
Visualizing and Simulating Algorithms using GROOVE
M.M.T.W. Heuvink
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

m.m.t.w.heuvink@student.utwente.nl

2nd Author
2nd author’s affiliation

1st line of address
2nd line of address

2nd author’s email address

3rd Author
3rd author’s affiliation

1st line of address
2nd line of address

3rd author’s email address

ABSTRACT
Algorithms can be quite difficult to understand. Tradi-
tional ways of presenting algorithms, such as by giving
pseudocode or in natural language, are often not sufficient
for a complete and fast understanding of the algorithm.
GROOVE provides a means to simulate and animate an
algorithm by using graph transformation rules. A library
of GROOVE transformation rules can be an aid to un-
derstand algorithms more easily. User tests have been
designed that can be used to assess the effectiveness of
GROOVE in the better understanding of algorithms in
comparison to traditional pseudocode.

Keywords
Algorithm, Visualization, Simulation, GROOVE, Graph,
Transformation, User Evaluation.

1. INTRODUCTION
The study of computer algorithms is a recurring subject
in computer science studies and should be in the bag of
every computer science student. New algorithms are be-
ing developed and existing ones revised. There are sev-
eral ways to present algorithms to students, such as list-
ing pseudocode or explaining its workings in natural lan-
guage. However, students find it difficult to understand
certain algorithms. The problem might lie in the repre-
sentation method itself. One can experience difficulties
visualizing the inner workings of an algorithm when study-
ing pseudocode. Often a visual representation is needed.
Furthermore, with multi-core computers becoming today’s
standard the study and use of distributed algorithms are
becoming more and more important. These algorithms
pose another problem. To fully understand distributed al-
gorithms usually one cannot rely on solely understanding
pseudocode. The workings of a distributed algorithm can
often better be grasped by seeing the algorithm in action.
The following example will illustrate this statement. One
of the downsides of devising distributed algorithms is the
threat of race conditions, which can occur on shared data.
Process x is about to increase a counter in the shared
data, but that is the intention of process y as well. If both
processes increase the counter and some process z wants
to read the counter, z may not read the expected value.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
19th Twente Student Conference on IT June 24th, 2013, Enschede, The
Netherlands.
Copyright 2013, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

Some locking mechanism is required. Such a race condi-
tion can be difficult to identify when studying pseudocode
and can sometimes only be identified by simulation of the
algorithm. Even in cases in which simulation may prove
insufficient in identifying such race conditions, simulation
of the algorithm can at least contribute to better under-
standing of the algorithm.

A way to study algorithms is to visualize and simulate
them through graphs. An algorithm’s input and the con-
text on which that input is applied (e.g. some state of a
datastructure) is represented by a starting graph G. One
step in the algorithm implies a graph transformation rule
r. Applying r to graph G will result in graph G′. Subse-
quently applying rules on G′ will result in a representation
of the execution of the algorithm. A tool called GROOVE
can be used for this purpose. GROOVE allows one to
define graphs and transformation rules that act on them.
Moreover, the tool has a function to automatically ani-
mate the transformations in the current graph.

Figure 1.1 depicts an example of a graph transformation
rule created with GROOVE. It uses a pattern matching
mechanism on the current state of the system (i.e. some
graph) to decide which rule or subgraph to apply next.
The transformation rule in the figure concerns inserting
an integer element in a binary search tree. Actually, this
rule is the last step of the algorithm: an element with
value val is about to be inserted either at the left or right
of some leaf of the tree. The element to be inserted is
represented by the node named other. The thick lines in
the graph emphasize creation, while the dashed lines em-
phasize deletion. In the example node other is inserted at
the leaf node, depicted by the flag isLeaf. The rule appli-
cation works as follows. First the expression other.val

< val is evaluated. Only if the expression evaluated to
true the insert edge is removed. The same way the isLeaf
flag is deleted. Now node other becomes the leaf and is
placed at the left of the old leaf. Note that if the ex-
pression other.val < val would evaluate to false, pattern
matching would fail. In Figure 1.2 a graph is given that
matches the the ”addLeft” rule of Figure 1.1. As depicted
in Figure 1.3, after application of the transformation rule,
the insert edge has been removed and replaced by a left
edge, because the value of the node that was inserted is
smaller than the leafnode. Furthermore, the isLeaf flag is
now part of the inserted node.

