
A Concurrent Bidirectional Linear Probing Algorithm
Towards a Concurrent Compact Hash Table

Steven van der Vegt
University of Twente

The Netherlands
s.vandervegt@student.utwente.nl

ABSTRACT
Hash tables are commonly used data structures for rep-
resenting subsets of a large key universe. In these tables,
the complete key is stored in order to resolve the item in
case of a collision. Since the 1980’s, there are known tech-
niques to reduce the used memory by only storing a part of
the original key. However, there are no known concurrent
implementations of these so-called compact hash tables.
Nowadays, the way to obtain the most performance gain,
is to utilize the multiple CPU cores many machines are
equipped with. This paper describes the parallelization
of the bidirectional linear probing algorithm developed by
Amble & Knuth, with a minimal memory overhead. We
proved correct and implemented the algorithm and show,
with results from experiments, that it scales well.

1. INTRODUCTION
To store sets of data in memory, many data structures
have been developed in the last decades. An array is one
of the simplest of those structures and built up from a
list of adjacent items in memory. A fixed-size item can be
located in memory by multiplying its index by the size of
an item and adding this to the base address of the array.
This results in a look-up time of O(1) and a total memory
usage of N ∗ sizeof(item) for an array size of N items.
Although this data structure is fast and memory efficient
it may not suit all needs. In situations where not for every
index an item exists, memory will be wasted. Another
problem is when the universe of possible indexes exceeds
the maximum possible numbers of items in memory. For
example, a list of 7 characters (8-bits per character) is used
as a index on a 32-bits computer system. The amount of
possible keys (28)7 > 232 is much larger than the possible
addressable items. Both problems can be solved by the use
of a hash function which maps the large universe of the
item index (from now on called a key) to the array index:
hash(K)→ i, where i is a index such that 0 ≤ i < N . An
example to map a 32 bits key to an hash table with the
size of 28 elements is dividing the key by 224. This data
structure is called a hash table.

Because the universe of the key is larger than that of the
array index, many different keys are mapped onto the same
array index. The occasion that during an insert an index

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
15th Twente Student Conference on IT June 20st, 2011, Enschede, The
Netherlands.
Copyright 2011, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

is already occupied is called a collision, and can be solved
using chaining or open addressing. Chaining involves cre-
ating a linked list for every bucket, where a collisions has
occurred. Every time an item collides, an extra bucket is
added to the linked list. Open addressing uses the unused
buckets in the array to solve the collisions. The search for
the correct item is called probing. To verify whether a col-
lision has occurred, the original key is stored alongside the
item. Thus, a standard hash table is formed of so called
buckets which contain the a key and a value.

The amount of memory needed to store n buckets of size
w (in bits) in an open addressing hash table is nw. This
way of storing is called linear storage. According to the
information theory, the minimum size of a data structure
which holds n items of size w is n(w− log2 n+ 1) [4]. This
is considerably less than the linear method for a certain
n and w. Based on this theory, compact hash tables are
developed which try to approach this theoretical limit. A
data structure developed by John G. Cleary in 1984 [2] is
such a compact hash table. Instead of storing the whole
key, this compact table only stores w− log2 n+3 bits. One
bit is used to verify if a bucket is occupied, the other two
are used to reconstruct the home location of the element.
This can save a lot of memory. If, for example, we have a
w of 10 bits, and a hash table with n = 32 buckets there
are 210−5 = 32 keys mapped to one bucket. So, every
bucket should only store the last 5 + 3 bits of the key to
uniquely distinguish itself, instead of the 10 bits which is
stored in conventional hash tables. For large hash tables,
the memory reduction can be significant.

We will limit the scope of this research is to a special type
of hash table designed for sets that only grow monoton-
ically. These type of tables can be used in, for example,
planning problems and model checkers. Because the ta-
ble only grows it has several properties: only inserts, and
lookups are performed on the table. The table is searched
for an existing key, if this key is not found it is inserted. We
will call this action find-or-put. Only the key is needed,
thus no values are stored in the buckets. No resizing is
required because the table takes up all available mem-
ory. We use open addressing, which means the buckets
are stored in an array and we do not make use of any
pointers or linked lists. This saves memory, especially on
64-bit systems.

