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ABSTRACT
Virtual surgery simulators are an emerging training method
for medical specialists. A number of techniques have pre-
viously been proposed for simulating tissue for these sim-
ulators, one of which is the mass-spring model.
This paper aims to improve upon the perceived realism
of virtual simulator systems by redesigning the underlying
physics algorithms so that accurate simulations with full
and smooth haptic interaction can be performed.
We present a novel mass-spring model algorithm designed
to accurately simulate soft human organ tissue, both through
visual (graphic) and haptic perception (touch). The algo-
rithm is implemented as a massively parallel algorithm
running on the NVIDIAR© CUDAR© computing architec-
ture, allowing it to simulate human tissue at a rate of at
least 1000 Hz, the minimal rate at which we can ensure
smooth haptic interaction.
The mass-spring model is integrated as part of VICTARR©,
or Virtual Competence Training Area, an extendable soft-
ware framework designed for virtual surgical training1.
VICTARR© features haptic device handling and a scripting
engine that allows for easy prototyping of certain medi-
cal scenarios and also serves as the primary method for
benchmarking. The results shows that the presented im-
plementation is capable of sustaining rates above the re-
quirements and is therefore fast enough to ensure smooth
haptic interaction.
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1. INTRODUCTION
Virtual surgery systems must be capable of creating a vir-
tual environment that accurately represents the human
anatomy and physiology. When working with virtual med-
ical training scenarios, the simulation must be accurate
enough to be used for extensive practice of various treat-
ment techniques by medical students. The system accepts

1The VICTARR© platform is a development of Vrest Medical,
Institutenweg 38, NL - 7521 PK Enschede.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

15th Twente Student Conference on IT June 20
th

, 2011, Enschede, The
Netherlands.
Copyright 2011, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

user input in the form of a haptic device that represents
a virtual surgical tool within the system that the user can
move and rotate. Output of the system is provided visu-
ally, by means of a graphics renderer that outputs to a
monitor, as well as haptically through the same haptic de-
vice. By sending the calculated set of forces to the device,
the user will feel resistance, e.g. as the virtual tool collides
with the model in the simulation. The accuracy of visible
deformation and haptic perception of the tissue (sense of
touch) in response to the interaction of the virtual surgical
tool is especially important. It is the main factor in the
simulator’s perceived realism and faces close scrutiny from
experts working in the field.

Soft tissue can be simulated by a handful of methods. Our
research focuses on the mass-spring model, where a body
is modeled as a set of point masses interconnected by many
elastic springs that follow general physical laws. The con-
cept behind the model is fairly straightforward, and the
algorithm required to simulate the model generally does
not require any complex operations. In practice however,
common serial implementations are far from being fast
enough due to the high number of masses and springs re-
quired for accurate and precise simulated models.

The inherent problem of virtual surgery systems with high
perceived realism is the required performance of the sim-
ulations. At one end, the model used in the simulation
must be of high resolution so that the user can clearly dis-
tinguish visual and haptic features and can perform op-
erations as defined in a medical training scenario. At the
other end, the simulation must run at a fast enough rate to
allow smooth interaction with the haptic devices. These
haptic devices contain actuators that apply a set of forces
to the user’s hand and generally require forces to be sent
at a real-time rate of 1000 Hz. As a consequence, any sim-
ulation that wants to achieve smooth haptic interaction
must run at a rate that is at least equal to this haptic
device rate.

Our research attempts to solve the performance problem
by redesigning the mass-spring model algorithm. Because
of the simplicity of the mass-spring model, it is possible
to rewrite the model algorithm to take advantage of ex-
isting parallel hardware, so that many masses within the
model can be processed in parallel. Existing parallel hard-
ware can be found in modern consumer and workstation
grade graphics cards (also referred to as GPUs) such as
the NVIDIAR© GeForceR© and TeslaR© series. These cards
consist of a very complex and large hardware architecture
optimized for parallel execution of programs. Develop-
ment is made possible by frameworks such as NVIDIA
CUDA that run on top of these architectures and contain
the necessary tools to implement and execute parallel code
while communicating with the computer hosting the GPU



(also referred to as the CPU), further explained in section
3.1. The GPU is essentially a computer within a computer
with very high parallel computational power and memory
bandwidth at low cost.

