
Specifying Concurrent Programs: a case study in JML
and Separation Logic

Martijn Roo
University of Twente

The Netherlands
m.j.roo@student.utwente.nl

ABSTRACT
This paper presents a case study for the verification of
concurrent programs. A model for a central printer server
was designed, implemented and annotated with a formal
specification in JML, extended with syntax for permission-
based separation logic. The specification is compatible
with the VerCors toolset which is currently being devel-
oped at the University of Twente. The goal of this research
has been to design and implement a shared data structure
with a formal specification that can be used to test future
concurrent program verifiers. The correctness of the pro-
gram is discussed in natural language and an outline for a
formal proof is given

Keywords
Program verification; Concurrency; Case study; VerCors

1. INTRODUCTION
Processors get increasingly more cores and software de-
velopers try to benefit from this by making more use of
concurrency in their programs. With the increase in use
of concurrency in software, the demand for verification
of concurrent programs increases. Most current verifi-
cation tools focus on verifying sequential programs and
they often lack the ability to verify concurrent programs.
In the past few years considerable advancement has been
made in the verification of concurrent programs resulting
in the development of verifiers such as Chalice and Ver-
iFast [11, 15]. One of the most important developments
is the use of separation logic to reason about concurrent
programs [13]. Permission-based separation logic uses the
concept that multiple threads can simultaneously have a
read permission for a shared memory location whereas if
one thread has a write permission for a shared location, no
other thread can hold a read or write permission for that
location. Permission-based separation logic is used in the
VerCors toolset [1].

At the time of writing, the VerCors toolset is being de-
veloped. This toolset builds upon the Chalice toolset and
it aims at verifying concurrent data structures, which are
an important part of concurrent programs. Since veri-
fication of concurrent programs and data structures us-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
14th Twente Student Conference on IT January 24st, 2014, Enschede,
The Netherlands.
Copyright 2014, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

ing permission-based separation logic is a relatively new
area where substantial development is being made, there
is demand for a case study in which a concurrent pro-
gram is formally specified using permission-based separa-
tion logic. Using this formal specification, this program
can later be verified using the VerCors toolset. Since the
VerCors toolset is still under development and is currently
not sufficiently developed to verify the concurrent program
presented in this paper, this formal verification is not part
of the research.

The research question answered by this paper:

How can a model of a central printer server be
formally specified?

This question is answered in this paper using a case study
of a printer server model. A printer server is a server to
which users can send print jobs from one or more comput-
ers and from which users can retrieve and print their print
jobs at one or more printers.

The main research question is divided into the following
four sub questions:

1. What requirements exist for a central printer server?

2. How can the requirements for a printer server be
expressed in a formal specification language?

3. How can a printer server be modeled?

4. Does the model respect the formal requirements for
a printer server?

Related work on verification concepts, verification tools
for sequential programs and verification tools for concur-
rent programs is presented in section 2. Section 3 gives the
requirements for the case study in general, section 4 states
the approach that was taken for this research and section
5 provides the requirements that were found for the sys-
tem presented in this paper specifically. Section 6 presents
the design of the developed program and in section 7 the
fulfillment of the requirements is discussed. Finally, sec-
tion 8 presents the conclusions of this paper and section 9
presents future work.

2. RELATED WORK
Substantial research has been done in the field of software
verification. Most currently available verification tools are
developed for verification of sequential programs. Verifiers
such as Key, ESC/Java, Spec# and KIV can be used to
prove non-trivial sequential programs correct [4, 5, 3, 12].

Over the past few years, focus in the development of pro-
gram verifiers has shifted towards verifying concurrent pro-
grams. Verifiers such as Chalice, VeriFast and the VerCors

toolset, which is currently being developed at the Univer-
sity of Twente, are aimed towards proving (parts of) con-
current programs.

Before going into the different concurrent verifiers, the
concepts that these verifiers use are discussed.

