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Chapter 1

Introduction

1.1 Checking correctness of software

It is important to know that a large software project functions according to
its specification. It must be free of errors and unwanted behaviour. Designing
and programming a large system however is difficult and error-prone.

To prevent or find errors in programs several techniques are available. A
good and clear specification and design to start with can already improve the
program. During or after programming code analysis, testing and verification
can find (potential) problems in the program. Each of these techniques has
its own advantages and disadvantages.

Code analysis is automatic static analysis on the source code of a program.
Code analysis can be performed by the compiler or an external tool. These
tools can, depending on the programming language, include type guessing,
detection of undeclared or unused methods and fields, duplicate code detec-
tion, and complexity analysis. Code analysis is relatively quick and easy but
also superficial. It is solely based on the programming code itself and not on
the intended behaviour.

Testing is performed by actually executing the code and comparing its
result with the expected behaviour. Testing can focus on single methods
(unit tests), larger components or the system as a whole. Test cases describe
the input for the method or program and the expected output. Tests can be
executed either manually or automatically. Testing is limited to predefined
test cases and cannot detect errors in unexpected situations.

Verification is based on a formal description of the program. Such a
description must be made for each method and class that is being verified.
This formal description can be used by the programmer as specification and
by tools to check if the program respects its description. Tools can use both
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run-time checking as well as static checking.
Because the description of methods uses a formal language, multiple in-

terpretations are prevented. By using static checking, all possible code paths
are checked. Downsides include the extra time and knowledge needed to write
the formal specifications. Formal verification is still an active research area
and is not available for all programming languages and program structures.

Ensuring correctness of concurrent and distributed programs is especially
difficult as the number of possible traces grows exponentially with the number
of concurrent processes (threads) and the interleaving of processes is non-
deterministic by nature.

In the last years several techniques to verify concurrent have been devel-
oped, for example in the VerCors project. In this study we will research the
possibility to use those techniques for verification of distributed programs.
We will focus on two styles of distributed programs, namely message passing
and active object programs.

1.2 Message passing

Message passing is a general approach for communication between concurrent
or distributed actors. Actors can send messages to a queue, and another actor
(or multiple actors) can read from the queue.

Multiple implementations exist, both programming language specific and
language independent. Some queues guarantee lossless and in-order delivery,
others do not.

In general, a send operation takes a queue identifier and a message as
parameters. The receive operation takes a queue identifier as parameter and
returns a message that was sent to the queue. There are multiple variants of
the send and receive operations, both blocking (synchronous) or non-blocking
(e.g. buffering).

Message passing is an one-way communication protocol. The sender is
not notified what the result is of any actions taken by the receiver. Two-way
communication can be build by using a second queue for returning messages.

1.3 Active objects

Active objects are a special type of objects. Methods invoked on an active
object are not executed in the current thread, but in a separate thread [16],
possibly on a remote machine. An active object can have a worker thread
executing each method sequentially or start a new thread for each invoked
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method. These methods could also return a value, allowing for two-way
communication. After invocation, the caller can continue executing code, or
wait for the callee to finish and collect the return value.

One could consider Remote Procedure Calls and even web services as
variants on active objects. RPC services and web services (almost) solely
act when there is an incoming call/request and send a response based on the
request and their own data.

1.4 Research question

The goal of this research is to create and verify an implementation of active
objects using MPI and VerCors.

This project develops a method for verification of active object programs
using the existing VerCors tool. Also an implementation of active objects
using MPI is developed.

The research question answered in this report is:

To what extent can an active object
implementation with MPI be verified?

This question is divided in several sub-questions:

1. How can active objects be described and verified using permission-
based separation logic?

2. How can active objects be implemented using MPI?

3. Can the active objects implementation in MPI be verified?

4. Can an example program be verified using the developed techniques?

The first question is discussed in chapter 3. The second question in 4.
The third question in 5. The fourth question and the main question are
answered in the conclusion in chapter 6.
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Chapter 2

Background

To start, this chapter first gives an overview of techniques existing for the
verification of distributed systems.

A lot of research on concurrent and distributed processes has already
been done. In 1978 communicating sequential processes have been developed
to reason about general parallel processes (section 2.1). To reason about
concurrent programs at source code level, permission-based separation logic
has been developed (section 2.2).

Starting in February 2011 the FMT group at the University of Twente de-
veloped a verification technique combining permission-based separation logic
with histories to allow modular verification of concurrent programs (section
2.3). They also developed the VerCors toolset to automate verification of
concurrent programs using permission-based separation logic and histories
(section 2.4).

Jinjiang Lei et al. developed a techniques for verification of message pass-
ing programs (section 2.5 and 2.6).

Also section 2.7 gives an overview of the Message Passing Interface spec-
ification and implementations.

2.1 Communicating sequential processes

Communicating sequential programs (CSPs) were developed as a program-
ming language by Hoare [12] but has been generalized into a formal language
or process algebra for describing concurrency and non-determinism [29].

This formal language is based on events and processes. The syntax has
various features for describing these processes. A process in CSP is essentially
a sequence of events. Parallelism of events can be denoted by a special syntax.

One of the syntax elements in CSP is the guarded alternative. A simple
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guard is written (a → P |b → Q). This indicates that process P is executed
if event a is matched and process Q is executed if event b is matched. When
both events can be matched, one of the two process will be executed.

This syntax can be extended to a set of events with the notation ?x :
A→ P (x). This indicates an event of set A which is then bound to variable
x, followed by the process P with parameter x.

Also a notation of channels is introduced. Channels can be seen as just
a message containing a channel name, a dot, and than a value. A special
syntax is introduced to make the channels easier to use: c?x : T → P (x).
This indicates a message from channel c with type T . If any type for x is
allowed, c?x→ P (x) is also used. For symmetry the syntax c!x is introduced
which indicates a message x being sent over the channel c. This however is
equal to c.x.