The idea of parallelizing the mass-spring algorithm is not
new. Section 2 describes previous work with successful
parallel implementations of the mass-spring model. Though,
these works merely represent the initial steps of the mass-
spring model in the parallel world and do not explicitly
state any requirements for haptic interaction. The only
required system output is the visual representation, which
is allowed to run at a rate as low as the monitor’s refresh
rate (60 Hz). As a result, performance is not high enough
to allow the algorithms to be used in real-world virtual
surgery systems.

Our research is novel as it provides a parallel mass-spring
algorithm that is explicitly designed to run at real-time
haptic rates with the goal of becoming an integral part
of the existing virtual surgery system of VICTARR©. In
practice, the algorithm runs at a haptic frame rate (1000
Hz and above) instead of a graphics rate (60 Hz), implying
a required speedup of at least 15x so that smooth realistic
haptic interaction with the model is possible.

However, there are many pitfalls and hurdles that are
in the way of a correctly functioning parallel algorithm.
Threading issues such as race conditions, unnecessary syn-
chronization, limited memory bandwidth, resource usage
and other bottlenecks have to be solved in order for the al-
gorithm to function correctly. Many of these bottlenecks
can cause stalls and other delays in the GPU hardware
architecture that significantly decrease the efficiency at
which the parallel algorithm is executed. This is further
explained in section 4, in which our research goes into
detail on how to rewrite the mass-spring algorithm in par-
allel.

Our research then focuses on the data structures and shows
how these can be structured appropriately for CUDA and
the GPU hardware architecture. We then design the in-
tegration of our algorithm within VICTARR© to allow vi-
sual rendering and haptic interaction with the model by
using an existing graphics renderer and haptic device han-
dler. Each of these are contained in different subsystems
or host threads, running at different rates. A certain de-
gree of data transfer and communication is necessary be-
tween these subsystems in order for data to, for example,
flow from the haptic devices to the mass-spring algorithm
and vice versa. The system is completed by a buffering
strategy that is used to allow safe data transfers while
minimizing performance overhead and latency between all
functional parts of VICTARR©.

Finally, the results in section 6 show that we have suc-
ceeded in creating a mass-spring algorithm that meets the
earlier stated performance requirements while operating
as an integral part of VICTARR©. Our implementation
is benchmarked using two complex human data sets that
show the algorithm performing at sustained rates exceed-
ing those of the haptic device as can be seen in table 2.
Smooth haptic interaction is therefore possible, allowing
it to be used for virtual surgery and medical training.

2. RELATED WORK
For the past two decades, physical modeling of deformable
objects has been an area of extensive research within the
field of computer graphics and medical technology. In
1987, [16] was the first to incorporate physical proper-
ties into a graphical object, creating elastically deformable

models that were capable of responding to external forces
and constraints. The underlying mechanics of these mod-
els were initially used with the finite element method (FEM),
such as in [2] and [3] for animating muscle deformations
in anatomically based characters.

While FEM is considered to be very accurate, it comes
with high inherent numerical complexity. Therefore, re-
search has advanced towards simplifying the model to find
a more balanced tradeoff between accuracy and perfor-
mance. This led to the adoption of the simpler mass-
spring model, an approximated model where the object
is subdivided into discrete masses that are interconnected
by springs. Springs have attributes based upon the phys-
ical properties of the object. While the model remains an
approximation, it was found to have a fair accuracy trade-
off and has since been widely used in various areas such
as virtual surgery [8], rigid cloth simulation [14], muscle
deformation [12] and others.

Recently, research into more realistic virtual surgery simu-
lation has been growing. Additional degrees of realism are
added by increasing the complexity of the objects as well
as allowing the user to have haptic interaction with the
model. Though these two factors play an important role in
improving perceived realism, they also impose severe lim-
its on the computation time and require significant efforts
in improving the performance of the underlying physical
model [7].

In this context, extensive work is being done in imple-
menting the physical models on emerging hardware ar-
chitectures such as Graphical Processing Units (GPUs)
instead of conventional software approaches. This shift
towards new cutting-edge architectures, made possible by
frameworks such as OpenCL and CUDA, has been an im-
portant subject of research in the last few years and is also
known as General-Purpose GPU (GPGPU) computing.

Specifically, CUDA provides the technology to implement
parallel algorithms by using consumer grade graphics cards
(GPUs) that are capable of massive concurrent execution
of instructions, resulting in potentially high performance
gains.

Previously, mass-spring models have been implemented on
the GPU using different techniques. In [10][9] [11], parallel
GPGPU-based approaches are presented with significant
speedups when compared to reference CPU implementa-
tions. In more recent work [15] [4], different CUDA im-
plementations of the mass-spring model for surgery sim-
ulation are investigated and evaluated, showing potential
speedups compared to earlier GPU-based approaches.

