
Interaction between SPH Fluids and Dynamic
Particle-Based Objects using CUDA

Oğuz Meteer
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

o.meteer@student.utwente.nl

ABSTRACT
In this paper we present an algorithm, that makes it pos-
sible for fluid particles and particle-based objects to inter-
act with each other. We have also implemented Smoothed
Particle Hydrodynamics on a modern consumer based graph-
ics cards using NVIDIAR⃝ CUDAR⃝. We discuss about
the pitfalls of interaction between fluids and objects, and
present solutions to these pitfalls.

1. INTRODUCTION
Smoothed Particle Hydrodynamics (SPH) is a method for
solving fluid flows, and is often used in simulations. These
simulations vary from researching water floods [2], to sim-
ulating cosmological galaxy formations [17]. Since each
particle in SPH can simulated individually, it is a good
candidate to implement the SPH method on massively
parallel architectures like GPUs.

One interesting use of SPH, is the simulation of blood in
virtual surgery simulators [11]. These simulators play an
increasingly important role in training medical specialists
and students, and they aim to provide the user with an
environment that is as realistic as possible. The simulation
of blood and arteries is one of the factors that make a
simulator more realistic, but requires interaction between
fluids and objects. For example, arteries can expand and
shrink based upon the pressure of blood inside the artery.
To be able to simulate this, there are two requirements:
i) fluids need to be able to transfer forces to objects, and
ii) objects need to be dynamic so that they can deform,
depending on the applied forces of the fluids.

The goal of simulating blood is to visually train medical
students, so that they learn which actions they perform
can cause bleeding. A requirement to simulate visually re-
alistic blood is not to simulate SPH at very high rates, but
rather to simulate as many fluid particles as possible. Our
goal is twofold: i) to simulate complex fluids at at least
60Hz, as this is the refresh rate of most computer moni-
tors, and ii) to integrate it in an existing virtual surgery
platform called VICTARR⃝ 1.

Our contributions: We have implemented the SPHmethod

1The VICTARR⃝ platform is a development of Vrest Medical,
Institutenweg 38, NL - 7521 PK Enschede.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
15th Twente Student Conference on IT June 20th, 2011, Enschede, The
Netherlands.
Copyright 2011, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

in CUDA, and describe it in detail and explain certain ar-
chitectural characteristics that need to be kept in mind,
when implementing SPH in CUDA. We also describe an
algorithm we developed for the interaction between fluid
particles and particle-based objects. We also point out
several pitfalls, and discuss several solutions to solve these
pitfalls.

Overview: The next sections contain background infor-
mation and related work. Section 2 describes the Smoothed
Particle Hydrodynamics method, the interaction between
fluids and objects, and the usage of graphics hardware as
a highly parallel co-processor. Section 3 contains related
work and the advantages and disadvantages of our inter-
action algorithm.

In sections 5 to 7 we give details about the used data
structures, explain the SPH simulation steps, and the in-
teraction algorithm.

In section 8 we describe several pitfalls regarding the im-
plementation, the interaction between fluids and particle-
based objects, and also discuss about solutions to these
problems. Section 9 contains a test case, to test the speed
and stability of an implementation of our interaction al-
gorithm. In section 10 we present the results of our im-
plementation, and we give an estimation about the speed
of our interaction algorithm, and argue about the amount
of particles it could support while maintaining interactive
rates. The last section describes future work and concludes
the paper.

2. BACKGROUND
In this section we will give background information con-
cerning physics and implementation strategies. First we
will give a general short overview of fluid physics, which
comprise of formulas that will be solved by Smoothed Par-
ticles Hydrodynamics, described in section 2.1.2. These
formulas will be used to implement several CUDA kernels,
in sections 6 and 7.

Then we will give an overview of graphics processing unit
(GPU) architectures in section 2.3. Lastly, looking at the
architectural requirements of GPUs, we will describe im-
plementation strategies in section 2.4, which will combine
the information in previous sections.

2.1 Fluid physics
Modeling the behavior of complex physical phenomena
is something that is used often in simulations as well as
games. One such physical phenomenon are fluids, and to
simulate the motion of a fluid, several physical values like
density and pressure terms, must be calculated. These
physical values are then used to calculate the forces that
are applied to the fluid, thereby making it possible to cal-
culate the acceleration and new position of the fluid. Cal-

culation of these physical values are based on the governing
equations for incompressible fluids.

2.1.1 Governing Conservation Equations
Navier-Stokes equations describe the motion of fluids, and
when dealing with an incompressible flow of Newtonian
fluids, these equations can be simplified. The governing
equations for incompressible flow of Newtonian fluids are
the mass conservation equation and the momentum con-
servation equation:

Dρ

Dt
= 0 (1)

Dv

Dt
= −1

ρ
∇p+ µ∇2v + Fext (2)

where ρ is the density, v is the velocity, p is the pressure, µ
is the viscosity efficient and Fext is a summation of external
forces (like gravity). The term − 1

ρ
∇p is the acceleration

due to the pressure force, and the µ∇2v is the acceleration
due to the viscosity force.

There are two major approaches to simulating the motion
of fluids, which are the Eulerian and Lagrangian meth-
ods. Both methods solve the governing equations. Eu-
lerian methods are grid-based, and store physical values
in fixed positions in space, namely the points of the grid.
Lagrangian methods are particle-based and store physical
values in particles. Two well known Lagrangian methods
are the Moving Particle Semi-implicit (MPS) method [8]
and the Smoothed Particle Hydrodynamics method (SPH)
[12].

The Moving Particle Semi-implicit method is a well stud-
ied method that can solve incompressible flow, and is used
especially in the engineering field [16] [7]. Smoothed Par-
ticle Hydrodynamics can solve compressible flow, but can
also approximate solving incompressible flow, and is often
the used method in computer graphics. This is because
the complexity of SPH is lower than MPS [10] [15].