In this paper some algorithms that were simulated using
GROOVE will be highlighted. For each algorithm a trans-
lation is made from part(s) of the pseudocode to their
corresponding GROOVE graph transformation rules. Al-
though the translations of the pseudocode have been made
to look as natural and logical as possible, no reasoning
about their correctness will be presented. The goal of

Figure 1.1. The ”addleft” rule of a binary search
tree

Figure 1.2. A graph that matches the addleft rule

this research is to design a user evaluation study to assess
GROOVE’s capabilities to present algorithms in a differ-
ent, concise and clear way so that they can be used as an
extension to the (formal) material that is readily available
for those algorithms. To attain this goal user tests are pre-
sented to compare the GROOVE transformations against
pseudocode and in some cases the formal mathematical
representation of the algorithm. Participants complete a
series of questions regarding each algorithm to assess their
understanding of that particular algorithm. The results of
those tests should adequately reflect the effectiveness of
using GROOVE to aid in the understanding of the algo-
rithms presented in this paper.

2. BACKGROUND
Visualization of algorithms is not a new subject. There
are several tools that manipulate graphs and can be used
to model an algorithm. An example given by Parduhn et
al. [5] uses a program called LTVA Visualiser to visualize
inserting a node in a binary search tree. The technique is
based on shape analysis on shape graphs. There are other
tools that act on graph besides GROOVE. For instance,
PORGY is a graph-rewriting program that uses a strategy
language for the application of rules [1]. However, the
main reason of using GROOVE for graph transformations
is that the rules can be created graphically. This fact can
lead to easier understanding and faster creation of rules.

The part of GROOVE called GROOVE Simulator allows
one to create graphs and transformation rules that act on
them. For convenience, GROOVE Simulator is referred to
as GROOVE in the remaining sections of this paper. The
concept used by GROOVE will be concisely illustrated by
the following example. A rule that deletes a certain node
from graph G should be modelled by taking a subgraph of
G′ and defining some actions to create subgraph H ′. An
action in this example could be to delete a certain node
in G′. GROOVE defines a set of actions that can be used
in the transformation rules. These actions include: test-
ing some expression, changing the fields in the nodes and
edge relabelling. The tool also supports non-determinism.

Figure 1.3. The resulting graph after the rule ap-
plication

Figure 2.1. GROOVE: basic syntax

If at some point in the application of subsequent graph
transformations more than one transformation could be
applied, only one of those transformations is (randomly)
chosen.

To simulate an algorithm with GROOVE one has to decide
how to represent the various variables and data types in
the algorithm. An integer could be represented by a single
node. For a string there are multiple options. A single
node representation could suffice for one algorithm, but
a subtree that comprises multiple singe character nodes
may be more useful for some other algorithm. Thus the
choice of a data structure could prove essential for some
algorithms to fully understand its concepts.

2.1 GROOVE Syntax
The basic syntax of GROOVE needed to understand the
graph transformation rules given in this paper is shown in
Figure 2.1. A short description of the function of the syn-
tactical elements is also provided in the figure. GROOVE
has some advanced feature that were used in some of the
transformation rules in the examples. Those are listed in
Figure 2.2. For a more extensive overview of the features
and syntax of GROOVE one may consult GROOVE’s user
manual [6].

3. ALGORITHM SELECTION
This section gives an overview of some of the algorithms
that have been implemented using GROOVE. However,
only the parts of these algorithms that give key insights
or otherwise seem worth mentioning are highlighted. Each
subsection covers one algorithm and is divided into three

Figure 2.2. GROOVE: more features

parts. Firstly, the pseudocode of the relevant sections
of the algorithm is given and shortly covered. Next, a
GROOVE transformation rule concerned with the relevant
sections of the pseudocode is depicted and also covered.
The subsection ends with a comparison of GROOVE’s
implementation and the pseudocode. Furthermore, some
new aspects or insights of the algorithm that GROOVE
might have revealed is discussed.

3.1 Red-black trees
An important and efficient datastructure in computer sci-
ence is a Red-black tree. A Red-black tree is in essence a
binary-search tree with some unique properties. Although
the structure of a Red-black tree is in general easily un-
derstood, the operations that can be applied to the tree
may seem non-trivial. Inserting and deleting nodes are
the two operations that can be applied to the tree. These
operations are essentially the same as those for a binary
search tree. The difference lies in the fact that in some
cases a property of a Red-black tree is violated having ap-
plied such an operation. The algorithms concerned with
restoring the properties are presented here and simulated
by GROOVE. An example of a Red-black tree is given
in Figure 3.11. A concise summary of the properties of a
Red-black tree taken from Cormen et al. [3] is presented
below.