3. BACKGROUND
3.1 GPGPU and CUDA architecture
3.1.1 Architectural overview
The CUDA framework exposes the parallel processing power
of the GPU in the C programming language. The GPU is
considered as a highly parallel general-purpose processor
with the ability of running numerous fine-grain threads.
Conventional GPGPU programming can be seen as a form
of stream processing, where identical operations are per-
formed on each element of the input set in parallel. Once
implemented in CUDA, an operation can be invoked by
a single line of code that instructs the device to perform
the operation in parallel with a specific organization of
threads.

NVIDIA released the first CUDA-capable GPU in 2006
and is currently shipping its third-generation CUDA capa-



ble architecture. This includes the NVIDIA Tesla C2050,
one of the high-end GPUs targeted at the high perfor-
mance computing market, supporting 448 streaming mul-
tiprocessors (SMs) and 3 GB of GDDR5 memory. Each
SM supports on the order of a thousand parallel threads
and is equipped with a large register file, giving each thread
its own dedicated set of registers. A high-end GPU with
many SMs can thus sustain tens of thousands of threads
simultaneously. Each SM also contains high-bandwidth,
low-latency on-chip shared memory, while at the same
time providing its threads with direct read/write access
to off-chip DRAM [5][13][6]. The key challenge lies in im-
plementing our parallel algorithm as efficiently as possible
by utilizing maximum computational power while avoid-
ing operations that cause unnecessary memory latency and
synchronization.

3.2 Mass-spring model
The basic fundamentals of the algorithm in question are
easy to understand. A mass-spring model consists of a set
of mass points Mi with i = [0, N ] where N represents the
number of total masses. The model is interconnected with
springs Sij connecting any two arbitary mass points Mi

and Mj .

Figure 1. A one-dimensional case of a mass-spring
system.

Figure 1 represents the simple one-dimensional case of a
mass-spring model as detailed in [1]. This particular case
contains masses M0, M1, M2, M3, M4 and springs S01,
S12, S23, S34. In the mass-spring model, forces that are
exerted on the connected masses are summed according to
Newton’s second law of motion:

miai =
∑

j∈Si

�Fij (1)

where Si is the set of connected masses for mi, ai is the
acceleration of mi, and �Fij is the force exerted by the
spring connecting the two masses mi and mj that can be
obtained from Hooke’s law:

�Fij = kij(lij − l0ij)
lij
|lij | (2)

where kij is the spring stiffness, lij is the current spring
length or distance between masses mi and mj , and l0ij is
the spring rest length in equilibrium.

To obtain a set of useful results, equation 1 is numeri-
cally integrated using Verlet integration. Verlet integra-
tion is one of many numerical methods to integrate New-
ton’s equations of motion and is generally used to calculate
the trajectories of masses. Similar lower and higher order
methods are Euler, Backward Euler, Leapfrog and Runge-
Kutta [11]. The main advantage of the Verlet integration
method is that only the two last positions of the mass Mi

are needed to calculate the updated position (saving per-
formance) while the error of the outcome stays reasonably
low (reasonable accuracy):

xi(t+Δt) = 2xi(t)− xi(t−Δt) +
1

2
fiΔt2 (3)

Where t is the time, Δt is the fixed time step and fi is
the total force or acceleration of the mass. Other factors

such as spring damping and gravity can be easily added
by extending fi beyond the acceleration in equation 1:

fi = ai +−di�vi + �g (4)

Where di is the damping factor of the mass and �g is the
gravity vector.

3.3 Integration with VICTARR©

Our algorithm is implemented and tested using VICTARR©.
Figure 2 shows a diagram of VICTARR© including all the
relevant threads and subsystems running at different up-
date rates. Various synchronization and threading strate-
gies need to be employed in order to integrate the physics
model properly. For instance, as the graphics subsystem
is displaying the model, there needs to be a certain degree
of synchronization with the algorithm running in a CUDA
thread. The haptic devices also require interaction with
the CUDA thread for manipulation of the physics model.

VICTAR Framework

Sound Scrip�ng

Tool handling Graphics

Physics model Buffering

60Hz

Hap�c device

1000Hz Hap�cs

>1000Hz CUDA

Figure 2. Our physics model and its interac-
tion with various threads and subsystems within
VICTARR©.