2.1.2 Smoothed Particle Hydrodynamics
The SPH method uses discretized elements called parti-
cles, in which physical values are stored, thus giving each
particle individual material properties. These particles ap-
proximate the domain of the fluid and move according to
the governing conservation equations described in section
2.1.1.

A physical value of a particle is dependent on the con-
tributions of neighbor particles. Therefore, to calculate a
physical value of a particle, the weighted sum of the phys-
ical values ϕj of neighbor particles j must be evaluated
and smoothed.

ϕ(x) =
∑
j

mj
ϕj

ρj
W (x− xj) (3)

where mj is the mass, ρj is the density, xj is the position of
particle j , and W is a smoothing kernel. Usually smooth-
ing kernels are defined to be zero outside a specific range.
If we want to calculate the density of a particle, equation
3 becomes

ρ(x) =
∑
j

mjW (x− xj) (4)

To calculate the pressure of a fluid, the following consti-
tutive equation is used

p = p0 + k(ρ− ρ0) (5)

where p0 is the rest pressure, k is a stiffness constant, and
ρ0 is the rest density.

In order to compute the momentum conservation equation,
the gradient and laplace operators need to be modeled.
These operators are used to compute the pressure force
Fpress and viscosity force Fvis on particles. These forces
are computed as

Fpress = −
∑
j

mj
pi + pj
2ρj

∇Wpress(rj − ri) (6)

Fvis = v
∑
j

mj
vj − vi

ρj
∇Wvis(rj − ri) (7)

We will use the same smoothing kernels that were used by
Müller et al. [10], and are modeled as

∇Wpress(r) =
45

πr6e
(re − |r|)3

r

|r| (8)

∇Wvis(r) =
45

πr6e
(re − |r|) (9)

for the pressure and viscosity forces. For other terms they
have used the poly6 kernel and is modeled as

W (r) =
315

64πr9e
(r2e − |r|2)3 (10)

2.2 Interaction with Objects
One particular application of Smoothed Particle Hydro-
dynamics is the simulation of blood in medical surgery
simulation, because it can increase realism and make such
simulations better learning tools. To achieve a high level
of realism (like blood flowing out of a damaged blood ves-
sel), interaction between blood and objects has to be im-
plemented. To the best of our knowledge, prior simula-
tors have all used non-particle-based geometry (triangles,
tetrahedra, etc.) to represent objects. This can make in-
teraction between fluids and objects harder, because col-
lision detection between particles (represented as spheres)
and, for instance, triangles, is more complex than between
spheres. Particles are sometimes used for static objects
like walls, but we could not find any application that used
dynamic, particle-based objects, in the sense that the ob-
jects can deform based upon fluid pressure.

From a performance perspective, using particles to repre-
sent objects is advantageous, because it can lead to faster
collision detection, but also makes transferring forces from
fluids to objects (and the other way around) easier, be-
cause the objects are also made of particles.

The downside to using particle-based objects is that a lot
of particles are needed to create detailed objects. This
is a major pitfall of using particle-based objects, because
when using particles that do no overlap each other, then
there are holes in between them. If fluid particles are small
enough, then they are to pass through those holes, which
is unwanted behavior and therefore not stable. So in order

to make an implementation stable (i.e. fluids do not pass
through a solid object), then this pitfall must be addressed
by using an algorithm.

2.3 GPGPU and CUDA
Graphics processing units (GPU) are microchips with a
highly parallel structure and are normally used to offload
graphics processing from the CPU. Through the years,
graphics processing units (GPU) have gotten faster and
the number of cores have increased. When GPUs evolved
into general-purpose architectures, more and more appli-
cations wanted to exploit the parallel nature of GPUs,
which is called General Purpose GPU (GPGPU) comput-
ing. The benefits are the potential speedup when paral-
lelizable algorithms are used and the price/performance
ratio when using consumer grade graphics cards. The
three biggest frameworks for GPGPU programming are
CUDA, DirectCompute R⃝ and OpenCL and are developed
by NVIDIA, MicrosoftR⃝ and the AppleR⃝ respectively. Though
we did not use another framework, the same implementa-
tion strategies also apply to DirectCompute and OpenCL.

In 2007, NVIDIA introduced CUDA, a parallel computing
architecture in the form of a C library, that makes it pos-
sible to use NVIDIA GPUs as general-purpose processors
that can run numerous fine-grain threads. With CUDA,
one or more programs, called CUDA kernels, are written
in an extension of the C programming language and can
then be executed in parallel with a single method call.

The NVIDIA GeForce 8800 GTX, introduced on Novem-
ber 8, 2006, is the first CUDA capable graphics card and
has 16 multiprocessors, each containing 8 SIMD cores for
a total of 128 CUDA cores, and has 768MiB of GDDR3
memory. On April 7, 2010, NVIDIA introduced their new
Fermi architecture, which added an L1 cache and more
SIMD cores to each multiprocessor. Today, the fastest
NVIDIA based graphics card is the Geforce 580 GTX,
which has 512 CUDA cores and up to 3072MiB of GDDR5
memory.

2.4 Implementation strategies
When writing applications for specific hardware architec-
tures, one must know the characteristics and limitations
of that architecture, in order to develop algorithms that
fit the architecture best. In the case of GPU architectures,
memory transfers are the best starting point for optimiza-
tions, because the main memory on graphics cards have
a relatively high latency. As a work-around, CUDA ca-
pable GPUs have several different types of memory, each
with their own use. One of those is shared memory, which
is small (48KiB on CUDA GPUs based on the Fermi archi-
tecture), resides on-chip, and is shared between all threads.
When accessed properly, it has as much as a hundred times
less latency [14] and much higher bandwidth. But since
shared memory is very small, it is often used as a user
controlled cache.