The solutions these special tables are used in are often
CPU intensive. Since the enormous increase of CPU clock
speed is coming to a halt because of physical limits, CPU
manufacturers compensate this by adding more cores to
a CPU. For an algorithm to benefit from this increasing
CPU power is must be parallelized. Many research is going
into the parallelization of existing data structures like hash
tables, and recently Cliff Click [3] parallelized an open ad-

dressing hash table using the compare and swap instruc-
tion (CAS). The use of the CAS instruction resulted in a
highly scalable and elegant solution which is an inspiration
for this research.

This paper introduces a bidirectional linear probing find-
or-put algorithm using a locking mechanism with little
memory overhead. This type of hash table is the base
of the compact Cleary table [2]. We provide a proof of
its correctness, and show that it scales well. With this
algorithm we believe to become one step closer to finding
a concurrent Cleary table.

Next in Section 2, where we describe the sequential search
and insert algorithms of a bidirectional linear probing ta-
ble. Then in Section 2.3 we combine these to a sequential
find-or-put. In Section 3, we introduce our parallel version
of this find-or-put algorithm. We describe its logic and in
Section 4, we prove its correctness. In Section 5, we de-
scribe the experiments with the table and their results.
Finally, in Section 5 we give some recommendations how,
with the result of this paper, the Cleary algorithm can be
parallelized.

2. BIDIRECTIONAL LINEAR PROBING
Linear probing is a scheme for finding a location by sequen-
tially searching the table. In case of a collision, the new
probing location is calculated by adding an interval value
to the current location. When the interval is set to 1 this
probing technique provides good memory caching through
good locality of reference. Bidirectional linear probing lets
the algorithm probe up or down, depending on the value
of the key in the initial bucket. The index of this initial
bucket is found by the hash function. Bidirectional linear
probing requires a hash function which guarantees that
for keys k1 and k2, if k1 < k2 then hash(k1) < hash(k2).
Thus, all the keys in the table are ordered. At the start
of the probing algorithm the key from the initial bucket is
compared to the key under search. If the key in the ini-
tial bucket is greater than the searched key, the algorithm
starts probing down the table, otherwise it goes up.

2.1 The Data Structure
We will use an array of M elements numbered 0 to M −1.
We call this array our hash table. Every position can con-
tain a key Ki for a certain i so that 0 ≤ i < M . The
search problem consists of taking a given argument K and
determine if there exists an i such that K = Ki. If U is the
universe of all possible keys of n-bits we will define a func-
tion for each K ∈ U : hash(K) ⇒ the hash address of k.
The function is constrained so that 0 ≤ h < M and will
be used as an initial index for the probing process. Some
elements in the table will be filled while others may be
empty. To indicate that status, every element has an oc-
cupied property.

2.2 Algorithms
The first algorithm, as shown in Algorithm 1, is a search
algorithm using a bidirectional linear probing technique,
and developed by Amble & Knuth[1]. The elements in the
table are always in order, so an element can be found by
either probing left or right depending on the value of the
initial hash-location. The amount of probes depends on
how far the element is away from its original hashing lo-
cation. The closer these elements are to this location, the
more balanced the table is, and the faster a search can be
performed. The second algorithm, as shown in Algorithm
2, is an insert algorithm based on the insert algorithm of
Amble & Knuth, which ensures the conditions needed for

Algorithm 1 Search for an element, given key K, using
the method of bidirectional linear probing

procedure bool search(K)
j ← hash(K)
if table[j] = K then

return true
if table[j] < K then

while table[j + 1].occupied∧ table[j + 1] < K do
j ← j + 1

else if table[j] > K then
while table[j − 1].occupied∧ table[j − 1] > K do

j ← j − 1
return table[j] = K

Figure 1. An example of the swap procedure dur-
ing an insert when table[h] > K. All occupied ele-
ments right of d are swapped one position to the
right. Occupied elements are marked with gray.
The home location of a key K is marked with h.
Its destination is marked with d.

the bidirectional linear probing. The algorithm searches
either up or down for a empty element. This direction
depends on the the value of the initial location of j (see
Figure 1). If this element is greater than the searched key,
the whole cluster is too much to the left, if the value is less
than the key, the cluster is too much to the right. To cor-
rect this, the algorithm will shift the elements one position
into the correct direction by swapping an empty element
into the correct location (such that the all elements stay
in order). The new K will then be inserted into this the
empty position.