4. MASS-SPRING ALGORITHM
At the heart of our system lies the algorithm that calcu-
lates all elements within the mass-spring model by using
the physics equations in section 3.2. Each time the algo-
rithm is invoked on the model, the result is an updated
model containing the masses and springs with their posi-
tions and other variables adjusted according to any applied
(tool) forces within a predefined time step of Δt.

4.1 Model layout
The basic layout for our mass-spring model in the three
dimensional case is represented by a uniform grid consist-
ing of masses connected by springs as can be seen in figure
3.

(a) (b) (c)

Figure 3. Three-dimensional uniform grid layout
connecting the center mass to at most 26 neigh-
bouring masses (in grey) at Euclidean distance (a)
1, (b)

√
2 and (c)

√
3.



As in [15], the uniform grid is chosen purely for simplicity
and structural integrity of the model. Every mass within
the grid is connected to all of its neighbouring masses,
forming springs, all of which are within a 3x3x3 grid sur-
rounding the mass. The rest length rij of each spring is
defined as the initial Euclidian (or ordinary) distance be-
tween a mass Mi and any of its neighbouring masses Mj

forming the spring. Because of the grid layout, this dis-
tance is either 1,

√
2 or

√
3. For every mass we can define

at most 3 ∗ 3 ∗ 3− 1 = 26 neighbouring masses (and thus
springs), while e.g. masses at the outer surface of the grid
will generally have fewer neighbours.

Keeping this model in mind, we can now move forward to
the implementation of the mass-spring algorithm.

4.2 Naive serial implementation
The most straightforward and intuitive implementation
of the mass-spring algorithm simply iterates over every
spring Sij (connecting arbitrary masses Mi and Mj where
0 ≤ i, j < N) within the model and applies equations 2
and 3 as can be seen in algorithm 1.

Algorithm 1 Straightforward serial implementation

1: for all masses Mi do
2: �Fi ← 0 {initialize total force}
3: end for
4: for all springs Sij do
5: get mass positions �xj(t) and �xi(t)
6: determine spring length {lij ← �xj(t)− �xi(t)}
7: calculate spring force { �Fij ← kij(lij − l0ij)

lij
|lij |}

8: calculate force on Mi {�fi = �ai = �Fij ∗ 1
2
}

9: calculate force on Mj {�fj = �aj = − �Fij ∗ 1
2
}

10: update accumulated forces �Fi, �Fj by adding �fi, �fj
11: end for
12: for all masses Mi do
13: integrate {�xi

′(t + Δt) ← 2�xi(t) − �xi
′′(t − Δt) +

1
2
�FiΔt2}

14: set mass position �xi
′(t+Δt)

15: end for

For each mass Mi the total force exerted by the connected
springs is accumulated into �Fi and finally integrated using
Verlet integration to determine the new mass position xi.

4.3 Parallel implementation
The first trivial step towards parallelizing algorithm 1 is
to process the existing for-loops in parallel instead of do-
ing sequential iterations. However, when each of the it-
erations is processed by a different thread in parallel, the
accumulation of forces �Fi and �Fj will in practice lead to
race conditions due to different threads trying to read and
write these values at the same time. This poses a serious
threat to the stability of the model.

The problem could be mitigated by using synchronization
and thus making the accumulation atomic so that only one
thread at a time can modify its value. This would however
degrade performance due to excessive locking. Instead, it
is also possible to rewrite the algorithm and avoid any
synchronization at all.

Algorithm 2 has been written in such a way that it is
now iterating over every mass Mi and subsequently each
of its neighbouring masses Mj . Each combination of a
mass and its neighbour represents a spring Sij so that
all springs in the model are implicitly iterated. The for-
loop can be iterated by many threads in parallel. Race
conditions are now eliminated because the only data that

Algorithm 2 Initial parallel implementation

1: for all masses Mi do
2: get mass position �xi(t)

3: �Fi ← 0 {initialize total force}
4: for all neighbouring masses Mj do
5: get mass position �xj(t)
6: determine spring length {lij ← �xj(t)− �xi(t)}
7: calculate spring force { �Fij ← kij(lij − l0ij)

lij
|lij |}

8: accumulate total force �Fi { �Fi ← �Fi + �Fij ∗ 1
2
}

9: end for
10: integrate {�xi

′(t + Δt) ← 2�xi(t) − �xi
′′(t − Δt) +

1
2
�FiΔt2}

11: set mass position �xi
′(t+Δt)

12: end for

is updated (�xi
′(t + Δt)) is unique and never accessed by

any other thread within the same time step.