When using global memory, the memory accesses must be
coalesced whenever possible [14]. This is because global
memory access is done in blocks of up to 128 bytes, and
since uncoalesced memory accesses are unaligned, they will
waste bandwidth.

Because memory access latency on graphics cards is rela-
tively high compared, the best strategy is to have a high
instruction/memory ratio, i.e. do as much computation
and as little as possible memory transfers.

The SPH algorithm needs to access the physical values of
neighbor particles, in order to calculate the physical value
of the current particle. This process is bi-directional per

pair of neighbors, which means that grouping neighbor
particles together will lead to less random memory ac-
cesses, because particle data can fit in blocks of 128 bytes.
To group these particles, we will use a simple accelera-
tion structure in the form of a uniform grid, which will
be rebuilt every step of the simulation. There are other
structures, but the uniform grid is simple to implement
and has constant complexity because it is only dependent
on the number of particles.

The use of a uniform grid enables us the to use shared
memory in an efficient manner, which will lead to much
higher performance, because of the overlap of memory ac-
cess by neighbor particles. The transfer of forces between
fluid particles and object particles can also benefit from
the use of shared memory.

3. RELATED WORK
Smoothed Particle Hydrodynamics was originally devel-
oped to simulate astral bodies [9], but is also used for
simulating fluid flows. Müller et al. described a method
of using Smoothed Particle Hydrodynamics for interac-
tive medical surgery [11]. Their method, that runs on the
CPU, uses tetrahedral objects and supports up to 3,000
particles. The downside to their method is that it is re-
stricted to the CPU, therefore unable to exploit the many
processors on a modern GPU. This poses a limit on the
amount of particles that can be used, therefore limiting
the scale of a surgery, which can make it less realistic.

Harada et al. were the first to implement Smoothed Parti-
cle Hydrodynamics to run entirely on GPUs [6]. This was
possible because they succeeded in implementing neigh-
bor search that runs on the GPU, severely speeding up
the process of finding neighbor particles. Calculating the
pressure and density terms was done using shaders.

They also made an improvement to the boundary con-
dition [5], where they chose to use triangular meshes for
static objects. There are several advantages: i) fluids will
flow over the surface of the static objects smoothly be-
cause of the flat surface of triangles, ii) there are no holes
in the static objects compared to particle-based objects
and because of this, iii) building a mesh requires less tri-
angles than using particles to build the same mesh. This
is to make sure the mesh has no holes through which fluid
particles can flow through, as was pointed out in section
2.2.

The improvement that they made works well when build-
ing static meshes, but can be very slow when using those
meshes as dynamic objects that can change shape. That
is because calculating how the transferred energy from a
fluid particle effects the vertices of a triangle, is more com-
plex than simply transferring a force from one particle to
another particle.

These approaches all deal with non-particle-based objects,
where goal is to use particles because of the reasons men-
tioned section 2.2.

4. SYSTEM OVERVIEW
Figure 1 shows a detailed overview of our simulation sys-
tem, which consists of three parts: our particle engine, a
physics engine, responsible for particle-based objects, and
a graphics renderer, which in our case uses Microsoft’s
graphics API Direct3D 10.

4.1 Particle Engine
We have implemented the SPH method using CUDA and
integrated in a simple particle engine. The most impor-

Direct3D renderer
60Hz

video output

Particle engine
60Hz

!uid particle

position bu"er

object external

force bu"er

Physics engine

object surface

particle position bu"er

object surface

particle velocity bu"er

object particle

position bu"er

Figure 1. Overview of the simulation system. Our
particle engine and the Direct3D renderer run in
the same thread at 60Hz, whereas a physics engine,
responsible for objects, runs in its own thread.
Blocks that have two colors are double buffered
buffers to prevent threading issues. The black
dashed lines represent parts of the system that
need to implemented.

tant method in the engine is the update method, which
performs the first four simulation steps described in sec-
tion 6. The last step, which is the interaction algorithm
is not implemented due to time constraints. The particle
engine and the Direct3D renderer run in the same thread.

4.2 Direct3D Renderer
We have also implemented a simple Direct3D renderer,
that displays the fluid particles each frame. It can also
display the density and pressure values per particle, the
uniform grid, and the boundary particles. The most im-
portant method in the Direct3D renderer is the Render
method, which first calls the update method of the parti-
cle engine, and then displays the fluid particles. Because
the Direct3D renderer and the particle engine run in the
same thread, the fluid particle position buffer is not double
buffered, as there can be no threading issues.

4.3 Physics Engine
For the physics calculations of objects, any physics engine
can be used, as long as it supports applying user generated
external forces, just like our SPH method supports an ex-
ternal force (see equation 2). The external forces will be
provided by the interaction algorithm. For optimal per-
formance, the physics engine should not run on the same
GPU that our SPH implementation runs, but on a differ-
ent GPU. In our case, we use the physics engine of the
VICTARR⃝ platform.

5. DATA STRUCTURES
In this section we will explain the data structures used in
our implementation.

5.1 Particles

Position.X Position.Y Position.Z PADDING

 oat oat oat oat

POSITION

Velocity.X Velocity.Y Velocity.Z PADDING

 oat oat oat oat

VELOCITY

Density

Pressure

 oat

 oat

DENSITY

PRESSURE

Color

 oat

COLOR

Figure 2. Particle properties per particle

Particles consist of the following properties, which are
stored in global memory : position, velocity, mass, radius,
density, pressure, and the color property. These proper-
ties are all stored in their own array, which is called the
structure of arrays instead of packing the properties into
structures and placing them in one array (also called ar-
ray of structures). The reason for this is that during the
simulation steps, only a few properties are updated per
step.