Rely-guarantee reasoning is a well-known method for
verifying concurrent programs. With rely-guarantee rea-
soning it can be specified that if certain properties hold
at one point some other properties can be guaranteed to
hold at a later point in the program. It has some im-
portant disadvantages however, such as the requirement
that the rely and guarantee conditions for a module need
to specify all shared resources even if some of those re-
sources are not used by that module. Another disadvan-
tage is the necessity for shared resources to be globally
known, which makes having dynamically allocated shared
resources rather difficult [9]. These disadvantages make
rely-guarantee reasoning too complicated to integrate di-
rectly in existing tools for sequential verification [1]. Ad-
vancements have been made to combine rely-guarantee
reasoning with separation logic in order to make it more
local in the specification of rely and guarantee conditions,
thus resolving the mentioned disadvantages [6].

Permission-based separation logic can also be used to
ensure the correctness of concurrent programs. Permission-
based separation logic is based on the concept that threads
can have a permission in the domain (0,100] on a location
at a given time. If a thread has a full permission for a
location, i.e. the value of the permission is 100, then it
has write-permission for that location. If a thread has a
partial permission for a location, i.e. a value in the do-
main (0,100), then it has read permission for that location
[1]. The sum of all the permissions for a location is always
equal to 100, which guarantees that when one thread has
a write permission for a shared location, no other thread
can hold a read or write permission for that location. This
also guarantees that multiple threads can simultaneously
have a read permission for a shared memory location as
long as their combined permissions do not exceed 100.

Recently, additions have been made to separation logic
that make it possible to specify a read permission on a
shared location without having to explicitly state a con-
crete number (between 0 and 100) as a value for that per-
mission [7].

An especially important part of separation logic is lock-
ing. The permissions that a lock protects are specified
with a special predicate named inv associated with that
lock. The predicate is defined by the client that uses the
lock and is sent to the lock class through a class parame-
ter. The inv predicate, and therefore the associated per-
missions can then be acquired through acquiring the lock.
These permissions are then released when the lock is re-
leased. An example of a specification that uses a lock is
given in Listing 1. Here the lock holds a write (and read)
permission for the resource variable.

In the example in Listing 1, the inv predicate is equal to
the full permission for resource. This predicate is associ-
ated with the lock on line 6. On line 7, with the special
commit command, the permissions are stored inside the
lock and therefore no longer belong to the current thread.

Listing 1: Lock specification

1 private Lock [] l o ck ;
2 private int r e s ou r c e ;
3 . . .
4 i n i t () {

5 /∗@ pred inv = Perm(resource , 100) ; @∗/
6 lock = new Lock/∗@<inv>@∗/ () ;
7 //@ lock . commit () ;
8 }

In Listing 2 the specification for a Lock class is shown.
The lock() method requires no permissions and returns
the permissions associated with the inv predicate [8]. The
unlock() method requires the permissions associated with
the inv predicate and returns no permissions at all. Through
these two methods, other classes can acquire the permis-
sions this lock protects and return them to the lock after
using them.

Listing 2: Lock specification

1 class Lock {
2 /∗ @requires t rue ;
3 ∗ @ensures inv ; ∗/
4 void l o ck () {}
5 /∗ @requires inv ;
6 ∗ @ensures t rue ; ∗/
7 void unlock () {}
8 }

In practice, ReentrantLocks are often used in Java pro-
grams. The specification of such locks differs somewhat
from the specification in Listing 2 because when the thread
holding a lock, locks on that acquired lock once more, it
should not get any additional permissions and similarly,
only the final unlocking should return the protected per-
missions to the lock. The exact difference in specification
between ReentrantLocks and simple Locks is beyond the
scope of this paper.

The Chalice verifier [11] uses a concept similar to per-
mission-based separation logic and a limited form of rely-
guarantee reasoning. Chalice can verify programs writ-
ten in its own programming language using Boogie inter-
nally. Boogie [2] was originally developed together with
the Spec# sequential verifier. Boogie is an intermediate
verification language which can be used to abstract from
different source languages [10].

VeriFast [15] can be used to verify concurrent Java pro-
grams. The method contracts used to annotate the Java
source files should be written in a form of separation logic
combined with inductive data type and fix-point defini-
tions, lemma functions and proof steps in order to use
VeriFast to verify the program.

The VerCors toolset [1] uses Chalice and Boogie in-
ternally. VerCors first converts the Java program and its
annotations into Chalice’s verification language and then
uses Chalice’s translation to Boogie to generate the proof
obligations. As annotation language JML is used, ex-
tended with syntax to express permission-based separation
logic contracts. This keeps the specified contract concise
and readable and since JML is a widely used specification
language, the time and effort required for learning how the
specification should be written is minimized.

