedingCable 

distanceBetweenCars and carsOnCable requires read access 

from other threads, while buffer and Queue requires read and 

write access. It is shown that in both classes addCar is used 

from different threads and needs write-access to buffer. This 

means the addCar methods in both classes needed the most 

work.  

4.1 Specifying the permissions 

4.1.1 Non shared variables 
When a variable is not shared between threads, the thread that 

holds it always has a permission of 100 on it, meaning it has 

write permsission on it. Methods that need that variable still 

needs to require a permission in the specification, on the 

variable, but this will not be a problem, since it always has 

permission. The permission on variables are with the thread 

that creates the variable. The constructor of a method does not 

require any permissions, but ensures all permissions on the 

object, since at that point they are in possession of that thread. 

The permissions can be taken by another thread by using a 

lock. As will be explained in the next section. An example 

used in the program is the method isBlocking, which checks 

based on two positions, if these positions are blocking legal 

positions to have cars on at the same time, based on the 

permitted distance cars minimally need to have. For this it 

needs the distanceBetweenCars variable, which contains the 

minimum distance two cars need to keep of each other.    

/*@ 
 requires Perm (distanceBetweenCars,50) ** 
incomingPosition > 0  && carPosition > 0; 
 ensures Perm (distanceBetweenCars,50); 
@*/ 
private boolean isBlocking(int 
incomingPosition, int carPosition) 

Listing 2: example of requiring and ensuring permissions 

on a reference not shared with other threads. 

4.1.2 Shared variables 
When a variable is used in between different threads, a method 

is necessary to pass the permission between threads. In this 

program we used locks to specify this permission. The 

specification of the locks grant permission to the variables 

when locking, and releases the permission to the lock when 

unlocking.  In this scenario, a method can’t require and ensure 

a certain permission, since it is possible another thread also 

uses a method that requires the same permission. The 

specification of lock ensures a certain permission (100 for 

write locks, and a low number for read locks), and the 

specification of unlock requires the same permission, thereby 

releasing the permission the thread had of the reference. The 

specification of the Lock class and it’s methods can be found 

in the document Formal Specifications for Java’s 

Synchronisation Classes[3]. 

In listing 3 is an example of how locks are used in the 
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program. In the FeedingCable, the buffer and carsOnCable 

variables are shared. Since they both are dependent on each 

other,they are protected by the same lock. As seen in Listing 3, 

the lock gets the resource posLock, which handles the 

permission on both buffer and carsOnCable. It also gets passed 

the value true as the second parameter, which means it is a 

reentrant lock. After locking the permissionLock, it assumes 

permission over the variables, which it gives back after using 

unlock. In this snippet, carsOnCablePerm is a predicate to 

make sure it has permissions on the entire array, as will be 

shown in the next section. 

//@resource posLock(frac p) = (Perm(buffer, p) 
** Perm(carsOnCable,p) ** carsOnCablePerm(p) 
); 
 

private ReadWriteLock 
/*@ <posLock,true> @*/positionLock = new 
ReentrantReadWriteLock();/*@<posLock> @*/ 
/*@ 
  requires cablesPerm(50) ** i > 0; 
  ensures cablesPerm(50) ** true ; 
 @*/ 
private void moveCars(int i) 
{ 
//Here there is no permission on buffer or 
carsoncable 
//Some code... 
positionLock.writeLock().lock(); 
//Here there is write permission on 
carsOnCable                            
carsOnCable[carID] = null; 
                            
positionLock.writeLock().unlock(); 
//Here there is no write permission anymore 
 
} 

 
Listing 3: An example of the positionLock. 

Another lock we used is for the queue, as shown in Listing 4. 

The queueLock is also a readwrite lock. In the sample in 

Listing 4, we see a usage of the readlock. After calling 

queueLock.readLock.lock(), the thread will have permission to 

read the amount of people in the queue, but won’t be allowed 

to write to it. As shown in the examples, both using a readLock 

and a writeLock are fairly straightforward, however, as will be 

shown in the next sections, there were some other technical 

problems that had to be solved to create the specification. 