For instance, in the second step of the simulation, the den-
sity of each particle is evaluated and the kernel responsible
for this only needs the position and the density of each par-
ticle. The graphics hardware can fetch up to 128 bytes of
memory per transfer, and if a structure with all proper-
ties would have to be fetched per particle, it would waste
bandwidth, whereas fetching only data that is needed, we
can achieve much higher efficiency.

Another optimization we use to achieve maximum band-
width is to pad the position and velocity arrays with one
extra float, so that they are 16 bytes per element (four
floats). This ensures that each element always starts at an
aligned address, which enables the graphics hardware to
fetch the elements efficiently and is called coalesced read-
ing.

The final optimization is the use of texture memory, where
the texturing hardware on the GPU is used to fetch data.
What makes using texture memory faster, is the fact that
texturing hardware on the GPU makes use of a texture
cache, where the data near the element that is sampled, is
also stored in cache. Because of cache hits, global memory
is less frequently used, therefore cutting down on band-
width usage.

Figure 2 shows the layout of the array elements that con-
tain particle properties.

5.2 Uniform Grid
To speed up finding neighbor particles, we use the simplest
acceleration structure, which is the uniform grid. There
are three reasons for choosing a uniform grid:

• It is a simple structure and easy to implement.

• The complexity of building a uniform grid is con-
stant, because the number of particles and grid cells
do not change during the simulation.

• There is an upper bound to the amount of particles
in a single grid cell (see figure 3). This limits the
amount of particles that need to be taken into con-
sideration when iterating over neighbor grid cells.

Figure 3. The upper bound of particles in a 3D
uniform grid cell is eight, when each particle is
placed on each corner of the grid cell. Pres-
sure forces make sure that the particles do no go
through each other.

Figure 4. A 2D uniform grid example with grid
cell and particle ids.

The particles properties are sorted by particle id, and the
goal of the uniform grid is to sort these properties by grid
cell id. When we insert the particles into the uniform
grid, we first calculate in which cell that particles is, then
calculate a hash for that cell (which is simply the linear
grid cell id). We then sort the position property array by
cell id by using the CUDPP library [1], and also create two
arrays called cellStart and cellEnd . These arrays contain
indices per cell id, that point to start and end position in
the sorted position array. Figure 4 shows an example of a
2D uniform grid with six particles and figure 5 shows the
memory layout of the uniform grid.

Finally we create another array that contains indices to
the original particle position array, so that we can write
evaluated density values as well as pressure and viscosity
forces to the index of the unsorted particle position array.
The reason we only sort the position property, is because
it performs better since we do not have to sort all particle
properties each step of the simulation.

5.3 Constants
Several constant parameters are used for the simulation,
and they are placed in so called constant memory, which
is optimized for scattering where multiple threads read

Figure 5. Uniform grid memory layout.

the same data. These parameters are divided into two
structures and are:

• Uniform grid parameters. Contains the size of the
grid, the dimensions of the grid (number of grid cells
per axis) and the number of cells.

• SPH parameters. Contains particle radius, particle
mass, smoothing radius, gravity force, rest density,
the stiffness constant, and the precalculated parts of
the smoothing kernels that are constant.

The data in these structures are precalculated and up-
dated once, at the beginning of the simulation. We have
chosen to keep the particle mass, radius and smoothing
radius constant, since we want to simulate a fluid where
all particles are more or less equal.

6. SPH SIMULATION STEPS
The simulation is performed by repeating the following
steps repeatedly:

1. Integrate particle properties. This means updat-
ing particle positions by applying pressure, viscosity,
gravity and external forces to the particles.

2. Build a uniform grid for quick neighbor lookup.

3. Evaluate new density and pressure values.

4. Calculate the pressure and viscosity forces.

5. Apply the interaction algorithm

These steps are explained in detail in the following sections
and pseudo-code is given where deemed useful. Constant
parameters in pseudo-code are written in uppercase. The
given algorithms are applied to each fluid particle in par-
allel.

6.1 Integration of Particle Properties
Integration of particle properties is the step where the cal-
culated forces are used to calculate the acceleration of
particles, and thereby updating their velocity and posi-
tion. Our CUDA kernels, described in algorithms 1 and 2

calculate the acceleration of particles (Dv
Dt

in equation 2),
and write these values to an array. After the acceleration
is calculated, the gravitational acceleration is added to it.

6.2 Building the Uniform Grid
The uniform grid is rebuilt every time step of the simula-
tion and consists of calculating the grid hash per particle
and sorting the particle position array by cell index (as
opposed to the array being sorted by particle index). This
is done in the same way a uniform grid is built in the par-
ticles sample of the NVIDIA GPU Computing SDK [3].

6.3 Density and Pressure Evaluation
Pseudo-code for evaluating the density and pressure val-
ues are given in algorithm 1. This algorithm solves both
equation 4 and 5 together, since the result of equation 4
can directly be used to calculate equation 5. By calculat-
ing both equations at once, we do not have to iterate over
the neighbor cells twice.

First the position of the particle is retrieved (line 1) and its
grid position is calculated by the helper method CalcGridPos
(line 2). Then all neighbor cell are iterated (lines 4-6).

The reason we iterate from -2 to 2 for each axis, is because
each cell in the uniform grid is twice the radius of a particle
(i.e. the size of a particle), and we have set the smoothing
radius constant to four times the particle radius. So in
order to find all particles within the smoothing radius, we
need to check five grid cells in each axis, hence iterating
from -2 to 2.

Then the position and hash of each of the neighbor cells are
calculated, using the helper method CalcGridHash (lines
7-8). The hash is then used to index the cellStart and
cellEnd arrays (lines 9-11), which index the sorted position
array (posArray). Then, for each of the particles in the
neighbor grid cells, the distance squared is calculated (line
14) and if the particles lie in the smoothing radius squared,
then densitySum is updated (lines 15-18). The index to
the unsorted particle property arrays is retrieved (line 25)
and finally the density and pressure are written to the
density and pressure arrays (densArray resp. presArray).