1. A node can be either red or black

2. The root is black

3. All the leafs are black

4. The children of a red node are black

5. Every path from a given node to any of its leaves
contains the same number of black nodes.

1Source: http://en.wikipedia.org/wiki/Red-black tree

Figure 3.1. A Red-black tree

void insert_case5(Node n)

{

Node g = grandparent(n);

n.parent.color = Color.BLACK;

g.color = Color.RED;

if (n == n.parent.left)

rotate_right(g);

else

rotate_left(g);

}

Figure 3.2. Pseudocode: insertion case 5

3.1.1 Red-black tree insertion: pseudocode
The pseudocode of the insert operation on a Red-black
tree is given below. Five different cases that comprise the
operation are generally distinguished. However, this paper
covers only one of those cases.

3.1.2 Red-black tree insertion: GROOVE
In Figure 3.3 GROOVE’s transformation rule is depicted
for the pseudocode of the insert_case5-method. In fact,
each case in the pseudocode corresponds to only one
GROOVE transformation rule. This makes for simple and
quick comparison.

3.1.3 Comparison to pseudocode
An insertion of some (random) node in a Red-black tree
could result in the application of insert_case5. A tree
example that triggers that method is given in Figure 3.41.
As shown in the figure, the tree on the left violates prop-

Figure 3.3. Transformation rule: insertion case 5

Figure 3.4. Example insertion case 5

erty 4 and needs to be rebalanced. After application of
insert_case5 the tree does not violate any property and
insertion is finished.

The pseudocode of insert_case5 is not hard to under-
stand. It clearly states the steps to transform the tree on
the left in Figure 3.4 to the one on the right. However, the
code hardly triggers an easy visualization in one’s mind.
GROOVE’s transformation rule in Figure 3.3 depicts ex-
actly the same tree structure of the left tree in Figure 3.4.
At first glance, when looking at the transformation in Fig-
ure 3.4, one might think the tree has been through some
radical changes. However, GROOVE’s rule shows that
only 3 nodes are involved in the transformation and that
only 2 of them have changed color. This pattern might not
have been so easily identified using the pseudocode. How-
ever, due to the syntax and visual limitations (e.g. node
coloring) of GROOVE, it might take some time to realize
that the tree on the left in Figure 3.4 is similar to the tree
pattern in Figure 3.3.

Because of GROOVE’s ability to use variables on edges
the transformation rule not only matches the left tree in
Figure 3.4, but also the reflected version of the tree around
the y-axis. The only difference in matching the reflected
tree is the labels of the edges: the reflected tree contains
opposite edge labels compared to the original tree. In the
pseudocode of insert_case5 the distinction between those
two trees is made using the if-clause.

3.2 DFA minimization
Deterministic Finite Automata (DFAs) is a recurring sub-
ject in computer science studies and are often used to
model some real-world concept. One can think of mod-
elling a computer program or the behaviour of an elevator.
A DFA M is defined as a 5-tuple (Q,Σ, δ, q0, F) where Q
denotes a finite set of states, Σ a finite set of input symbols
(the alphabet), δ a state transition function δ : Q×Σ→ Q,
q0 ∈ Q the start state, and F ⊆ Q a set of end states. Any
DFA accepts some regular language L. Two DFAs are con-
sidered to be equivalent if they accept the same language
L. A DFA is said to be minimal if it accepts L with a
minimum number of states.

Minimizing a given DFA M consists of two steps:

1. Determinining the equivalent states of M

2. Merging the equivalent states into a new minimal
DFA M ′

In this paper, only the determinination of equivalent states
(step 1) is covered.