//@resource qLock(frac p) = (Perm(queue, 
p)); 
private ReadWriteLock/*@ <qLock,true> 
@*/queueLock = new 
ReentrantReadWriteLock/*@<qLock> @*/(); 
/*@ 
  requires Perm(placeOfMainCable,100)** 
Perm(cable,100) **  Perm(storage,100) ** 
position > 0; 
  ensures  Perm(placeOfMainCable,100)** 
Perm(cable,100) **  Perm(storage,100); 
 @*/ 
private void moveCars(int position){ 
//more code 

queueLock.readLock().lock(); 
if (storage.getCapacity() > 
storage.Count() && car.getLoad() == 0 && 
queue > 0) 
{ 
    storage.addCar(car); 
    carsOnCable[i] = null; 
} 
queueLock.readLock().unlock(); 

//more code 
} 

Listing 4: An example of the queueLock 

4.2 Dynamic structures 
While building the application, we used dynamic structures 

like ArrayLists and Stacks in several classes. When specifying 

these it was found out that it is hard to specify the permissions 

for dynamic structures.  

4.2.1 The problem 
When specifying a permission on a dynamic structure, the 

permission only applies to the reference of the structure, not 

the references inside the structure. Listing 5 shows an example 

of a permission on an ArrayList. In this example, if another 

thread has access to one of the elements inside the ArrayList, 

this thread can still get permission on the ArrayList, but when 

trying to acces one of the variables inside, a data race can still 

occur. Originally, a List was used to specify which cars exist 

on the cable, as shown in Listing 5. In this example, the 

method isLegalEmptyPosition requires permission for 

carsOnCable, however, in this specification it does get 

permission for the items that are inside of the list. 

private List<Car> carsOnCable = new 
ArrayList<Car>(); 
 
/*@  
requires Perm(buffer, 100) ** 
Perm(carsOnCable,100) **  
Perm (distanceBetweenCars,50); 
ensures  Perm(buffer, 100) ** 
Perm(carsOnCable,100) **  
Perm ( distanceBetweenCars,50); 
@*/ 

private boolean isLegalEmptyPosition() 

Listing 5: Example for dynamic structures 

4.2.2 Solution 
A solution to specify a program with dynamic structures is to 

use predicates, as shown by M. Roo[7]. A downside of this 

method is that for every different dynamic type, another 

predicate solution is needed.  

Since we used multiple dynamic structures, such as Hashmaps, 

stacks and arraylists, we looked for a different solution. The 

solution we used was to rewrite the dynamic structures to 

arrays. To still make the program manageable, we created 

some helper functions that fills and reads the data from the 

array. To convert the stack to an array, we used an array with 

Cars, and used an index. Every time a car is added the car is 

added to the position of the index, and the index is increased.  

Changing the dictionary to an array was also quite 

straightforward. Since the maximum size of the array is known 
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at the instantiation, it doesn’t need to be expanded. And since 

the dictionary was already used with integer based indexes, all 

the get(i) could just be replaced by [i].  

The list was slightly less straightforward. Since Cars in the 

carsOnCable list can be added anytime, and Cars can be taken 

out in any order, Cars can be spread over the array, so when 

adding a new Car, a new place needs to be found. To handle 

this we created the helper method addCarToArray, which loops 

over the array and takes the first open spot. Since ordering 

doesn’t matter, this can be done without a problem. 

By using an array, it is possible to request permission on the 

separate entries in the array. Since we have methods that need 

access to entire arrays, we created helper methods to do so, as 

shown in Listing 6. It loops over every position in the array, 

and calls Perm on it. A usage of this method can be seen in 

Listing 3, where the positionLock uses this. 

//@resource carsOnCablePerm(frac p) = 
(\forall* int i ; 0 <= i && i < 
carsOnCable.length ; Perm(carsOnCable[i],p) ); 
Listing 6: An example of a helper predicate to specify the 

permissions 

Everywhere where a method needs access to the all the entries 

in the array, a similar predicate has been used. However, when 

only one place in the array will need to be edited, it only needs 

access to that specific location in the array. This has been used 

by the method getCar, which takes a car out of the storage and 

passes it over. Since the array is built as a stack, and the index 

points to the next free slot, it only needs permission to the 

position of index-1. Also, since it changes the index, it needs 

write permission on the index. This is shown in Listing 7. 