After the evaluation, the density and pressure arrays are
copied into 512x512 textures, so that the next step can use
the texturing hardware to retrieve the values outputted
by this step. The size of the textures can be adjusted to
the amount of particles that an implementation needs to
support. Due to the size we have chosen, our version can
support up to 262.144 particles.

6.4 Calculating Pressure and Viscosity Forces
Algorithm 2 describes the process of calculating the pres-
sure and viscosity forces (equations 6 and 7), thereby solv-
ing the − 1

ρ
∇p (pressure force) and µ∇2v (viscosity force)

terms of equation 2.

For the sake of brevity, we have replaced the neighbor
cell iteration code with a for loop that loops over all parti-
cles in the neighbor cells, from firstParticle to lastParticle.
Again, we calculate both equations 6 and 7 in the same
algorithm so that the neighbor particles do not have to
iterated twice.

First the position and velocity are retrieved (pos resp.
vel), as well as the index to the unsorted property ar-
rays (line 4). Then the texture index is calculated (line
5), since we use 2D textures and the index variable is an
index to a 1D linear array. The texture index is used to
retrieve the pressure (pres) for the current particle, by in-
dexing the density and pressure textures (densTex resp.

Algorithm 1 Density and pressure evaluation

Input: particleID , posArray , densArray , presArray ,
cellStartArray , cellEndArray , gridParticleID

1: pos ← float3 (posArray [particleID])
2: gridPos ← CalcGridPos(position)
3: densitySum ← 0
4: for z = −2→ 2 do
5: for y = −2→ 2 do
6: for x = −2→ 2 do
7: neighborGridPos ← gridPos + int3 (x, y, z)
8: gridHash ← CalcGridHash(neighborGridPos)
9: startIndex ← cellStartArray [gridHash]
10: if startIndex ̸= empty then
11: endIndex ← cellEndArray [gridHash]
12: for i = startIndex → endIndex do
13: neighborPos ← float3 (posArray [i])
14: distSqrd ← length(pos − neighborPos)2

15: if distSqrd ≤ SMOOTHINGRADIUS2

then
16: h2 r2 ← SMOOTHINGRADIUS2 −

distSrdq
17: densitySum ← densitySum + h2 r2 3

18: end if
19: end for
20: end if
21: end for
22: end for
23: end for
24: density ← densitySum ∗ PARTICLEMASS +

POLY6KERNEL
25: index ← gridParticleID [particleID]
Output: presArray [index] ← STIFFNESS ∗ (density −

RESTDENSITY)
Output: densArray [index]← density

Algorithm 2 Calculating pressure and viscosity forces

Input: particleID , posArray , velArray , presTex ,
densTex , gridParticleID , forceArray

1: pos ← float3 (posArray [particleID])
2: vel ← float3 (velArray [particleID])
3: gridPos ← CalcGridPos(position)
4: index ← gridParticleID [particleID]
5: texIndex ← int2 (index mod 512, index/512)
6: pres ← tex2D(presTex , texIndex .x, texIndex .y)
7: presSum ← float4 (0, 0, 0, 0)
8: viscSum ← float4 (0, 0, 0, 0)
9: for i = firstParticle → lastParticle do
10: neighborPos ← float3 (posArray [i])
11: relPos ← pos − neighborPos
12: dist ← length(relPos)
13: if dist ≤ SMOOTHINGRADIUS then
14: uID ← gridParticleID [i]
15: uTexID ← int2 (uID mod 512, uID/512)
16: nDens ← tex2D(densTex , uTexID .x, uTexID .y)
17: nPres ← tex2D(presTex , uTexID .x, uTexID .y)
18: sr dist ← SMOOTHINGRADIUS − dist
19: force ← ((pres + nPres)/(2 ∗ nDens)) ∗ (sr dist)3

20: presSum ← presSum + (relPos/dist)
21: viscSum ← viscSum + ((velArray [i] −

vel)/nDens) ∗ sr dist
22: end if
23: end for
Output: forceArray [index] ← (−presSum ∗

PRESSUREKERNEL + (DYNAMICVISCOSITY ∗
viscSum∗VISCOSITYKERNEL))∗PARTICLEMASS

presTex). Textures values are retrieved by sampling them
using the tex2D method (lines 6, 16 and 17). The first
parameter is the texture that needs to sampled and the
next two parameters are the x and y position. Textures
are always in the ranges 0.0 to 1.0, so the index retrieved
on line 4 is divided by 512, because that is the size of the
textures we use.

We then iterate over all particles in the neighbor grid
cells (line 9), and calculate the distance between the cur-
rent and neighbor particle (line 10-12). If the distance is
smaller than the smoothing radius, then we retrieve the
density and pressure of the neighbor particle by indexing
the respective textures (line 13-18) and calculate the pres-
sure and viscosity forces, according to equations 6 and 7
(lines 19-21). Finally the forces are written to an array
that contains the forces (forceArray).

7. INTERACTION ALGORITHM
The interaction between fluid particles and object parti-
cles is a continuous process of repeating the following four
steps:

1. Determine the surface particles of the fluid.

2. Retrieve the surface particles of the object(s).

3. Perform collision detection.

4. Calculate the forces that need to be applied to the
particles of both the fluid and the object(s). These
forces fall in the the external forces category that is
used in the integration step of the SPH simulation.

The first step and second step are obtaining the surface
particles for the fluid and object(s), since these are the
only particles that can have collision with each other, and
therefore also has a lower complexity. The third and fourth
steps are collision detection and calculating the forces that
need to be applied to the fluid and object particles. These
steps are explained in more detail in the following subsec-
tions.