Our algorithm is a variation of the original algorithm. The
original algorithm always probes right for a empty ele-
ment. To prevent an unbalanced table, it checks if the
values are not too far away from their home location. If
this is the case an extra swap step takes place which shifts
the whole cluster one position to the left. Our algorithm
is simpler and results from experiments shows that it is
comparable efficient.

We will now describe Algorithm 2. The algorithm inserts
an item into the table. It requires that the table is not
full. First create the hash of the key on line 2, Then check
if that location is empty at line 3. If this is the case in-
sert the key on that location. Otherwise, depending on
the value of the location probe left or write for an empty
location. If the empty location is found, check if it is in
the correct position. If not, swap it with it’s appropriate
neighbor until it is at the correct position(lines 9 to 11).
The final step is inserting the new key into the empty lo-
cation on line 18. This algorithm will create a table with
the property: ∀i : Ki < Ki+1. Since the elements can be
swapped beyond the array boundaries some extra breath-
ing space is needed at j < 0 and j > M − 1.

Suppose M = 10 and there are N = 8 keys:
145 293 297 458 553 526 841 931
The function hash() returns the first digit: hash(245) = 2.

Algorithm 2 Insertion of key K which assures the con-
dition for bidirectional linear probing

Require: table is not full
1: procedure insert(K) . insert key K
2: j ← hash(K)
3: if ¬table[j].occupied then
4: table[j]← K
5: return
6: if table[j] > K then
7: while table[j].occupied do
8: j ← j + 1

9: while table[j − 1] > K ∧ ¬table[j − 1].occupied
do

10: table[j]← table[j − 1]
11: j ← j − 1

12: else if table[j] < K then
13: while table[j].occupied do
14: j ← j − 1

15: while table[j + 1] < K ∧¬table[j + 1].occupied
do

16: table[j]← table[j + 1]
17: j ← j + 1

18: table[j]← K

Thus with a 3 digits key the hash function maps 1000
keys onto a table of size 10. The first element 145 has
a hash value of 1. The corresponding position T1 is free
and the value can be inserted there. The second value to
be inserted has a hash value of 2 and its corresponding
position T2 is also free in the table. The third value gets
a hash value of 2 and collides with the previously inserted
element. The algorithm compares the value of the home
location, which is 293 with the current key. The new key
is bigger so it probes to the left for an empty location.
This location is found at T0 and swapped into place at T2.
Now the final step is to insert 297 at location T2. The rest
of the values are inserted in a similar way.

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

145 293 297 0 458 526 553 0 841 931

2.3 A find-or-put Algorithm
Separate search and insert methods in a parallel environ-
ment are not easily composable. No duplicate items are
allowed in our hash table, however, with a separate search
and insert method this cannot easily be ensured. For ex-
ample: worker a searches for a key, does not find it and
inserts it. But between the return of the search function
en before the call to the insert function, another worker b
inserts the key. Now the table contains the element twice.
Therefore, we distilled a find-or-put algorithm from the
above algorithms which is shown in Algorithm 3.

3. PARALLEL FIND-OR-PUT ALGORITHM
In this section, we present the parallel find-or-put algo-
rithm which uses a locking strategy. The reason for locking
is ensuring specific right for the data at a time. This is im-
portant because it is very hard to make assumptions about
the state of the data if many workers can read and write
to the table at once. The easiest way of locking the data is
locking the whole table. However, this is not an efficient
method since only one worker at a time can access the
data. Therefore we use the method of region-based lock-
ing. This fine grained method involves locking a region
of the table which is kept as small as possible. Normal

Algorithm 3 Search for a key K. If the element is not in
the table, insert it.