Note that the algorithm has a number of implicit memory
accesses, e.g. the list of neighbouring masses at (4) and
variables kij and l0ij at (7). For the sake of readability,
these have been kept implicit and will be further expanded
in the next section.

4.4 Extending the implementation
Extending the initial parallel algorithm to target platform
CUDA poses a few difficulties. For one, as outlined in
section 3.1.1, care should be taken to ensure efficient data
structuring so that potential bottlenecks are pinpointed
and memory access is minimized.

Algorithm 3 Extended CUDA implementation

1: for all masses Mi do
2: get mass position �xi(t)
3: get mass properties pi
4: synchronize threads
5: if pi.active then
6: �Fi ← 0 {initialize total force}
7: for k = 0 → 26 do
8: get neighbour mass at k {Mj ← Ni(k)}
9: if Mj exists then
10: get mass properties pj
11: if pj .active then
12: get mass position �xj(t)
13: get spring properties kij and l0ij
14: determine spring length {lij ← �xj(t) −

�xi(t)}
15: calculate spring force { �Fij ← kij(lij −

l0ij)
lij
|lij |}

16: accumulate total force �Fi { �Fi ← �Fi + �Fij ∗
1
2
}

17: end if
18: end if
19: end for
20: get mass position �xi

′′(t−Δt)
21: synchronize threads
22: perform collision handling
23: integrate {�xi

′(t + Δt) ← 2�xi(t) − �xi
′′(t − Δt) +

1
2
�FiΔt2}

24: else
25: keep old position {�xi

′(t+Δt) ← �xi(t)}
26: end if
27: set mass position �xi

′(t+Δt)
28: end for

Algorithm 3 shows the extended algorithm with all mem-



ory access transactions explicitly stated, containing pre-
dictable coalesced transactions as well as unpredictable
random transactions. Every iteration runs in a separate
thread and requires multiple memory access transactions
in order to retrieve data. This data is retrieved with dif-
ferent access characteristics: at (2) �xi(t) will always be
retrieved by thread Mi (i is always known beforehand, as
is also the case for (3), (20) and (27)) while the retrieval
of pj and �xj(t) at (10) and (12) is effectively a random
memory access because j can be any arbitrary mass con-
nected to Mi. Memory transactions (2), (3), (20) and
(27) rely on i which is unique to each parallel thread. i
is already known in advance and these transactions can
therefore be predicted and will be optimized for data coa-
lescing by CUDA. With little added synchronization as in
(4) and (21), these transactions - performed by threads in
parallel - will be combined into single transactions, saving
considerable memory bandwidth.

At (8) function Ni(k) retrieves the index j for the neigh-
bouring mass Mj represented by a particular 0 ≤ k < 26
for Mi. Ni thus represents a data structure containing at
most 26 indices for every mass Mi. The algorithm also
contains the necessary code to perform collision handling
for haptic interaction, which is left simplified in this listing
and will be elaborated in section 5.1.

4.5 Data structures
Data in memory that is accessed by predictable transac-
tions should be structured in such a way that allows for
coalescing according to a set of GPU-dependent alignment
rules. As a general rule for CUDA, data elements should
always be aligned to 32-bit, 64-bit or 128-bit words so that
multiple parallel transactions at sequential addresses can
be combined into single transactions.

vertex data (position vectors)

0    1    ...0    1    ... N

mass data (flags)

0    1    ...0    1    ... N

spring data (neighbour indices, rest lengths)

N * 26...

0 1

thshs)

activated
located on surface
persistent
...
material #

material data (stiffness, displacement)

0    1    ... M

.

.

.

.

.

.

.

.

.

Figure 4. Layout overview of (aligned) data struc-
tures, from top to bottom: vertex data, spring data,
mass data and material data.

Because memory space and bandwidth must be minimized
at all times, we have added several additional optimiza-
tions. As the number of springs (at most N ∗ 26) quickly
increases with more complex models, we have chosen to
classify every spring Sij or mass Mi by a material m. Ev-
ery spring Sij is assigned a materialm that globally defines
spring properties such as the stiffness kij , which is now no
longer unique to every spring rather than to the group of
springs defined by m. By keeping the number of materi-
als limited to L (e.g. L = 16), we only require to store
L instead of N ∗ 26 spring properties, saving considerable
memory usage and bandwidth.