7.1 Finding Surface Particles
To determine which particles are on the surface of fluid,
we use introduce a new property of a fluid particle, which
is the color property. Normally, this property is used to
calculate the surface tension of a fluid [13], but it can
also be used to detect the position of the surface of the
fluid, and find the normal vectors at the surface. This is
important for realistic rendering of the fluid. The color
property is a quantity that is either the value zero (not a
surface particle) or one (is a surface particle).

The following formula is used to calculate the smoothed
average color (also called the color field) at particle i :

Ci =
∑
j

mj

ρj
CjW (rj − ri) (11)

where Cj is the color property of particle j .

The gradient of the smoothed color field Ci, shows us
where the surface is, and is given as

∇Ci =
∑
j

mj

ρj
Cj∇W (rj − ri) (12)

We tag particle i as a surface particle by setting the color
property to one, when the magnitude of ∇Ci is greater
than a certain value.

7.2 Retrieving Object Surface Particles
Usually the rate at which the physics are updated is higher
than the display rate of the graphics, therefore the physics
engine for the objects and the SPH implementation for flu-
ids are going to run at different rates. Since the interaction
algorithm affects both fluids and objects, this means that
one engine (physics) has to wait for the other engine (SPH)
to finish the calculations, in order to continue. One way to
solve this problem is to use buffering, where one or more
buffers are used for input and output, and the buffer that
is updated can be used by the engine that needs it, while
the other engine outputs to a different buffer. In the case
of double buffering, two buffers are used and interchanged
each time step of the simulation.

Important is that a physics engine, responsible for the ob-
jects, only provides the surface particles of the objects,
since these are the only particles that can be affected by
collision detection. Two properties of surface particles
need to be provided by a physics engine: the position and
velocity. It also needs to provide a buffer to which the
forces, that will be exerted on the surface particles, will
be written by the SPH implementation.

7.3 Collision Detection
Detecting collisions can be solved by a couple of methods.
Two of them are providing a density value based on the
distance from a boundary, and performing basic sphere-
sphere collision.

Collision detection and force calculation between bound-
ary and fluid particles was done by Harada et al. [6].
Their method uses two pieces of data to estimate the con-
tribution of the wall particles to the density of the fluid
particles. The first piece of data is the output of a dis-
tance function, where the distance from a particle to the
wall is precalculated in each time step of the simulation,
and stored it in a 3D texture. The second piece of data is
a wall weight function, which is indexed by a texture co-
ordinate calculated by the distance function. The output
of the wall weight function is the density contribution of
the wall, which is added to the particle in the first step of
the SPH method.

In section 3 we pointed out that Harada et al. made an
improvement to the boundary condition [5], by using tri-
angles to define objects instead of particles. We do not
use this approach because of the use of triangles, since
triangle-sphere collision is more complex than sphere-sphere
collision. The latter is easily computed by taking the dis-
tance between two particles and subtracting both radii of
the particles. If the result is smaller than zero, then there
is collision.

We have to note that this simple form of collision detection
only works if the acceleration of particles is small enough
that a collision can be detected at each time step. If the
acceleration is too high, then between two time steps, a
particle moves so fast that it passes other particles, so that
a collision between them is not detected when it should be.

For several ways to solve this problem, see section 8.

7.4 Force Calculation
When a collision between two particles is detected, inter-
particle forces must be calculated. We use the discrete
element method to calculate these forces [4], which are the
repulsive force Frepulsive, modeled by a linear spring, a
damping force Fdamping, modeled by a dashpot, and a
shear force Fshear, which is proportional to the relative
tangential velocity vij,t. The equations for each force be-

tween particle i and j are:

Frepulsive = −kspring((prad,i + prad,j)− |rij |)
rij
|rij |

(13)

Fdamping = kdamping ∗ vij (14)

Fshear = kshear ∗ vij,t (15)

where vij,t is calculated as

vij,t = vij − (vij ·
rij
|rij |

)
rij
|rij |

(16)

In these equations, kspring is the spring coefficient, kdamping

is the damping coefficient, kshear is the shear coefficient,
prad,i and prad,j are the radius of particle i and j, rij is
the relative distance vector and vij is the relative velocity
vector. Since all particles are the same size in our case,
we multiply the particle radius with two. Pseudo-code
for a helper method that calculates these forces between
particle i and j is given in algorithm 3.

Algorithm 3 Calculating repulsive, damping and shear
forces
Input: posI , posJ , velI , velJ , forceArray
1: relPos ← posJ − posI
2: dist ← length(relPos)
3: diameter ← PARTICLERADIUS ∗ 2
4: force ← float3 (0, 0, 0)
5: if dist < diameter then
6: norm ← relPos/dist
7: relVel ← velJ − velI
8: relTanVel ← relVel − (dot(relVel ,norm) ∗ norm)
9: force ← −SPRINGCOEFFICIENT ∗ (diameter −

dist) ∗ norm
10: force ← force+DAMPINGCOEFFICIENT ∗ relVel
11: force ← force+SHEARCOEFFICIENT ∗relTanVel
12: end if
Output: force

8. PITFALLS AND SOLUTIONS
8.1 Calibration of simulation parameters
During the development of the SPH method in CUDA,
we have had problems with fluid stability. SPH has many
parameters that can be set (see 5.3), and they also require
that the uniform grid parameters have to be set correctly.
We found out that especially the rest density and stiffness
coefficient are very sensitive, and have yet to find correct
parameters for our implementation.

Another issue we have is correctly calculating the repulsive
forces when particles go outside the uniform grid, which
we believe is also a calibration issue. This causes all fluid
particles to gather at the bottom of the grid, filling all grid
cells at the bottom with more than the maximum allowed
of particles (see figure 3). As a result, a significant portion
of computation time is spent iterating neighbor grid cells.
We confirmed a significant decrease in computation time,
when we limited the amount of iterations per neighbor
grid cell to eight (see section 10 for results).