Require: table is not full
1: procedure find-or-put(K)
2: j ← hash(K)
3: if ¬table[j].occupied then
4: table[j]← K
5: return INSERTED
6: if table[j] = K then
7: return FOUND
8: if table[j] < K then
9: while table[j].occupied ∧ table[j] < K do

10: j ← j − 1

11: if table[j] = K then return FOUND

12: j ← hash(K)
13: while table[j].occupied do
14: j ← j + 1

15: while table[j − 1].occupied ∧ table[j − 1] > K
do

16: table[j] = table[j − 1]
17: j ← j − 1

18: table[j]← K
19: return INSERTED
20: else
21: Same, only in the other direction

region-based locking systems use static boundaries, but
because of the variable clusters, we introduce a method
of dynamic-region locking. For the boundaries of a region
we choose the closest empty elements left and right to the
home location. Once a worker has obtained these locks,
no other worker can write to this region. For the locks
we use a bit field per bucket. This method has limited
memory overhead and does not require a context switch
like operating system locks such as mutexes.

To parallelize the algorithm we make use of several helper
functions. The function CAS as specified in Algorithm 4
updates an element to newval atomically if the testval is
equal to memory location. On most platforms the CAS
operation is implemented in hardware.

Algorithm 4 Specification of the atomic function CAS.

procedure CAS(memory location, testval, newval)
oldval← memory location
if memory location = testval then

memory location← newval

return oldval

The atomic functions try lock and unlock have the follow-
ing specifications: try lock requires an empty and unlocked
bucket and guarantees a locked element or otherwise fails.
try lock needs to be implemented with an atomic opera-
tion such as CAS. Unlock does not require anything but
ensures the element is unlocked after it returns.

The parallel find-or-put algorithm is given in Algorithm 5.
A worker starts with determining the home location h of
K. With the atomic CAS operation the worker tests if
the this location is still free, and if so, it inserts K. If
the CAS fails we can conclude that either the element is
locked or it is occupied. In the first case, the worker starts
over to try again later. In the second case, the worker
continues a search for K. Depending on the contents of
the home location, the search for K goes searching left or
right in the table. The function find-from determines
the correct location for key K. If, at this location K is

not found, the worker searches for the elements t left and
t right which are empty and as close as possible to h such
that t left < h < t right. When these elements are found
the worker tries to lock them. If these locks succeed the
algorithm is in its critical section CS at line 26. In its
critical section, this worker is the only one which has write
rights on the cluster between its t left and t right elements.
So, there is no other worker which can insert elements in
this cluster. Between the last check if K was in the table,
and the moment the algorithm entered its CS, another
worker could have inserted K. So there is a last check for
the existence of K in the table. If K is found, the worker
returns with a FOUND. Otherwise K has to be inserted.
It does this in the same way as the sequential find-or-put in
Algorithm 3. After the empty element is swapped in place,
K is inserted and the algorithm leaves its CS by unlocking
the boundaries at line 41 and returns with INSERTED.

4. CORRECTNESS PROOFS
In this section, we will prove the algorithm correct by re-
searching the safety properties: consistency and atomicity.
Using a proof with contradiction, we show that there can
be never two workers in their critical section working on
the same cluster in the hash table. With the prove we show
that the algorithm is free from deadlocks and starvation.

4.1 Consistency and Atomicity
The use of this type of hash table can be compared to a
database. Its most important safety properties are prop-
erties which are also important for databases: consistency
and atomicity. When multiple workers perform actions on
the hash table, we need the guarantee that the table is al-
ways is a consistent state, like there cannot be two of the
same elements in the table. Also, after a insert we need
the guarantee that the data is inserted correct. There can-
not be a partially inserted key. Therefore an insert needs
to be atomic.

Proof. If the home-location of a key K is empty, these
properties will follow from the atomic CAS operation on
line 11. For every other case we will proof that there
cannot be two workers in their CS working on the same
area at the same time.
The ’→’ operator is used to show a happens-before re-
lation between to actions[5]. For example, find(x) →
lock(table[x]) shows that first x has to be found before
its element can be locked. Furthermore, we distinguish
two workers Wi and Wj and their t left and t right loca-
tions which are li, ri, lj and rj . For the home-location
hash(K) we will use hi en hj .
We now explain the local ordering of a worker during
an insert. A worker x searches for its t left and t right
boundaries. After these are found, the worker tries to
lock them both, starting with t left. These locks take
place on lines 21 and 23. If both locks are acquired, the
worker is in it CS. Here a worker will occupy one of its
empty boundaries. This happens on one of the following
lines 33, 39 of 41. We describe these local orderings as
follows: find(lx) → find(rx) → lock(lx) → lock(rx) →
(occupy(lx)⊕ occupy(rx)).