Our data structures are organized as simple one-dimensional
arrays of (aligned) data. Figure 4 gives an overview of how
these structures are laid out in memory. The vertex data
contains positions in �x as accessed by algorithm 3 at (2),
(12), (20) and (27). The spring data contains the indices
for Ni(k) at (8) as well as unique spring properties such as
l0ij at (13). The mass data contains mass properties such
as flags p at (10) and the earlier discussed material m. Fi-
nally, the material data contains global spring properties
such as kij for every material m applied to the group of
springs as defined by m.

4.6 Additional optimizations
Algorithm 3 already contains the basics for some impor-
tant performance optimizations. Note that at (5), the
algorithm checks whether Mi is currently marked as ac-
tive. If Mi is not an active mass, all computations can
be skipped early and the position �xi remains unchanged.
By dynamically changing pi.active for all masses in the
model, computational power is saved that would other-
wise be wasted on masses that barely move. For example,
a mass Mi can be marked inactive if the total spring force
| �Fi| falls below a certain small threshold ε (e.g. ε = 0.001).
IfMi is barely affected by any spring forces, it is likely that
this will continue for the next iterations, so it makes sense
to deactivate the mass until | �Fi| exceeds the threshold ε,
e.g. in the case when the mass is displaced by a virtual
tool and is subsequently reactivated. We have optionally
implemented this optimization strategy as can be read in
section 6.

5. SYSTEM DESIGN
Given the extended algorithm implementation in the pre-
vious section, we now have a means to calculate the po-
sitions within the mass-spring model. At this point, it is
important to integrate the algorithm into a system that
handles user input (through haptics) and output (through
haptics and graphics) so that the mass-spring model can
actually be used in practice.

As explained in section 3.3, user input is performed by
one or two haptic devices resembling a virtual tool that
can be used to manipulate the mass-spring model. Moving
the haptic device will result in identical movements of the
appropriate virtual tool in the system. This, together with
the force feedback output capabilities of the device, where
the force of any masses acting on the virtual tool will result
in a force being applied to the user’s hand, will provide the
user with a full sense of haptic interaction with the model.

Another form of system output is of course the visual
representation of the model as generated by the system’s
graphics subsystem. VICTARR© implements this subsys-
tem on MicrosoftR© DirectXR© 11 that also provides shader
capabilities of Shader Model 4.0. A specialized multi-pass
shader rendering technique is used to render the visual
representation of the mass-spring model. This however
falls beyond the scope of this research.

In figure 2, three subsystems can be clearly distinguished,
each running in their own thread on the host (CPU) at dif-
ferent rates. The CUDA subsystem represents the CUDA
host thread that executes the mass-spring algorithm on
the GPU at a dynamic rate, whereas the haptics subsys-
tem represents a host thread that interfaces with the hap-
tic device driver at a constant rate of 1000 Hz. Finally,
the framework contains the renderer that generates the vi-
sual representation of the model as well as other auxiliary
functions in the framework such as scripting and sound
functionality.



Figure 5 provides a diagram of the complete data flow for
the system and also describes whether the data is residing
on the CPU or GPU.

mass-spring kernel

Haptic device

double buffer

double buffer

vertex input

material data (stiffness, displacement)

mass data (flags)

spring data (neighbour indices, rest lengths)

collision input 

vertex output

collision output

DirectX renderer

user input

video output

>1000Hz

1000Hz

force feedback vectorposition/velocity vectors

vertex buffervertex buffer

60Hz

data residing on GPU

rarely updated data

data residing on CPU

Figure 5. Detailed overview of data flow within the
system as implemented by VICTARR© consisting
of various subsystems (threads) as defined by the
white boxes. Squares represent the memory copies
required to move the data from CPU to GPU or
vice versa. Double buffering, where applicable, is
used to prevent threading issues.

5.1 Haptic synchronization
The first important form of user interaction is done with
haptic devices. We are using the SensAbleR© PHANTOM
OmniR© haptic devices, seen in figure 6, that provide two-
way haptic interaction: the device has sensors in six de-
grees of freedom to register the device’s current position
(as well as velocity and rotation) while built-in actuators
provide a way to apply force feedback to the device in three
degrees of freedom. The device is controlled by the Haptic
Device API (HDAPI) that schedules a haptic thread to
run at a constant rate of 1000 Hz in which the sensors can
be read out and an actuator force can be applied. The
high haptics rate is necessary to prevent jerky oscillating
movements of the actuators, where 1000 Hz is generally
fast enough to provide a force that feels smooth and con-
sistent at the user’s hand.