3.2.1 Find equivalent states: pseudocode
The algorithm in pseudocode of Figure 3.5 finds the equiv-
alent states of some DFA. The input of the algorithm is

input: DFA M = (Q,Σ, δ, q0, F)

1. (Initialization)
for every pair of states qi and qj , i < j, do

1.1. D[i, j] := 0
1.2. S[i, j] := ∅

end for
2. for every pair i, j, i < j, if one of qi or qj is an

accepting state and the other is not an accepting
state, then set D[i, j] := 1

3. for every pair i, j, i < j, with D[i, j] = 0, do
3.1. if there exists an a ∈ Σ such that

δ(qi, a) = qm, δ(qj , a) = qn and D[m,n] = 1
or D[n,m] = 1, then DIST (i, j)

3.2. else for each a ∈ Σ, do: Let δ(qi, a) = qm and
δ(qj , a) = qn

if m < n and [i, j] 6= [m,n], then add [i, j]
to S[m,n]
else if m > n and [i, j] 6= [n,m], then add
[i, j] to S[n,m]

end for

DIST (i, j);
begin
D[i, j] := 1
for all [m,n] ∈ S[i, j], DIST (m,n)

end

Figure 3.5. Pseudocode: determination of non-
equivalent states

a DFA M = (Q,Σ, δ, q0, F). The output is an array D,
where D[i, j] = 1 means that state i is considered to be
distinguishable from state j. State i and j are considered
equivalent if and only if D[i, j] = 0 upon termination of
the algorithm. Part 3.1. will be covered in detail. That
part tests for a pair of states qi and qj that are not yet dis-
tinguishable making a transition to their respective states
qm and qn using the same inputsymbol. If pair (qm, qn)
has already been declared as distinguishable, then (qi, qj)
is also marked as distinguishable.

The code of Figure 3.5 is taken from Sudkamp’s version
of the DFA minimization algorithm[7, p. 179] and is not
modified. This particular pseudocode is chosen because
it is being used at the University of Twente and may be
difficult to understand due to the formal language used.

3.2.2 Find equivalent states: GROOVE
Figure 3.6 depicts the GROOVE transformation rule that
covers part 3.1. of the pseudocode. The rule matches any
pair of two states (i.e. nodes with type S and identifiers i

and j) that are distinct and have a transition to another
distinct pair of states m and n with the same edge value
(stored in variable x). State distinction in the figure is
denoted by the != edge between the states.

3.2.3 Comparison to pseudocode
GROOVE does not have support for 2-dimensional arrays.
In the pseudocode, two of them are used. It seemed there-
fore important to represent those arrays in the transfor-
mation rule for the comparison to pseudocode to be as
intuitive as possible. The pseudocode makes use of a 2-
dimensional state-array S and a 2-dimensional boolean-
array D. In Figure 3.6 the D-array is represented as a
node of type D. Setting the value true is modelled as two
states that both have an is-edge to a D-node. In fact, they
share a D-node. Setting false is represented by the fact

Figure 3.6. GROOVE: determination of non-
equivalent states

Figure 3.7. GROOVE: weighted graph

that the states do not share a D-node. The array S in the
pseudocode is not modelled in this manner. GROOVE
does not make use of the values of S, but only uses the
keys. The key [i, j] of S in the pseudocode is being visu-
alized as a distinct pair of S-nodes in the figure.

The pseudocode of part 3.1. in Figure 3.5 also makes use of
some DIST -function. DIST, together with the S-array im-
proves the efficiency of the algorithm by storing intermedi-
ate states and recursively updating them. GROOVE’s ver-
sion does not use this explicit optimization, because this
research does not concern efficiency of algorithms, solely
their intuitive representation. The fact that the optimiza-
tion is not represented by GROOVE could lead to better
understanding of the algorithm. GROOVE shows exactly
how the algorithm works, not how effeciently it works.
However, GROOVE does use the first line in the DIST -
function: D[i, j] := 1, namely marking state i and j as
distinguishable.

Besides the differences discussed above the GROOVE trans-
formation rule works exactly like the description given in
Section 4.3.1.

3.3 Dijkstra’s shortest path algorithm
An algorithm that might easily be represented by graphs
is Dijkstra’s shortest path algorithm. The algorithm op-
erates on directed, weighted graphs, hence the choice for
implementing GROOVE transformation rules that act on

function Dijkstra(Graph, source):

1. for each vertex v in Graph:

dist[v] := infinity;

previous[v] := undefined;

end for

dist[source] := 0;

Q := the set of all nodes in Graph;

2. while Q is not empty:

u := vertex in Q with smallest value

in dist[];

remove u from Q;

if dist[u] = infinity:

break;

end if

3. for each neighbor v of u:

alt := dist[u] + dist_between(u, v);

if alt < dist[v]:

dist[v] := alt;

previous[v] := u;

decrease-key v in Q;

end if

end for

end while

return dist;

Figure 3.8. Pseudocode: Dijkstra’s shortest path
algorithm

them. Dijkstra’s algorithm calculates the shortest path
costs of a given start node to any other node in some di-
rected, weighted graph. The only condition is that the
weights be nonnegative.