The aim for the VerCors toolset is to make verification of
a larger set of shared data structures possible compared to
other concurrent verifiers. The VerCors toolset also aims
at a higher level of automation in writing the specification
than VeriFast because VeriFast requires a user to write
many intermediate assertions explicitly [1].

The discussed related work consists mostly of concurrent
verification tools and the concepts they adopt. This re-
search adds upon this by developing (part of) a reasonably

Figure 1: High-level design

complicated concurrent program that is formally specified,
which can be used by future concurrent verifiers to show
the working of that verifier.

3. CASE STUDY REQUIREMENTS
Some requirements had to be taken into account when de-
ciding on the kind of program and on the scale of the pro-
gram that has been designed, specified and implemented
for this research. This section will discuss those require-
ments, whereas the requirements for the specific program
itself are presented in section 5.

Since the program for this case study is to be used to test
concurrent verifiers in the future, the program ought to
be multi-threaded. During the development of these ver-
ifiers, small test programs are written by the researchers.
For this case study to have added value, it needs to use a
somewhat larger or more extensive program. Lastly, the
program for this case study should be as compatible as
possible with concurrent verifiers currently being devel-
oped.

A reasonably complex multi-threaded Java program speci-
fied with an extension of JML that is supported by the Ver-
Cors toolset, fulfills these requirements. A central printer
server has therefore been designed, specified (in extended
JML) and implemented (in Java). In the next section the
approach taken to obtain this program is described.

4. APPROACH
Figure 1 shows a very high level design of a central printer
server. The picture shows that zero or more computers can
send print jobs to a printer server from which zero or more
printers can then retrieve those print jobs to print them.
The printer server has one queue that holds the print jobs
after they are added and before they are retrieved. This
is where data races could happen and this is the focus of
this case study.

Java classes have been designed and implemented to model
a central printer server. These classes have been sup-
plemented with a formal contract expressed in the Java
Modeling Language (JML) compatible with the VerCors
toolset. The formal specification of the printer server
model has consequently been used to discuss how this con-
tract ensures the fulfillment of the general requirements of
a printer server.

The first step of the research is to formulate the require-
ments for the printer server. These are then used in the
design of the printer server program. Especially the data
structure that is used in the program has been selected
with the program’s requirements in mind since this is the

part of the program where most possibilities for interfer-
ence occur.

Simplicity has been an important factor in the design of
the printer server. The main idea has been to specify
a larger and more complex program with a shared data
structure that had not been specified before. The aim was
to refrain from designing and implementing an unnecessar-
ily complex program as this would complicate the formal
specification and the proving of (parts of) the program,
while simultaneously maintaining the possibility to gen-
eralize the simple classes and concepts to more complex
ones.

The program’s implementation is based on the program’s
specification which was formulated after the design had
been completed. The formal specification was amended
and supplemented when new insights occurred during the
implementation.

The presented approach answers sub-research questions 2
and 3, which respectively question how the requirements
for a printer server can be expressed formally and how a
printer server can be modeled.

The developed concurrent program with its formal specifi-
cation is expected to be usable to test concurrent verifica-
tion tools such as the VerCors tool when the development
of such tools has progressed sufficiently.

5. PRINTER SERVER REQUIREMENTS
The functional requirements for the printer server are pre-
sented below. The requirements are given in natural lan-
guage.

Sub-research question 1 asks what requirements exist for
a printer server. The requirements stated below answer
this question. The requirements are valid for any central
printer server and they are some of the most fundamental
requirements.

1. A user can only see his own print jobs.

2. A user can only print his own print jobs.

3. Print jobs cannot get lost.

4. It should not take too long for the user to be able to
see an added print job.

5. A user should be able to select which print job he
wants to be printed.

6. A print job cannot be printed more than once.

7. Once a print job is printed it should not be viewable
anymore.

8. The printer program should be data race-free.

9. The printer program should be deadlock-free.

These requirements influence design choices for the printer
server program.

6. PROGRAM DESIGN
A central printer server normally receives print jobs from
different computers, possibly from different users. Users
can retrieve their own print jobs at a number of printers
that are connected with the printer server. The possibili-
ties for interference depend on the choice of data structure
for storing the print jobs at the server.