The sensor data representing the position of the virtual
tool is read as a float vector buffer (in the haptic thread)
that must be passed into the mass-spring algorithm (in the
CUDA host thread) with as little latency as possible. At
the same time, a float vector buffer containing a force must
be written (in the haptic thread) after being calculated by
the mass-spring algorithm (in the CUDA host thread),
again with as little as possible latency.

The fastest way to accomplish this would be to let both
threads access these two vectors at the same location in
memory. This could however result in either of the threads
reading a value that is currently being written to by the
other thread, yielding corrupt half-written data. Another
option would be to apply synchronization through locking,
but this would cause either of the threads to wait and stall,
potentially degrading performance.

To prevent any issues, we employ a double buffering strat-

egy with two identical co-existing buffers where each buffer
is being exclusively used for either reading or writing. In
the case of a single-reader single-writer situation, as with
our system, buffer A is used for reading while B is used for
writing. At any point in time when there are no threads
reading or writing at all, buffers A and B will be flipped
so that the reader is able to read the updated data in B
while the writer can overwrite outdated data in A.

Figure 6. SensAbleR© PHANTOM OmniR© haptic
device with sensors in six degrees of freedom and
actuators in three degrees of freedom, used for
haptic user interaction.

Both vectors can now be synchronized as quickly as pos-
sible and without threading issues. Note that within the
CUDA host thread, the vectors still require a copy from
CPU to GPU, but at little cost. The mass-spring algo-
rithm will use the tool’s position vector to perform colli-
sion detection and displacement of the model as the virtual
tool touches the model, and generates a force by summing
the spring forces �Fij acting on the masses that are cur-
rently touched by the virtual tool. The user is therefore
able to move the tool while feeling the model’s masses
colliding and giving resistance.

5.2 Graphics synchronization
At this point, the system can run fine with just haptic in-
teraction between the user and the model. The next step
however is to add visual output, which is accomplished by
close cooperation of the CUDA subsystem and the DirectX
renderer. The renderer takes a vertex data buffer as in-
put and presents this buffer to the GPU through DirectX’s
API so that it is ultimately displayed on the monitor. Spe-
cialized shaders are used to make sense of the vertex data
and turn it into a visual representation of the model. The
renderer typically runs in sync with the monitor’s vertical
refresh rate, which we assume to be at a constant 60 Hz.

The shaders accept a vertex data structure that is iden-
tical to the structure used by the mass-spring algorithm
in CUDA. The data structure is simply an aligned one-
dimensional array of float4 vectors of size N . The renderer
can therefore directly read any buffer that has been up-
dated by the mass-spring algorithm. As both CUDA and
DirectX will only access data that is residing on the GPU,
the vertex data never has to leave the GPU, saving costly
memory copies between GPU and CPU.

Note that the renderer and mass-spring algorithm run in
different threads at vastly different rates. We need to en-
sure that, at no point in time, the renderer can ever read a
vertex data buffer that is currently being written to by the
algorithm. The renderer could theoretically render half-
written corrupted vertex data due to the algorithm still



Table 1. Profiling results of the mass-spring al-
gorithm in CUDA obtained by performing several
test runs on arbitrary data sets.

Measurement unit or property Profiler output

Kernel block size 256
Kernel occupancy 66.67%
Shared memory usage 0 KB
Register count 26

updating the buffer, or the renderer could end up locking
the buffer (at 60 Hz) causing a severe performance degra-
dation of the algorithm as CUDA will be waiting to get a
lock. To prevent these threading issues we thus apply the
same double buffering strategy as described in section 5.1
for vertex data.

6. RESULTS
We have implemented the parallel mass-spring model as
described in the previous sections as part of VICTARR©’s
virtual surgery system. The configuration of our target
platform on which we will be testing the model and mea-
suring results is a workstation with a IntelR© CoreR© i7-
860 CPU with 6GB of RAM and a NVIDIA Tesla C2050
graphics card supporting NVIDIA CUDA 4.0, the latest
at the time of writing.

The CUDA Visual Profiler allows developers to peek at
the internals of the mass-spring kernel in CUDA. Timing
information such execution times and overhead on GPU
and CPU as well as architectural features such as the reg-
ister count, kernel occupancy and memory throughput can
be measured and give insight about the current and max-
imum potential efficiency of the kernel. [13] and [6] give
an in-depth overview of how these units can be used to
profile the performance of a kernel and guide future opti-
mizations. Table 1 contains the results of a performance
profile run on the mass-spring algorithm as implemented
in CUDA.