Theorem 4.1. There cannot be two workers being in
their CS at the same time and work on the same cluster
such that li ≤ lj ≤ ri ∨ li ≤ rj ≤ ri ∨ (lj ≤ li ∧ rj ≥ ri).

We will prove theorem 4.1 using a contradiction. Without
loss of generality because of symmetry, we assume one
worker Wi to have entered the critical section first and
derive the following contradiction with Theorem 4.1:

Figure 2. Several clusters and empty positions.
The cluster with elements 8 to 10 is locked by
worker Wi. Location marked with ha to he po-
tential home locations for worker Wj.

Assumption 4.1. When worker Wi is already in its CS
and another worker Wj arrives in his CS then the follow-
ing holds: li ≤ lj ≤ ri ∨ li ≤ rj ≤ ri ∨ (lj ≤ li ∧ rj ≥ ri).

The steps for a worker to arrive in its CS are:
cas(hj)→ find(lj)→ find(rj)→ lock(lj)→ lock(rj).
The remaining step for worker i which is already in its CS
is: (occupy(li)⊕ occupy(ri))

To prove theorem 4.1 we will use the following lemmas:

Lemma 4.2. Between a t left and a t right there are no
empty elements.

Proof. The locations t left and t right are defined as
follows: t left is always the most closest empty element
to h such that t left < h. t right is always the most
closest empty element to h such that t right > h. Fur-
thermore, in algorithm 5 there does not exist an action
for element x which results in x.occupied⇒ ¬x.occupied.
Thus, we can conclude: ∀i : t left > i > t right ⇒
table[i].occupied)

Lemma 4.3. The possible values stated in Assumption 4.1
in combination with Algorithm 5 can be restricted to the
following cases: li = lj ∨ ri = lj ∨ li = rj ∨ ri = rj.

Proof. We will illustrate the cases of this proof with
Figure 2. It shows an array of elements which represents
the hash table. A cluster is an adjacent list of elements
marked with the color gray. Every cluster is separated by
an empty location marked with the color white. There are
several representative home-locations marked with ha to
he (e.g., choosing a different location within the same re-
gion leaves the results of the find() operations unaffected
for one schedule).
Worker Wi is in its CS and has locked the cluster with
boundaries li and ri. Wi is going to perform the step
(occupy(B) ⊕ occupy(C)). Worker Wj has yet to enter
its CS and is going to perform the the steps: cas(hj) →
find(lj)→ find(rj). Because of lemma 4.2 we know that
there are no empty buckets between lj and rj . We will now
show with some situations Sx for different home locations
for worker Wj and interleavings with Wi that lemma 4.3
holds. Other possible home locations which are not cov-
ered here can be derived in a similar way, and will hold
due to the symmetry of the table.
S1: Worker Wj has hj = ha. This location is occupied so
the cas(hj) fails. Then Wj performs the steps find(lj)→
find(rj). lj < 1 and rj = 3. Since always lj < rj < li
Assumption 4.1 does not hold, making lemma 4.3 trivially
true.
S2: Worker Wj has hj = hb. This location is unoccu-
pied and not locked, so the cas(hj) succeeds and the algo-
rithm returns never reaching the critical section, making
Lemma 4.3 vacuously true.
S3: Worker Wj has hj = hc. This location is occupied so
the cas(hj) fails. Then the step find(lj) results in lj = 3,

Algorithm 5 Concurrent bidirectional linear find-or-put algorithm

1: procedure find-from(K, j)
2: if table[j] > K then
3: while table[j].occupied ∧ table[j] > K do
4: j ← j − 1

5: else
6: while table[j].occupied ∧ table[j] < K do
7: j ← j + 1

8: return j

9: procedure find-or-put(K)
10: h← hash(K)
11: oldval← CAS(table[h],¬table[h].locked ∧ ¬table[h].occupied, K)
12: if ¬oldval.occupied ∧ ¬oldval.locked then
13: return INSERTED
14: else if oldval.locked then
15: return find-or-put(K)