Since different users should not be able to access each
other’s print jobs, the possibilities for interference can be
minimized by giving each user a distinct part of the printer

Figure 2: The printer server’s queue: an array of linked
lists

server’s queue. Different users are then enabled to access
the queue simultaneously without further synchronization.
Interference might still occur, typically when at approxi-
mately the same time: a user sends print jobs from multi-
ple computers, a user prints print jobs at multiple printers
or a user sends a print job and prints a print job. These
kinds of interference can then only occur in the part of the
queue belonging to one user.

From this analysis, it becomes clear that a lock should
protect at most one user’s part of the queue because the
user only needs access to his own print jobs and since no
other user needs access to his print jobs.

Locking every print job separately is possible and this
would enable the user to do the actions described above,
such as sending a print job to the queue and simultane-
ously printing one. This would however complicate the
specification and implementation of the printer server be-
cause more locks are needed in a less trivial way compared
to locking the whole user’s part of the queue. The cases
that would be enabled by more fine-grained locking can
be considered marginal. For example, a user would nor-
mally print his print jobs at one printer at a time, not
two and a user that would simultaneously add a print job
from his computer and print one at a printer would most
likely want to print the most recently added print job so he
would not mind waiting for that print job to be available.

Therefore, a locking strategy was chosen where locks pro-
tect at least and at most the part of the queue that belongs
to a specific user, a user queue.

A data structure similar to a hash table whereby locking
happens per row of the table, was found suitable. Each
row would then store the print jobs belonging to a specific
user. For simplicity, an array of linked lists is used as the
printer server’s queue as depicted in Figure 2. Each slot
in the array has a lock associated with it which holds all
permissions for the linked list at that position of the array.
In the figure, everything within the blue dashed rectangle
is protected by one lock.

A class diagram of the two classes designed for this case
study is given in Figure 3. The SimpleListNode class has
been implemented as a bare-bones class containing the
basic functionality necessary to represent a linked list.

Because each lock protects a complete row of the queue,
locks are specified and used in the PrinterServer class.
Methods in SimpleListNode that need permissions for one
or more attributes protected by a lock, require having per-
missions to the whole linked list before the method is en-
tered. They return these permissions to the calling class
after the method returns, in turn enabling PrinterServer

Figure 3: Class diagram of the central printer server

to return the permissions to the lock.

Every slot in the array that represents the printer server’s
queue is always associated with an initialized SimpleList-

Node. The first SimpleListNode of each user queue has
null as data and every following SimpleListNode contains
a print job. In the simple program presented here, print
jobs are represented through simple Strings, although this
could easily be extended to more complex classes.

In the printer server’s queue, it is assumed that each user
has a unique identification number (id). This number
is used as an index in the array representing the printer
server’s queue to find the linked list containing that user’s
print jobs. In a more realistic model, a hash of the user’s
id might be used as the index rather than the id itself. Be-
cause hashing the id first does not significantly change any
of the concepts of the program, it was deemed unnecessary
to include this in this case study.

Since all user queues are initialized beforehand, the max-
imum number of users is also set beforehand in the pre-
sented program. Adding and deleting user queues to allow
more flexibility in the number of users, would be a signifi-
cant change for the program’s design. However, this would
also add considerably more complexity without making
the program much more realistic since a predetermined
maximum number of users could suffice for many printer
servers as well.

In the array of locks in the PrinterServer class, the lock
at a certain index in that array protects the linked list at
that same index in the printer server’s queue. For example,
the lock at index 1 in the array of locks protects all fields
enclosed by the blue dashed rectangle in Figure 2.

7. REQUIREMENTS FULFILLMENT
In section 5 some requirements for a central printer server
have been presented. In this section the fulfillment of these
requirements will be discussed using the specification that
was written for the program. The fulfillment of some of the
stated requirements can be deduced from informal func-
tional specifications, whereas other requirements can be
shown to be fulfilled using formal specifications about per-
missions.