(a) Lung data set (b) Training scenario

Figure 7. Visual representation of the lung data
set as a model and the VICTARR© lung surgery
training scenario where the model is used.

By analyzing the data in 1, we can identify potential per-
formance limitations that exist in the current implementa-
tion of the algorithm. Analysis shows that the algorithm
kernel, due to its complexity, puts a heavy load on the
GPU’s registers. As explained in [13], the kernel occu-
pancy shows the load or busyness of the GPU while ex-
ecuting the kernel. Each multiprocessor (SM) inside the
GPU only has a fixed number of registers and cache mem-
ory resources available. As the register count increases,

Table 2. Profiled performance results of the mass-
spring algorithm in CUDA operating on two dif-
ferent data sets.

Model N Mem. usage GPU time time/mass

lung 34108 11.9 MB 0.254 ms 7.4 ps
arm 82105 28.5 MB 0.456 ms 5.5 ps

less threads can be scheduled to run concurrently and the
GPU load decreases. In our case, the GPU is only loaded
for 66%.

Note that in order to measure fair and concrete perfor-
mance results, the optimizations for dynamically activated
masses introduced in 4.6 have been disabled so all masses
within the model are always assumed to be active. The al-
gorithm is tested with two distinct soft tissue surgery data
sets: lung, which is a highly complex data set containing
a complete lung organ with veins, arteries, trachea, lymph
nodes and a tumor obtained from three-dimensional MRI
data of a patient, and arm which is another complex data
set containing a left arm with bones, veins, arteries and
muscles. The lung data set, illustrated in 7(a), is part of
one of the VICTARR© surgery training scenarios that can
be seen in 7(b). Results are illustrated in table 2.

Table 2 shows similar results for the two different data sets.
For the arm model, the algorithm performance of 0.456
ms alone represents a physics rate of around 2192 Hz as
measured by the profiler. When we add the overhead of
synchronization with other subsystems and miscellaneous
CUDA control instructions, the physics rate is sustained
at around 1830 Hz in practice, putting it well above the
requirement of 1000 Hz for a data set representing a model
with N = 82105 active masses and an implicit worst case
of N ∗ 26 = 2134730 springs.

This means that the system is capable of processing ap-
proximately 150250 active masses at a rate of around 1000
Hz. However, if we enable the dynamic activation opti-
mization described in 4.6, we can sustain rates of 1000 Hz
for far larger data sets. We deliberately left these results
out because these data sets will initially only contain in-
active masses and are thus unsuitable for consistent and
fair testing. Theoretically, when excluding the overhead
of iterating over inactive masses, the complexity of the
data sets could be increased by multiple orders of magni-
tude while sustaining a 1000 Hz and up most of the time,
unless of course in the unlikely situation where all of the
masses become activated at once.

7. CONCLUSION
The main goal of this research was to design and imple-
ment a parallel mass-spring model with a performance re-
quirement of running at a rate of 1000 Hz or higher. This
requirement was set to allow for smooth and consistent
haptic (and visual) interaction with the user, where two
known soft tissue data sets were available to test this re-
quirement.

We have designed and implemented an algorithm as a
CUDA kernel that satisfies the above performance require-
ment. The kernel was made into an integral part of VICTARR©

by working together with subsystems such as the graphics
renderer and haptic devices in a multi-threaded environ-
ment. Smart buffering strategies were used to ensure that
data flow between the various subsystems was kept safe
from threading issues while avoiding synchronization and
stalling of threads.



Finally, the combination of this novel parallel mass-spring
algorithm and VICTARR© as a whole represents a software
solution capable of virtual simulation of human soft tissue
with haptic user interaction, serving as the base for new
commercial virtual surgery training platforms.

8. FUTURE WORK
Possible future work includes investigating the scalability
of the mass-spring algorithm in different ways. If we con-
sider future GPU architectures with improved resources
such as computational power and increased memory band-
width, it remains to be seen whether the algorithm will
scale linearly with these resources. At the same time,
the system could perhaps also be adjusted for setups with
workstations containing multiple graphics cards. The al-
gorithm would have to be distributed over multiple avail-
able GPUs and scale accordingly.
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[8] U. Kühnapfel, B. Neisius, H. G. Krumm, C. Kuhn,
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