3.3.1 Dijkstra path cost update: pseudocode
The path costs from the start node to some node v in
the graph is stored in a dist-array. Note that this array
only stores the path costs, not the paths themselves. Al-
though the paths can easily be stored using the existing
algorithm, they are not covered in this paper and mod-
elled by GROOVE. In Figure 3.82 the pseudocode of the
algorithm is given. Only the code within the for each

loop at 3. is covered in this paper. In the loop, the min-
imal path costs for each neighbour v of u is calculated
(i.e., v already has a shorter path or there exists a shorter
path via v). In short, the path costs of v will become
min(dist[u] + dist_between(u, v), dist[v]).

3.3.2 Dijkstra path cost update: GROOVE
The transformation rule that updates the path cost of all
the neighbours of some node v currently being inspected
is depicted in Figure 3.9. As one can conclude from Fig-
ure 3.7 (from the ’path’ node), GROOVE does not support
weighted graphs.

3.3.3 Comparison to pseudocode
Dijkstra’s algorithm works on graphs. Therefore, it seems
logical that a graph transformation rule of the algorithm
would be trivial to understand. However, the transfor-
mation rule of GROOVE shows quite a number of nodes
to model the pseudocode. Although a closer look indeed
reveals that the rule depicts the path cost update for-
mula min(dist[u] + dist_between(u, v), dist[v]), it

2Source: http://en.wikipedia.org/wiki/Dijkstra’s algorithm

Figure 3.9. GROOVE: updating the shortest path

might be questionable that GROOVE’s transformation
rule is more easily understood than the pseudocode.

3.4 Other algorithms
There are other algorithms that have been implemented in
GROOVE, but are not covered in some detail in this pa-
per. These include sorting algorithms such as Bubblesort
and Quicksort. However, in the design of the user eval-
uation study these algorithms are indeed covered. For a
complete package of the GROOVE transformation rules of
those algorithms and the additional transformation rules
that were omitted in the coverage of the algorithms pre-
sented in this paper one may contact the author via e-mail.

4. USER EVALUATION
This section covers the design of a user evaluation concern-
ing GROOVE’s ability to aid in student’s understanding
of algorithms. Firstly, the test setup is elaborated on. Sec-
ondly, the test method that will be used is covered. Next,
information is given on the interpretation of the data to
be obtained. The question when logical conclusion can
be drawn from the data is also covered. To conclude this
section, possible design weaknesses and possible improve-
ments are discussed that could lead to better test results.

4.1 The test setup
The user tests comprises one controlled experiment for
each of the algorithms presented in this paper. A standard
experiment design approach that is widely used in the field
of psychology has been followed. The experimental units
(i.e. the population) consists of undergraduate computer
science students of the University of Twente. Those units
have been divided between a treatment group, who will
be working with GROOVE, and a control group working
with solely pseudocode. For the experiment to yield rep-
resentative results random assignment of the units to one
of the groups was the obvious choice. The randomness of
the selection should ensure that on average the subjects
have equal existing knowledge of the algorithms and equal
ability to study them.

Each test is concerned with an algorithm that is recently
presented to the subjects in some course that they were
taking at that time. Therefore, the assumption that the
subjects have some existing knowledge of the algorithms
presented is justified.

Firstly, a small presentation will be given to both the con-

trol group and the treatment group (at the same time)
about the syntax of GROOVE. Besides the fact that only
one group will be actually working with GROOVE, the
groups should be treated as equally as possible for the
experiment to yield reliable results. The duration of the
presentation is 10 minutes. Then, both groups are given
a handout that initially explains in short which algorithm
they will be studying. On the handout for the control
group the algorithm is presented in pseudocode. The sub-
jects are given 15 minutes to study the pseudocode in de-
tail. Afterwards the subjects will take part in a test that
comprises questions regarding the algorithm studied. The
test is used to assess the subject’s understanding of the
algorithm in question.