7.1 Fulfillment of requirements through in-
formal specification

Requirement 1 and 2 state that a user should only be able
to see and print his own print jobs. These requirements
are currently not fulfilled by the program since there is
no required authentication when retrieving a print job.
These requirements could be fulfilled by implementing an
authentication mechanism that uses a user’s id and a per-

sonal password to authenticate a user before granting ac-
cess to a user queue.

Requirement 3, which states that print jobs cannot get
lost, has to do with requirement 8 on data races because
print jobs could get lost through data races. However,
in the next subsection it is explained that the absence of
data races can be guaranteed. Furthermore, the method
add in SimpleLinkedList, which is stated in Listing 4,
is responsible for adding print jobs to the queue. Lines
7 through 10 of Listing 4 state that when this method
ends, the last element in the list indeed contains the added
print job, that the length of the user queue is increased by
one and that there now exists one more node containing
elementData as data, as compared to before the method
was entered.

The ensures given on lines 7 through 10 make use of the
model methods containsLast, size and count. These
model methods are specified in JML and they can only
be used in the specification, not in the Java code. The
model method containsLast(String) returns a boolean
depicting whether the last node contains the given string,
size returns the size of this linked list and count(String)

returns the number of occurrences of the given string.

Listing 3 shows that adding a print job starts with acquir-
ing a lock on a user queue. Listing 4 shows that after that
the end of the linked list is searched for recursively and a
new node is appended to the end with the new print job.
Lastly, the lock is freed as seen in Listing 3. As long as the
user does not send a lot of add, remove or retrieve com-
mands to his personal queue simultaneously, acquiring the
lock should not take a lot of time since no other user has
a reason to acquire this lock. The time it takes to add the
print job to the queue depends on the length of this user
queue. If it is not incredibly long, this simple operation
should be very quick. Lastly, unlocking takes very little
time. Therefore, in almost all cases a newly added print
job will be visible very soon after adding it which means
requirement 4 is satisfied.

The PrinterServer.retrievePrintJobs method allows a
user to retrieve all print jobs currently in a user queue.
The PrinterServer.removeFromQueue method can then
be used to remove a specific print job by giving the user’s
id and the print job that should be removed as parameters.
Together these methods can be used to select a specific
print job to print, thereby fulfilling requirement 5.

Requirement 6, a print job cannot be printed more than
once, and requirement 7, once a print job is printed it
should no longer be viewable, can be guaranteed as long
as the PrinterServer.retrievePrintJobs method is only
used to present the user the choice which print job he
wants to print. Then the PrinterServer.removeFromQueue
method can be used to print the print job whilst also
removing it from the queue, thus ensuring it cannot be
printed or viewed anymore.

Because the program uses locks, deadlock-freeness is a re-
quirement that should be considered. A thread does not
need to acquire more than one lock at a time, since it
does not need to modify multiple user queues simultane-
ously. Therefore, there is no possibility for deadlocks and
requirement 9 is fulfilled.

7.2 Fulfillment of requirements through for-
mal specification

The fulfillment of requirement 8 on data race-freeness is
ensured by formal specifications for all shared data struc-
tures in the program. As an example, the method add-

ToQueue in the PrinterServer class is given along with
its specification in Listing 3. Below, this method will be
analyzed in detail to show how a specification can be used
to give guarantees on the working of a program.

The full code of the implemented classes with their specifi-
cation can be found on the website of the Formal Methods
and Tools department of the University of Twente [14].

Listing 3: PrinterServer.addToQueue

1 /∗∗
2 ∗ Adds a PrintJob to the user ’ s queue .
3 ∗ @param pr intJob The added pr in t job .
4 ∗ @param id The ID o f the user .
5 ∗ @requires pr intJob != nu l l ∗∗ id>=0 ∗∗
6 ∗ id<queue . l ength ∗∗ queue [id] != nu l l ∗∗
7 ∗ Perm(id , p) ∗∗ Perm(l o ck s [id] , p) ∗∗
8 ∗ Perm(printJob , p) ;
9 ∗ @ensures queue [id] != nu l l ∗∗

10 ∗ Perm(l o ck s [id] , p) ;
11 ∗/
12 public void addToQueue (int id , S t r ing

pr intJob) {
13 l o ck s [id] . l o ck () ;
14 queue [id] . add (pr intJob) ;
15 l o ck s [id] . unlock () ;
16 }

Next, some specifications relevant for proving the addTo-

Queue method are given, followed by the proof outline of
that method.