/*@ 
  requires Perm(cars[index-1],100) ** 
Perm(index,100); 
  ensures Perm(cars[index-1],100) ** 
Perm(index,100); 
 @*/ 
public Car getCar() 
{ 
    Car retval = null; 
    if (index > 0) 
    { 
        retval = cars[--index]; 
    } 
    return retval; 
}  

Listing 7: Example of the usage of only one position of the 

array 

4.3 Specifying functional behavior 
The specification that we written for this program focuses on 

data races. However, we also looked at specifying more of the 

behavior of the program. The problem that arises here, is that 

other threads can change variables before the method has been 

returned. For example, the moveCars methods in both the 

FeedingCable and the MainCable move the cars a specific 

amount of places around the cable. However, when we tried to 

specify this in a post-condition, we ran into a problem. Since 

the lock gets released before the method is finished, there can 

be changes to the Cars on the Cable, for example a new Car 

can be added, before the method returns, thereby invalidating 

the postcondition. Research has been done to verify functional 

behavior of a program [8], which uses histories of variable 

assignments to be able to reason about a program. This is a 

time consuming process, therefore we did not do this during 

this research.  

4.4 Using VerCors 
After specifying the program we also tried to run the program 

through VerCors, so it could also be verified. We started with 

the option –passes=java, so it would not try to verify the 

program, but it would  only run through the specification. We 

found that the program would need severe changes to make 

VerCors even run through the program. We found that VerCors 

would not allow the using of packages, or the using of import. 

Also the usage of annotations, of which we used the 

@Override annotation, would not let VerCors run through the 

code. This means that for a program to be verified using 

VerCors after specifying the program using permission based 

separation logic, it would still need work to be able to run it 

through VerCors. 

4.5 Specification overview 
The second and third subquestions are what problems arise 

while specifying the program, and how the problems that arise 

can be solved. 

We successfully managed so specify the ski-lift program using 

permission based separation logic and use reoccurring 

specification patterns. The problems we found were as stated 

in Section 4.3 and Section 4.4 to specify permissions on 

dynamic structures, and the specification of formal behavior. 

As shown in Section 4.3, it is possible to avoid dynamic 

structures, thereby avoiding this problem, or use predicates, as 

used in specifications of other programs. 

We did not specify much functional behavior, although as 

showed in Section 4.4, there are methods to still make 

statements about the functional behavior [8].  

5. RELATED WORK 
Proof of concepts exists for both VerCors and VeriFast. The 

proof of concepts from VeriFast also includes more complex 

and larger examples. For example there are drivers and kernel 

modules that have been verified using VeriFast. The case 

studies that exist for VeriFast are more complex. An example 

of case studies made for VeriFast is a game server for rock-

paper-scissors, and parts of the C runtime library. 

For VerCors the existing programs are mostly small examples. 

These examples are useful to see how specific situations can 

be proved using VerCors, and have been useful in the creation 

of this program. This project was done to try the specification 

method of VerCors on larger projects than the small samples 

that already exist. 

6. CONCLUSION 
In this section we will first start by answering the 

subquestions, after which we will answer the main research 

question. 

 How can the proposed model be built in a concurrent way 

such that it serves as a good use case to be specified using 

permission based separation logic? 

In this paper we showed a model of the ski-lift, which has 

more complexity than a simple example program, using 

multiple threads. Furthermore, because of the safety critical 

characteristics of the program it is very suitable as a case study 

for specifying it using permission based separation logic. 
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What problems arise when trying to specify the build ski-

lift program using permission based separation logic so it 

can be used to eventually verify the program? 

In this paper we showed two problems that risen, the 

specification of dynamic types and the specification of more 

specific behavior. We discussed a solution for the first 

problem, and pointed to a solution for the second problem. 

 

How can the problems that arise be solved? 

The problems we ran into with dynamic structures could be 

solved by changing the dynamic types to arrays. While that 

worked in this example, there could be cases that this solution 

would not be sufficient, for example when there are reasons to 

stick with the dynamic types, for example because of 

performance reasons. 

The problem that the specification cannot be used to cover 

functional behavior has been solved by making the 

specification less specific and skipping the functional behavior 

specifications, but this solution is not preferable. Given a 

larger timeframe for the project, the solutions staded by M. 

Zaharieva-Stojamovski, M. Huisman and S. Blom [8] could be 

applied to fully specify the behavior of the ski-lift. 

  

How difficult is it to specify a multithreaded model of a 

complex ski-lift using permission based separation logic? 

In this paper we showed that is possible to specify a more 

complex program, although some modifications need to be 

made to the program in order to build a correct specification. 

Future attempts to specify a larger program can use the 

solutions used in this project, as well as the solutions we did 

not use, but did discuss for their project. 

7. FUTURE WORK 
In this paper we created a program and a specification that can 

be used to verify it using the VerCors toolset. However, we did 

not verify it. Future research could try to verify the program we 

build. Another recommendation for future work is to extend 

the specification to also cover the functional behavior of the 

program. 
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APPENDIX 
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