The treatment group will be given the same handout as
the control group and the subjects too will study the pseu-
docode. However, there is an important difference. The
subjects are only given 5 minutes to study the code. Af-
terwards, they receive an additional handout that explains
the GROOVE syntax needed for understanding the trans-
formation rules of the algorithm being studied. After the
syntax is fully understood, the subjects are placed in front
of a computer that is running the GROOVE Simulator
program of the algorithm. The subjects are given 10 min-
utes to study the transformation rules and to relate those
rules to the corresponding parts of the pseudocode. Next,
the treatment group will also take part in the test regard-
ing their understanding of the algorithm.

For both the treatment and control group a questionnaire
is given afterwards. The purpose of the questionnaire is
to obtain additional data besides the data from the an-
swers to the questions regarding the algorithms. The ques-
tions in the questionnaire for the control group give regard
to the algorithm before and after they studied the pseu-
docode. Also, the amount of existing knowledge of the al-
gorithm and the need for additional material to aid them
in better understanding of algorithms are part of the ques-
tions.

The questions of the treatment group are the same as the
control group. However, an additional questionnaire that
relate to GROOVE will be presented. The questions are
concerned with the use of GROOVE as an aid to a bet-
ter understanding of the algorithm studied, the GROOVE
syntax in general, and the ability of the subjects to link
the transformation rules to their corresponding parts of
the pseudocode. The questionnaires can be found in Ap-
pendix A. The test questions for each algorithm is pre-
sented in Appendix B. The answers for each of the test
questions has been marked by an asterisk (*).

4.2 The test design
Considering the fact that the users are split up into a
control group and an experimental group and assuming a
normal distribution and variance of the population it is
advisory to follow the commonly used unpaired 2-sample
t-test (Student’s t-test) as the test method of choice [4,
p. 207]. The fact the test is unpaired follows from the fact
that the control and treatment groups are tested indepen-
dently of each other and no group is tested twice. Fur-
thermore, it is assumed that equal samples size for both
groups are used. The sample size estimation is given be-
low. Moreover, to aid in the normal distribution of the
population, it is advisory to use solely first-year students
in the samples.

Small tests already conducted on users (but not covered
in this paper) indicate that if GROOVE would make a dif-
ference in understanding algorithms that difference would
not be large. Taking that property into account, a sta-
tistical effect size of 0.5 is required, i.e. the tests should
yield a moderate difference between the control group and
the experimental group. Consulting Cohen’s sample size
table for 2-sample t-tests [2] and requiring a universally
accepted statistical power of 0.8 one needs to gather a
sample size of 64 for each group. If one wants to test for a
slight difference between the groups an even larger sample
size of 393 is needed per group [2]. However, such a large
sample may not be attainable due to the limited number
of first-year students. The data to be gathered consists of
the points scored on the test questions for each algorithm
(see Appendix B for the point distribution). The subjective
data gathered by the questionnaires can be used to assess,
for instance, the feelings towards GROOVE and towards
GROOVE as an aid in the understanding of algorithms.
However, only the analysis of objective data gathered from
the test questions is covered.

4.3 Analysis of results
As stated in the previous section it is assumed that the
groups are equal in size and in variance. Using the scored
points as the data to analyse and following the 2-sample
t-test approach, the t-statistic can be identified using the
following formula [4]:

t = X̄1−X̄2√
1
2

(S2
X1

+S2
X2

)
√

2
n

In this formula, X̄1 is the mean value of group 1, n the

number of participants, and
√

1
2
(S2

X1
+ S2

X2
) the pooled

standard deviation. Consulting the appropriate t-table
using the value t will give the answer whether there exists
a moderate difference between the groups.

4.4 Possible design weaknesses
The user evaluation might not yield good results only by
analysing the total points scored by the subject. The anal-
ysis might be improved by including data that is concerned
with the time in which subjects complete a test question
of some algorithm. This data can be added to the existing
test scores and may lead to better results. Another con-
sideration to take into account is whether to use the full
set of GROOVE’s transformation rules for an algorithm.
It might be the case that the user evaluation yields better
results if only some carefully chosen transformation rules
(known to simplify complex pseudocode) are included in
the material of the experiment. Lastly, the learning curve
of GROOVE might have a significant impact on the test
results. The subjects in the treatment group might not
be sufficiently familiar with GROOVE’s syntax and se-
mantics in the 10 minutes they are allowed to work with
GROOVE. In that case, the test results might reject the
hypothesis that the use of GROOVE makes a moderate
difference in understanding algorithms better. A possible
improvement might be to extend the duration of the ini-
tial presentation about GROOVE (given to both groups)
until the subjects are familiar with GROOVE.