7.2.1 Specification of addToQueue
The addToQueue method requires the given print job to
actually exist and it requires id to be a valid index in the
queue array. The latter requirement exists because in this
simple model, a user’s id is the place in the array where
that user’s personal print queue is stored. The method
also requires queue[id] to exist and it requires read per-
mission to id, locks[id] and printJob. These read per-
missions are expressed through writing Perm(attribute,

p), meaning that the thread requires permission p for at-
tribute. Here p stands for partial, meaning any permis-
sion between 0 and 100. The verification tool can decide
the exact number for the permission.

The addToQueue method needs read permission to id and
printJob in order to use these parameters in the method
body. It also needs read permission to locks[id] to be
able to call lock() on it.

Before going into locking, the call to the add method is dis-
cussed. The variable queue is an array of SimpleLinkedLists
and queue[id] therefore points to one such a SimpleLinkedList.
The method SimpleLinkedList.add which is called on line
14 of Listing 3, is provided in Listing 4.

Listing 4: SimpleLinkedList.add

1 /∗∗
2 ∗ Adds given data to end o f the l i s t .
3 ∗ @param elementData The added data .
4 ∗ @requires Perm(elementData , p) ∗∗
5 ∗ elementData != nu l l ∗∗ nodeState () ;
6 ∗ @ensures nodeState () ∗∗
7 ∗ conta insLas t (elementData) ∗∗
8 ∗ s i z e () == \ o ld (s i z e ())+1 ∗∗
9 ∗ count (elementData) ==

10 ∗ (\ o ld (count (elementData))+1) ;
11 ∗/
12 public void add (St r ing elementData) {
13 i f (next == null) {
14 next = new SimpleListNode (elementData) ;
15 } else {

16 next . add (elementData) ;
17 }
18 }

The method add requires the data for the element that
will be added to exist, it requires read permission to it
and it requires to have all the permissions included in the
nodeState predicate, which is defined in the class Simple-
ListNode. A predicate can be seen as the JML equivalent
of a function and the nodeState predicate is provided in
Listing 5. The predicate includes read and write permis-
sion for the data attribute, for the next attribute and if a
next node exists, it requires the same permissions for that
next node resulting in a recursive call to nodeState. Thus,
nodeState includes read and write permission to the data

and next attributes of this node and all nodes following
this node until the end of this linked list.

Listing 5: The SimpleListNode.nodeState predicate

1 /∗@
2 ∗ pub l i c r e s ou r c e nodeState () =
3 ∗ Perm(data , 100) ∗∗ Perm(next , 100) ∗∗
4 ∗ ((next != nu l l) −∗ next . nodeState ()) ;
5 @∗/

The add method in Listing 4 requires more permissions
than the addToQueue method in Listing 3. Therefore, the
additional permissions have to be obtained inside the add-
ToQueue method before it can call queue[id].add. These
additional permissions are obtained through locking. On
line 13 of Listing 3, locks[id].lock() is called. Through
this call, the permissions protected by that lock are ac-
quired. In section 2 about Related Work, in the part about
permission-based separation logic, the concept of locking
is explained.

Listing 6 provides the state predicate which is the predi-
cate that is associated with each of the locks in the array
of locks in the PrinterServer class. The lock at index i of
this array is associated with state(i). Thus the lock at
index i protects the permission to read and write queue[i]
and if queue[i] exists, it protects the permissions associ-
ated with the nodeState predicate in queue[i] too.

Listing 6: The PrinterServer.state predicate

1 /∗@
2 ∗ pub l i c r e s ou r c e s t a t e (i n t i) =
3 ∗ Perm(queue [i] , 1 0 0) ∗∗
4 ∗ ((queue [i] != nu l l)−∗queue [i] . nodeState ()) ;
5 @∗/
6 . . .
7 for (int i = 0 ; i < queue . l ength ; i++) {
8 queue [i] = new SimpleListNode (null) ;
9 l o ck s [i] = new ReentrantLock /∗@<s t a t e (i)>@

∗/ () ;
10 //@ lo ck s [i] . commit () ;
11 }

7.2.2 Proof outline
To prove the addToQueue method correct, the require-
ments for the add method can be assumed given and the
method can then be analyzed line by line to show that af-
ter the method the ensured statements hold. The outline
for such a proof is provided in Listing 7.