8.2 Fluids passing through objects
In section 2.2 we described a scenario where fluid particles
can go through the particles of an object. This can be

because the object particles are much larger than the fluid
particles, and thus have bigger holes between them, or
because the forces exerted on the object particles are great
enough to enlarge the distance between object particles so
that, again, the holes between them are large enough for
the fluid particles to go through.

To address the first problem, the size of the object particles
can be made the same size as the fluid particles, or even
smaller, so that the holes between them are smaller than
the size of a fluid particle. This solution of course does not
address the second problem, because objects can be made
from a material that can be stretched easily, and therefore
deform easily when a fluid exerts force on such an object.

One solution to the second problem is to use a different and
bigger radius, to create an influence sphere (see figure 6)
when calculating the repulsive, damping and shear forces
in equations 13, 14 and 15. We can then use the distance
between fluid and object particles, to multiply the kspring
term in equation 13 (see figure 7), with a distance function.
This distance function can be calculated for a range of
inputs, and the results can be written to constant memory
as an array. Then this array can be used to estimate the
result of the distance function, by using interpolation on
the results in the array.

As a fluid particle moves closer to an object particle, the
influence of the repulsive force will become larger, keeping
fluid particles at a distance. We have chosen an exponen-
tial distance function to multiply with the kspring term. As
can be seen in figure 7, when a fluid particle comes very
close to actually hitting the object particle, the additional
increase of the repulsive force becomes so large, that it will
simply bounce back.

Another solution is a variation on the solution given above,
and is dependant on the physics engine that is responsible
for simulating the objects. If the physics engine is capa-
ble of detecting which particles are cut (for example in
a physics engine that models springs between the parti-
cles), then the influence on the damping coefficient can be
disabled, because the artery is damaged.

The difference between these two solutions is that in the
first solution, the state of an object (whether is cut or
not) is implicitly described by the way the damping coef-
ficient is influenced, which can lead to a lot a less stable
simulations, because the influence has to be tweaked per
material of the object. The second solution does not suf-
fer from this flaw. Both solutions will have to perform
sphere-sphere collision detection per radius that is used,
which increases complexity, but since the collision detec-
tion complexity is very low, we do not expect this to be
the speed limiting factor in the simulation.

8.3 Collision Detection
In section 7.3 we stated that a simple sphere-sphere col-
lision detection, does not work properly if particle accel-
eration is too high. Two ways to solve this problem are
mentioned in this section.

Continuous collision detection is a method that, given two
points in time, can determine if there is a collision between
objects, and when. One algorithm to perform continuous
collision detection in parallel on GPUs has been developed
by Tang et al. [18]. Although their algorithm can not be
directly used to detect collision between spheres, it does
give us an indication that continuous collision detection
could be fast enough to achieve interactive rates.

Another approach is to limit the amount of acceleration
of particles. This can be done on a per-particle basis,

Figure 6. Front and side view of an interaction ex-
ample, using a different radius to calculate equa-
tions 13, 14 and 15. An object particle has a size
(grey sphere), but the influence sphere (dashed
sphere) is used in the interaction algorithm, when
a fluid particle (orange) collides with it.

distance

distance

function

kspring

Figure 7. Example of a distance function, which is
multiplied with the kspring term in equation 13, de-
pending on the distance between the fluid particle
(orange) and the influence sphere (dashed sphere).

but the simplest way is to define a new constant, which
is the maximum allowed amount of acceleration for all
particles in the simulation. The downside to this approach
is that this constant possibly has changed per simulation,
depending on other parameters of SPH and used objects.

9. TEST CASE
To test the interaction algorithm, a virtual artery made of
particles will be filled with the SPH fluid particles, vary-
ing the amount of particles for both the artery and the
fluid for each test. When a test is run, determining if the
interaction algorithm is stable is necessary (i.e. fluids do
not pass through the artery, unless it is torn open). One
way to test the stability is to completely fill the artery
with fluid particles, and squeeze one side of the artery,
which should push all fluid particles to the other side of
the artery, without flowing outside of it.

Also, the influence of the size of the influence sphere (see
section 8.2) on computation time, should be determined.
Increasing the influence sphere, means that a fluid particle
can collide with multiple object particles, and for each
of them, the repulsive, damping and shear forces have to
calculated. This increases the computation time.

10. RESULTS AND EXPECTATIONS
We have implemented the SPH method in CUDA version
4.0. In our application, a set amount of fluid particles are
dropped in a box, the same size as the uniform grid. We
ran two different tests with a different amount of particles
per test. The difference between the two tests is that in the
second test, we limited the amount of neighbor particles
per grid cell to eight, to get an indication of how fast our
implementation would be, if we had correct simulation and
SPH parameters. The result of these tests can be found
in tables 1 and 2.

Our test setup was a computer with an 3.4GHz IntelR⃝

CoreR⃝ i7-2600K CPU, a mainboard with an Intel P67
chipset, 8GB of ram, and an NVIDIA GeForce GTX 480
graphics card with 480 CUDA cores and 1.536MiB of mem-
ory.

Looking at our results, we can see the importance of cor-
rectly calibrated simulation parameters. When we limit
the amount of neighbor particles to eight (see figure 3),
we see that the simulation runs significantly faster, and
that even simulating fluids with 266.144 particles in real-
time, is possible.

Though we did not implement the interaction algorithm,
we can make a reasonable prediction about the speed of
a potential implementation. The particles sample in the
NVIDIA GPU Computing SDK [3], is a particle simula-
tion, where particle collisions are also performed by the
discrete element method method [4]. It can simulate 65,536
colliding particles at about 460 frames per second on a
GeForceR⃝ GTX 480 [3]. Though our algorithm is of higher
complexity because of the adjustment of the damping force,
which is not present in the particles sample, their sample
does show us that the collision detection and force calcu-
lation itself, can be run at a multitude of the speed we
would like to achieve.