16: d← find-from(K, h)
17: if table[d].occupied ∧ table[d] = K then
18: return FOUND
19: t left← largest index < h such that ¬table[t left].occupied
20: t right← smallest index > h such that ¬table[t right].occupied
21: if ¬try lock(table[t left]) then
22: return find-or-put(K)

23: if ¬try lock(table[t right]) then
24: unlock(table[t left])
25: return find-or-put(K)

26: d← find-from(K, h)
27: if table[d] = K then
28: unlock(table[t left])
29: unlock(table[t right])
30: return FOUND
31: if direction() = DOWN then
32: j ← t right
33: while table[j − 1].occupied ∧ table[j − 1] > K do
34: table[j]← table[j − 1]
35: j ← j − 1

36: else
37: j ← t left
38: while table[j + 1].occupied ∧ table[j + 1] < K do
39: table[j]← table[j + 1]
40: j ← j + 1

41: table[j] = K
42: unlock(table[t left])
43: unlock(table[t right])
44: return INSERTED

the result of find(rj) is dependent on the state of Wi.
If Wi has not already performed (occupy(7)⊕ occupy(11))
than find(rj) = 7, otherwise it depends if Wi has executed
occupy(7) or has executed occupy(11). In the former case,
find(rj) = 11 and in the later, find(rj) = 7. So, rj =
7 = li ∨ rj = 11 = ri.
S4: Worker Wj has hj = hd. The result of the cas(hj) now
depends on the state of Wi. If Wi has not performed any
steps, then cas(hj) restarts the algorithm. If Wi has per-
formed occupy(7) than Wj continues with the algorithm
and find(lj)→ find(rj) results in lj = 3, rj = 11 = ri. If
Wi has performed step occupy(11) then lj = 7 = li, rj =
15.
S5: Worker Wj has hj = he. Since he is occupied cas(hj)
fails and Wj continues with the find(lj) and find(rj).
The result depends on if Wi has executed (occupy(7) ⊕
occupy(11)). For the following interleavings, we get the
following results:
1: Wj : find(lj) → Wj : find(rj) → Wi : (occupy(7) ⊕
occupy(11))⇒ lj = 7, rj = 11 = ri

2: Wj : find(lj) → Wi : occupy(7) → Wj : find(rj) ⇒
lj = 7 = li, rj = 11 = ri

3: Wj : find(lj) → Wi : occupy(11) → Wj : find(rj) ⇒
lj = 7 = li, rj = 15
4: Wi : occupy(7) → Wj : find(lj) → Wj : find(rj) ⇒
lj = 3, rj = 11 = ri

5: Wi : occupy(11) → Wj : find(lj) → Wj : find(rj) ⇒
lj = 7 = li, rj = 15

Thus, for every interleaving, we have shown that in case
Assumption 4.1 holds, the following holds: li = lj ∨ ri =
lj ∨ li = rj ∨ ri = rj .

Using lemma 4.3 and knowing that worker Wi hash per-
formed lock(li)→ lock(ri), we can conclude that for worker
Wj always either line 21 or line 23 must fail. This is in
contradiction with our Assumption 4.1, so we have proved
mutual exclusion.
Because of the mutual exclusion we can state that, writes
are always executed exclusively within one region. Reads
may fail at line 17 because a write is in progress by an-
other worker, but in this case the algorithm will enter a
read/write-exclusive state for that region (lines 26 to 30).

4.2 Deadlock Freedom
When two workers start waiting on each other, a deadlock
situation occurs. There is no explicit existence of a busy
wait section in the algorithm, there are however points
where the algorithm may restart indefinitely, lines 15, 22
and 25. In all of the cases the algorithm restarts, it has
encountered a locked element. But since every worker al-
ways unlocks its own locked elements, the restart will never
result in a deadlock.

4.3 Starvation Freedom
When a worker always encounters a lock, and never can
get to work, we can say the worker suffers from starvation.
We conjecture that the algorithm always exhibits progress
given that a fair scheduler is used. Therefore, we can say
that this algorithm is safe from starvation.

5. EXPERIMENTS
To determine the scalability of the parallel algorithm as
showed in Algorithm 5, we implemented the algorithm
on the Linux operating system in the C language using
pthreads. The computer system is a 4 CPU AMD Opteron(tm)
Processor model 8356 (thus, 16 cores in total) with 64GB
of main memory. With the implementation we performed

Table 1. The amount of seconds for a certain
benchmark to complete.