Since the requirement that id is a valid index in the queue

array and the requirement that queue[id] exists are less
interesting, they are left out of the proof outline for im-
proved readability. Furthermore, coloring is used for more

clarity. The lines with executable Java code are in black,
the lines with commands clarifying the actions that are
performed on the permission statements are in green, state-
ments that are newly added are in red (this happens through
locking, after the return of a called method or after fold-
ing/unfolding predicates) and statements in bold are rele-
vant for the next line. All other statements are in gray.

In Listing 7 the actions performed on the permission state-
ments (stated in green) each have a different meaning.
‘Reordering’ means that the statements are ordered differ-
ently. This is stated explicitly to avoid confusion. ‘Unfold’
means that a predicate is being unfolded, thus replacing
the left side of a predicate definition with the right side.
‘Fold’ has the opposite meaning and during folding the
right side of a predicate definition is replaced by its left
side. Lastly, ‘Weakening’ depicts the removal of one or
more statements, thereby lessening the permissions stated
in the proof outline. Weakening is applied in the given
proof outline when a permission is irrelevant for obtain-
ing the intended result (the ensured permission statements
after the method).

Listing 7: Proof outline for PrinterServer.addToQueue

method.

1 { pr intJob !=null ∗∗ Perm(id , p) ∗∗ Perm(l o ck s [
id] , p) ∗∗ Perm(printJob , p) }

2 l o ck s [id] . l o ck () ;
3 { pr intJob !=null ∗∗ Perm(id , p) ∗∗ Perm(l o ck s [

id] , p) ∗∗ Perm(printJob , p) ∗∗ s t a t e (id) }
4 (Unfo ld)
5 {Perm(printJob , p) ∗∗ pr intJob !=null ∗∗ Perm(

id , p) ∗∗ Perm(l o ck s [id] , p) ∗∗ Perm(queue [
id] , 1 0 0) ∗∗ ((queue [id] != nu l l) −∗ queue [
id] . nodeState ()) }

6 (queue [i d] != n u l l is true)
7 {Perm(printJob , p) ∗∗ pr intJob !=null ∗∗ Perm(

id , p) ∗∗ Perm(l o ck s [id] , p) ∗∗ Perm(queue [
id] , 1 0 0) ∗∗ queue [id] . nodeState () }

8 (Reo rd e r i ng)
9 {Perm(printJob ,p) ∗∗ printJob!=null ∗∗ queue [

id] . nodeState() ∗∗ Perm(queue [id] , 1 0 0) ∗∗
Perm(id , p) ∗∗ Perm(l o ck s [id] , p) }

10 queue [id] . add (pr intJob) ;
11 {queue [id] . nodeState() ∗∗ Perm(queue [id] ,100)

∗∗ Perm(id , p) ∗∗ Perm(l o ck s [id] , p) }
12 (Fo ld)
13 { s t a t e () ∗∗ Perm(id , p) ∗∗ Perm(l o ck s [id] , p) }
14 l o ck s [id] . unlock () ;
15 {Perm(id , p) ∗∗ Perm(l o ck s [id] , p) }
16 (Weakening})
17 {Perm(l o ck s [id] , p) }

The statements printed in bold on line 9 of Listing 7
are the requirements for the SimpleListNode.add method.
The statement in red on line 11 are the statements ensured
by this method. Assuming that add complies with its con-
tract, these permissions hold after the method returns.

Listing 7 clearly starts with the preconditions of the add-

ToQueue method and it ends with the postconditions of
that method. Therefore, addToQueue is correct.

An automated verifier could prove every method this way,
whilst also checking that methods only ever read from or
write to attributes for which they have the applicable per-
missions. The verifier can then guarantee that the pro-
gram is data race free.

8. CONCLUSION
This paper has shown which requirements exist for a cen-
tral printer server, it has discussed that these can be ex-
pressed in a formal specification language such as an ex-

tended version of the Java Modeling Language and it has
explained how a Java program modeling a central printer
server has been designed, specified and implemented. Fi-
nally, this paper has also presented the outline of a proof
showing that the program complies with the specification
given for it.