Based on the results of our implementation and the par-
ticles sample, we expect that a complete implementation,
running on the GeForce GTX 480, can simulate up to
60.000 particles, while maintaining interactive rates of at
least 60Hz. We estimate this amount of particles, because
we showed that a correctly calibrated SPH implementa-
tion, simulating 65.536 particles, takes 11.4 milliseconds

Table 1. First test: no limit to the amount of
neighbor particles per grid cell. Computation
times are including rendering time.

Number of particles Time in milliseconds
4.096 3.2
10.000 9.1
16.386 14.7
65.536 166.7
100.000 330.3
266.144 998.0

Table 2. Second test: eight particles per neighbor
grid cell. Computation times are including render-
ing time.

Number of particles Time in milliseconds
4.096 1.5
10.000 2.3
16.386 3.5
65.536 11.4
100.000 16.9
266.144 41.7

to compute all SPH forces, and the particles sample takes
around 2.2 milliseconds. This adds up to a theoretical 13.6
milliseconds, which is 3 milliseconds less than our goal of
16.6 milliseconds for 60Hz.

Furthermore, we expect that the interaction algorithm is
stable. Since the algorithm only requires an array that
contains the position and velocity for each surface particle
of an object, we also expect it to be flexible and rela-
tively easy to integrate it within existing physics engines,
be written as a library that is easy to use. This can then be
used for medical surgery applications, as well as any other
application that needs interaction between SPH fluids and
dynamic, particle-based objects.

11. FUTURE WORK AND CONCLUSION
The first step is to correctly calibrate the SPH parameters,
since they are very important to create a stable simulation.
We have also shown that, when particles do not gather
together in a heap, and the upper limit of particles in a
grid cell is respected, that the simulation speed increases
significantly.

The next step is implement our interaction algorithm. It
can then be tested as described in section 9 to determine
the stability of the implementation and to measure the
speed of the interaction algorithm.

We have also shown that there is a good possibility that
up to 60.000 particles in total can be simulated at inter-
active rates of 60Hz, based on our results and the results
of NVIDIA in their particles sample [3].

12. ACKNOWLEDGEMENTS
The author would like to thank M.I.A. Stoelinga, MSc,
PhD, and M. Weber, MSc, PhD, for their valuable guid-
ance and support. The author would also like to thank
E.E. Kunst, MSc, PhD, and A.J.B. Sanders, BSc, at Vrest
Medical for allowing the integration of the SPH implemen-
tation within the VICTARR⃝ platform, and providing the
much needed and necessary resources for this research.

13. REFERENCES
[1] cudpp. cudpp - cuda data parallel primitives library,

5 2011.

[2] R. A. Dalrymple. Levee breaching with gpu-sphysics
code. In 4th SPHERIC Int. Workshop, pages
352–355, 2009.

[3] S. Green. Particle Simulation using CUDA. 2010.

[4] T. Harada. Real-time rigid body simulation on gpus.
In H. Nguyen, editor, GPU Gems 3, chapter 29.
Addison Wesley Professional, Aug. 2007.

[5] T. Harada, S. Koshizuka, and Y. Kawaguchi.
Improvement in the boundary conditions of
smoothed particle hydrodynamics. Computer
Graphics & Geometry, 9(3):2–15, Winter 2007.

[6] T. Harada, S. Koshizuka, and Y. Kawaguchi.
Smoothed particle hydrodynamics on gpus. pages
63–70, 2007.

[7] T. Harada, Y. Suzuki, S. Koshizuka, T. Arakawa,
and S. Shoji. Simulation of droplet generation in
micro flow using mps method. JSME International
Journal Series B Fluids and Thermal Engineering,
49(3):731–736, 2006.

[8] S. Koshizuka and Y. Oka. Moving-particle
semi-implicit method for fragmentation of
incompressible flow. Nuclear Science and
Engineering, 123:421Ű434, 1996.

[9] L. B. Lucy. A numerical approach to the testing of
the fission hypothesis. Astronomical Journal,
82:1013–1024, December 1977.

[10] M. Müller, D. Charypar, and M. Gross.
Particle-based fluid simulation for interactive
applications. In Proceedings of the 2003 ACM
SIGGRAPH/Eurographics symposium on Computer
animation, pages 154–159, 2003.

[11] M. Müller, S. Schirm, and M. Teschner. Interactive
blood simulation for virtual surgery based on
smoothed particle hydrodynamics. Technol. Health
Care, 12(1):25–31, 2004.

[12] J. J. Monaghan. Smoothed particle hydrodynamics.
Annual Review of Astronomy and Astrophysics,
30:543–574, 1992.

[13] J. P. Morris. Simulating surface tension with
smoothed particle hydrodynamics. International
Journal of Numerical Methods in Fluids, 33:333–353,
2000.

[14] NVIDIA. CUDA C Best Practices Guide 3.2. 2010.

[15] S. Premoze, T. Tasdizen, J. Bigler, A. Lefohn, and
R. T. Whitaker. Particle-based simulation of fluids,
2003.

[16] K. Shibata, S. Koshizuka, Y. Oka, and K. Tanizawa.
A three-dimensional numerical analysis code for
shipping water on deck using a particle method.
ASME Conference Proceedings,
2004(46911):959–964, 2004.

[17] G. Stinson, J. Bailin, H. Couchman, J. Wadsley,
S. Shen, C. Brook, and T. Quinn. Cosmological
galaxy formation simulations using sph. ArXiv
eprints, 000(April):16, 2010.

[18] M. Tang, D. Manocha, J. Lin, and R. Tong.
Collision-streams: Fast GPU-based collision
detection for deformable models. In I3D ’11:
Proceedings of the 2011 ACM SIGGRAPH
symposium on Interactive 3D Graphics and Games,
pages 63–70, 2011.