5. CONCLUSION
The designed user tests that have been shown in this pa-
per can be used to assess wheter there exists a moderate
(positive) difference between the treatment group and the
control group. In other words, GROOVE’s capabilities
to act as an appropriate tool to help students understand

algorithms better can be tested. The test results might in-
dicate that GROOVE is helpful only for some algorithms.
However, if the results yield that in most cases GROOVE
does not make a difference in the understanding of the
algorithm, one should carefully consider possible design
weaknesses. Another consideration is to increase the sam-
ple size. When using a larger sample size one can test for
a smaller difference between the groups.

6. FUTURE WORK
There exists more classes of algorithms that can be sim-
ulated using GROOVE, such as the class of distributed
algorithms. Simulating various processes that uses cer-
tain datastructures in a distributed algorithm using graph
transformations might be an intuitive aid in the under-
standing of such an algorithm. The user evaluation study
of such distributed algorithms will in principle not be any
different from the one conducted in this paper.

Future work might also be triggered by the continuous de-
velopment of GROOVE. For example, GROOVE is often
not suited for proper animation of the algorithms, because
it does not support programming of graph layout changes.
If such a feature would be implemented, the effectiveness
of GROOVE as an aid in understanding algorithms might
be increased. In that case, new user evaluations would be
needed to support this claim.

7. ACKNOWLEDGEMENTS
Firstly, two people have continuously given their support
in the process of the research conducted in this paper.
Therefore, gratitude goes to dr. M.M. Fokkinga (as the
instructor) and prof.dr.ir. A. Rensink (as the founder of
the research topic). Furthermore, all the people who re-
viewed this paper are worth mentioning.

8. REFERENCES
[1] O. Andrei et al. Porgy: Strategy-driven interactive

transformation of graphs. In 6th International
Workshop on Computing with Terms and Graphs,
pages 54–68, 2011.

[2] J. Cohen. Statistical Power Analysis for the
Behavioral Sciences. Academic Press, New York,
1977.

[3] T. Cormen et al. Introduction to Algorithms. The
MIT Press, Cambridge, second edition, 2001.

[4] D. Kenny. Statistics for the Social and Behavioral
Sciences. Little, Brown and Company Ltd., Boston,
1987.

[5] S. Parduhn et al. Algorithm visualization using
concrete and abstract shape graphs. In SoftVis ’08
Proceedings of the 4th ACM symposium on Software
visualization, pages 33–36, 2008.

[6] A. Rensink et al. User manual for the groove tool set.
April 2007.

[7] T. Sudkamp. Languages and Machines. Addison
Wesley, New York, third edition, 2006.

APPENDIX
A. QUESTIONNAIRES
A.1 Standard questionnaire
Algemeen

Aantal jaren dat u Informatica studeert:
Leeftijd
Geslacht man/vrouw

Inhoudelijk

Hoeveel procent van het algoritme kende u op voor-
hand al?
2 0-20%
2 20-40%
2 40-60%
2 60-80%
2 80-100%

U heeft 15 minuten de tijd gekregen het algoritme
te bestuderen. Hoeveel procent van de code hebt
u volledig kunnen begrijpen?
2 0-20%
2 20-40%
2 40-60%
2 60-80%
2 80-100%

In hoeverre bent u het met de volgende uitspraken eens?

Het te bestuderen materiaal was voldoende om het
algoritme volledig te begrijpen
Helemaal mee oneens 2 2 2 2 Helemaal mee eens

Het vormde voor mij geen probleem om de interne
werking van het algoritme te visualiseren
Helemaal mee oneens 2 2 2 2 Helemaal mee eens

A.2 Questionnaire concerning GROOVE
In hoeverre bent u het met de volgende uitspraken eens?

De graaf-transformatie regels hebben mij een helderder
beeld gegeven bij de werking van het algoritme
Helemaal mee oneens 2 2 2 2 Helemaal mee eens

De GROOVE transformatieregels waren eenvoudig
te begrijpen
Helemaal mee oneens 2 2 2 2 Helemaal mee eens

De relatie tussen een GROOVE transformatieregel
en een (of meerdere) stap(pen) uit de pseudocode
kon ik gemakkelijk en vrijwel direct leggen
Helemaal mee oneens 2 2 2 2 Helemaal mee eens

Door de GROOVE transformatieregel in actie te
zien met behulp van de GROOVE Simulator kon
ik een beter beeld krijgen van de interne werking
van dat specifieke deel van het algoritme.
Helemaal mee oneens 2 2 2 2 Helemaal mee eens

B. TEST QUESIONS
B.1 DFA Minimization Questions
Question 1:

Consider the following DFA:

q0

q1 q2

q3 q4

d

cb

d

c

a

Clearly, q1 and q3 are equivalent states. Furthermore, q2
and q4 and are equivalent states. However, the equiva-
lence of the pair (q2, q4) depends on the equivalence of
(q1, q3). But the equivalence of (q1, q3) in turn depends on
the equivalence of (q2, q4) again. These facts suggest an
infinite loop.