The aim of this research has been to develop a program
that can be verified by concurrent verifiers in the future,
specifically by the VerCors toolset.

The full code of the implemented classes with their specifi-
cation can be found on the website of the Formal Methods
and Tools department of the University of Twente [14].

9. FUTURE WORK
In this case study, a significantly larger concurrent pro-
gram to test concurrent verifiers with, has been presented.
However, future research in this area could discover more
specific requirements for programs that can be used for
testing concurrent verifiers.

Research could be done on the state of different existing
concurrent verifiers to determine their strengths and weak-
nesses. The results thereof could then be used to improve
and extend these verifiers or to develop new verifiers.

10. REFERENCES
[1] A. Amighi, S. Blom, M. Huisman, and

M. Zaharieva-Stojanovski. The VerCors Project:
Setting Up Basecamp. In Sixth Workshop
Programming Languages meets Program
Verification, PLPV 2012, pages 71–82, New York,
Jan. 2012. ACM.

[2] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs,
and K. R. M. Leino. Boogie: A modular reusable
verifier for object-oriented programs. In Formal
methods for Components and Objects, pages
364–387. Springer, 2006.

[3] M. Barnett, K. R. M. Leino, and W. Schulte. The
Spec# programming system: An overview. In
Construction and analysis of safe, secure, and
interoperable smart devices, pages 49–69. Springer,
2005.

[4] B. Beckert, R. Hähnle, and P. H. Schmitt.
Verification of object-oriented software: The KeY
approach. Springer-Verlag, 2007.

[5] D. R. Cok and J. R. Kiniry. Esc/Java2: Uniting
Esc/Java and JML. In Construction and Analysis of
Safe, Secure, and Interoperable Smart Devices, pages
108–128. Springer, 2005.

[6] X. Feng. Local rely-guarantee reasoning. In
Conference Record of the Annual ACM Symposium
on Principles of Programming Languages, number
October in 36th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming
Languages, POPL’09, pages 315–327, Toyota
Technological Institute, Chicago, IL 60637, United
States, 2009.

[7] S. Heule, K. R. M. Leino, P. Müller, and A. J.
Summers. Fractional permissions without the
fractions. Proceedings of the 13th Workshop on
Formal Techniues for Java-Like Programs - FTfJP
’11, pages 1–6, 2011.

[8] D. Hutchison and J. C. Mitchell. Programming
Languages and Systems. pages 171–186, Bangalore,
India, 2008. Springer.

[9] C. B. Jones. Tentative Steps Toward a Development
Method for Interfering Programs.

(October):596–619, 1983.

[10] K. R. M. Leino. This is Boogie 2. Manuscript
KRML, 178(June), 2008.

[11] K. R. M. Leino, P. Müller, and J. Smans.
Verification of Concurrent Programs with Chalice.
In Proceedings of the 11th international conference
on Verification, Model Checking, and Abstract
Interpretation, VMCAI’10, Berlin, Heidelberg, 2010.
Springer-Verlag.

[12] W. Reif, G. Schellhorn, K. Stenzel, and M. Balser.
Structured specifications and interactive proofs with
KIV. In Automated deduction — a basis for
applications, pages 13–39. Springer, 1998.

[13] J. Reynolds. Separation logic: A logic for shared
mutable data structures. In Logic in Computer
Science, 2002. Proceedings. 17th Annual IEEE
Symposium, volume 1, pages 55–74. IEEE, IEEE
Comput. Soc, 2002.

[14] M. Roo. Full code and specification for a printer
server case study. http:
//fmt.ewi.utwente.nl/education/bachelor/144,
January 2014.

[15] J. Smans, B. Jacobs, and F. Piessens. Verifying Java
programs with VeriFast. Aliasing in Object-oriented
Programming, (Section 2):1–18, 2012.

http://fmt.ewi.utwente.nl/education/bachelor/144
http://fmt.ewi.utwente.nl/education/bachelor/144

	Introduction
	Related Work
	Case Study Requirements
	Approach
	Printer Server Requirements
	Program Design
	Requirements Fulfillment
	Fulfillment of requirements through informal specification
	Fulfillment of requirements through formal specification
	Specification of addToQueue
	Proof outline

	Conclusion
	Future Work
	References