(Sec) Fillrate
workers 50% 75% 90%

1 23.13 38.05 52.62
2 12.77 20.95 29.17
4 7.12 11.70 16.14
8 3.53 5.70 8.03
16 1.89 3.06 4.41

Figure 3. The speedup of the parallel algorithm
per fill rate, compared to base case with 1 worker.

!"!#

$"!#

%"!#

&"!#

'"!#

(!"!#

($"!#

(%"!#

(&"!#

(# $#)# %# *# &# +# '# ,# (!#((#($#()#(%#(*#(&#
!"
##
$%

"&

'()#*&

-.//#0123#*!4##

-.//#0123#+*4##

-.//#0123#,!4##

56781/#
9633:;6#

several experiments which consists of creating a table with
randomly generated values. The benchmarks, which the
results can be viewed in Table 5, involved inserting the
values by calling find-or-put and reading them several
times, by calling find-or-put. For the benchmarks we
used a hash table of size 226 and a read/write ratio of 1:2.
The experiments consisted of measuring the write and read
time for several fill rates and workers. For the base case
we take the amount of time, the benchmark takes for 1
worker to complete. Because of a lack of time, we did not
measure the sequential algorithm, but we hypothesize that
our parallel algorithm is not much slower. The speedup
for a benchmark with multiple workers is determined by
dividing the time of a benchmark by the amount of time
for the base case.

As is shown in Figure 3, the parallel algorithm scales very
well. We have achieved a maximum speedup of 12.4 with
16 workers with a fill rate of 75%. Due to this results we
suspect the hash table to show similar results when using
a 32 core machine. We did a quick comparison to the hash
table developed by Laarman et al. [6] which showed that
our table, in its current unoptimized form, is at least as
fast as their table.

6. FUTURE WORK
Since we only made a quick implementation of the algo-
rithm, it would be interesting to research if we can achieve
more speedup by optimizing the table. Furthermore, it
would be interesting to compare the performance of the
hash table to other concurrent hash tables like the one
from Laarman et al. [6] and Cliff Click [3].

The next phase would be researching which changes the al-
gorithm needs to fit in the Cleary algorithm. Reading and
writing at the same time is not possible with the Cleary
algorithm. This is because the information during a read
has to stay consistent, otherwise the algorithm does not
know where an element can be found. Thus, all the read

operations need to be performed exclusively from write
operations, hence we need read/write exclusion.

7. CONCLUSION
First, we have introduced a simplified version of the bidi-
rectional linear probing insert algorithm of Amble & Knuth.
In experiments this simplification, is shown to work as ef-
ficient as the original algorithm. Then we introduced a se-
quential find-or-put algorithm which we parallelized with
almost no memory overhead. We proved the algorithm
correct and made an implementation, which we bench-
marked. Experiments show that table scales well, and we
achieved a speedup of 12.4 with 16 cores. The develop-
ment of this algorithm is one step closer to a concurrent
compact Cleary table [2].

8. REFERENCES
[1] O. Amble and D. E. Knuth. Ordered hash tables. The

Computer Journal, 17(2):135–142, 1974.

[2] J. Cleary. Compact hash tables using bidirectional
linear probing. Computers, IEEE Transactions on,
C-33(9):828 –834, september 1984.

[3] C. Click. A lock-free hash table. Talk at JavaOne
2007, http://www.azulsystems.com/events/
javaone_2007/2007_LockFreeHash.pdf, 2007.

[4] J. Geldenhuys and A. Valmari. A nearly
memory-optimal data structure for sets and
mappings. In Proceedings of the 10th international
conference on Model checking software, SPIN’03,
pages 136–150, Berlin, Heidelberg, 2003.
Springer-Verlag.

[5] M. Herlihy and N. Shavit. The Art of Multiprocessor
Programming. Morgan Kaufmann, March 2008.

[6] A. Laarman, J. van de Pol, and M. Weber. Boosting
multi-core reachability performance with shared hash
tables. In N. Sharygina and R. Bloem, editors,
Proceedings of the 10th International Conference on
Formal Methods in Computer-Aided Design, Lugano,
Switzerland, USA, October 2010. IEEE Computer
Society.