Explain why in general the algorithm studied does not
end up in an infinite loop while determining equivalent
states.

*Answer: The algorithm visits the pairs of nodes only
once. It only revisits if some pair of nodes is distinguish-
able, which in this example does not happen (each of the
two pairs cannot be set as distinguishable in the first visit,
because they are dependent of each other)

Question 2

Consider the following DFA:

q0 q1

q2q3

a

b, a

b

a
b

b

Which pair(s) of states (if any) will be determined equiva-
lent (non distinguishable) after the execution of the algo-
rithm?

A (q1, q2) and (q0, q3)

*B (q1, q2)

C (q0, q3)

D no pair can be determined

Question 3

If asked to minimize the DFA of Question 2, which of
the following automata would be the result?

*A
q0

q1 q2

b, a

a b

b

B
q0

b, a

C

q0 q1

q2

b

b, a

a b

a

D

q0 q1

q2q3

a

b, a

b

a
b

b

B.2 Bubblesort Questions
Question 1:

Using Bubblesort, write down the result of the 3rd bub-
ble operation using the following initial list of numbers:

| 2 | 9 | 3 | 7 | 11 | 4 | 1 | 15 | 8 | 13 |

| | | | | | | | | | |

*Answer:
| 2 | 3 | 4 | 1 | 7 | 8 | 9 | 11 | 13 | 15 |

Question 2:

Using Bubblesort, how many iterations are needed to fully
sort the following initial list of numbers?

| 1 | 2 | 3 | 7 | 11 | 14 | 12 | 15 | 8 | 13 |

A 2

B 3

*C 4

D 5

B.3 Quicksort Questions
The same questions used for Bubblesort will be asked for
Quicksort, but with different lists of numbers.

B.4 Dijkstra’s Algorithm Questions
Question 1 [1 point]

Consider the following weighted graph G:

Use Dijkstra on node q0 and fill in the path costs from
q0 to all other nodes of G after the 4th iteration in the
while-loop.

q0

∞ ∞

∞

∞

∞

∞

6

4

3

1

3 1

7

2
5

Answer:
The following graph:

q0

2 9

6

∞

3

7

6

4

3

1

3 1

7

2
5

If one or more path costs are incorrect: 0 points.

Question 2 [1 point]

Why, in general, does Dijkstra’s algorithm work only on
graphs with the property: for all edge weights w: w ≥ 0?

*Answer: Dijkstra’s algorithm is classified as a greedy al-
gorithm. The fact that from node u it picks some neigh-
bouring node v with the smallest w(u, v) [0.5 points] as
the next node in the path guarantees that there exists no
other path from u to v with a smaller path cost to v. This
can only be guaranteed if all weights are nonnegative. [0.5
points]

Question 3 [1 point]

To clarify your answer for Question 2, draw some graph G′

that does not fulfill the property of Question 2 and mark
a path from some start node to some other node for which
Dijkstra’s algorithm does not yield the smallest path cost.

*Answer:
Some path on a graph with negative edge weights that ful-
fills the above requirement [1 point]

B.5 Red-black Trees Questions
Question 1 [1 point]

Explain why application of case 5 does not violate prop-
erty 5 for Red-black trees.

*Answer:
The inserted node will always be red. If the tree before the
application did not violate any property, then property 5
will not be violated. The number of black nodes will re-
main the same, regardless of an insertion of any red node
[1 point].

Question 2 [1 point]

The Red-black tree below clearly violates property 4. Ap-
ply the appropriate transformations to the tree and draw
the resulting Red-black tree so that everry property is sat-
isfied.

8

2

1 4

5

6

9

15

*Answer:
The following Red-black tree:

8

2

1 5

4 6

9

15

If resulting tree differs in any way: 0 points.