We can use this notation for example to create a buffer.
An endless empty buffer B∞

<> is a simple process, only an element x can
be added with the incoming event left?x : T :

B∞
<> = left?x : T → B∞

<x>

A buffer Bsˆ<y> with a sequence s followed by y has two choices: either
an element x is added with the incoming event left?x : T or the element y is
removed from the buffer with the outgoing event right !y:

B∞
sˆ<y> = (left?x : T → B∞

<x>ˆsˆ<y>|right !y → B∞
s )

Guarded alternatives can be generalized into the external choice operator
�. This is a binary operator which operates on two processes. It goes to the
process of which the first event in the process is available.

With P � Q, if only events in P are enabled this goes to P , if only events
in Q are enabled this goes to Q. And if events in both P and Q are enabled
then either P or Q will be executed.

The external choice operator is a replacement for the guarded choice
operator in all cases. It also allows to specify more processes then are possible
with only the guarded choice operator.

In addition to the external choice operator a non-deterministic choice or
internal choice operator is introduced. This is the operator u. The difference
with the external choice is the choice for which of the two subprocesses is
executed is made by the current process instead of depending on external
events.

So the process P uQ means either process P or Q and the current process
can choose. If only events from one of the two subprocesses is available, this
process can result in the STOP process. The process is only required to
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Counter(n,m) =(down → Counter(n− 1,m)) / n > 0 . STOP

�(up → Counter(n+ 1,m)) / n < 7 . STOP

�(left → Counter(n,m− 1)) / m > 0 . STOP

�(right → Counter(n,m+ 1)) / m < 7 . STOP

Figure 2.1: Counter with two variables [29]

advance to one of the processes if events of both processes are available.
Because the choice of the process can be made internally, the process P is a
valid implementation of the specification P uQ.

The u operator is also being used in the definition of refinement. If
P u R = R, it is said that P refines R; P is more deterministic than R. So
every event in P is also possible in R but not the other way around, which
makes P more deterministic than R.

The third choice operator is the conditional choice operator. This is a
choice based on a binary formula instead of the availability of events. The
binary choice is written as P / b . Q which works exactly the same as an if

b then P else Q statement in many other programming languages.
The conditional choice operator can also be used for making general spec-

ifications by enabling events only in specific situations. For example given
a counter with two variables, one down-up and one left-right, both ranging
from 0 up to 7. When both variables are 0, only the up and right events
must be enabled. This can be done with the specification given in figure 2.1.

Another feature are multipart data events which are events with multiple
data attributes. This can be noted as d?x?y!z!t. The variables x and y
are received from the environment and the variables z and t are put in the
environment. These can be used to send and receive multiple parts of data
at one time.

Parallel operators CSP defines several parallel operators. The simplest
is the synchronous parallel operator ‖. In P ‖ Q, P and Q must synchronise
on all actions, i.e. all events in P must also happen in Q and vice versa. The
second variant is the alphabetized parallel operator P ‖X Y Q: P can only
use events in X, Q only events in Y and they must synchronise on events in
X ∩ Y . This gives P ‖ Q = P ‖Σ Σ Q if Σ is the set of all possible events.

The third operator is the interleaving operator |||. With this operator,
no synchronisation occurs between the processes. If a is enabled in both P
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and Q, only one will match:

(a→ P ) ||| (a→ Q) = a→
((
P ||| (a→ Q)

)
u
(
(a→ P ) ||| Q

))
The last operator is the generalized parallel operator. In P ‖

X

Q can

use all events and synchronise on events in X. The other operators can be
replaced by the generalized parallel operator: P ‖ Q = P ‖

Σ

Q, P ||| Q =

P ‖
{}
Q. Also if P only uses events in X and Q only uses events in Y , then

P ‖X Y Q = P ‖
X∩Y

Q.

For the syntax elements in CSP a number of algebra rules are defined
to indicate the symmetry, associativity, distributivity and idempotence of
operators. Also step-rules are defined to show the behaviour of a process.

For each process the set of traces can be determined. The traces of a
process P , traces(P ) is a possibly infinite set of event sequences. Traces can
both be timed and untimed but mostly untimed traces are used.

In the set of traces the � and u operators are indistinguishable because
traces have no notion of where possible choices are made. Traces are used
to formulate specifications of CSP processes. P sat R(tr) means all possible
traces tr of P satisfy the condition R(tr): ∀tr ∈ traces(P ) ·R(tr).

CSP has been used to verify the T9000 virtual channel processor [4] and
for finding and fixing a vulnerability in the Needham-Schroeder public-key
protocol [21].

2.2 Permission-based separation logic

Separation logic [28] is an extension of Hoare logic [11] which allows to rea-
son about the heap of a program. It introduces the separating conjunction
operator ∗. The formula f ∗ g is valid for heap h (notation: h ` f ∗ g) if the
heap h can be split into two separate heaps h′ and h′′ such that f is valid for
h′ (h′ ` f) and g is valid for h′′ (h′′ ` g). Intuitively: f and g must be valid
formulas about different parts of the heap.

Also the separating implication or magic wand operator −∗ is introduced.
This is the separation logic equivalent of the implication →. h ` f −∗ g is
valid if the heap h can be extended with a disjoint heap h′ and if h′ ` f then
(h ∪ h′) ` g. From h ` f ∗ (f −∗ g) we can conclude with the modus ponens
rule h ` g. There is also a separating equivalence or two-way magic wand
operator ∗−∗ , similar to ↔. f ∗−∗ g means that both f −∗ g and g −∗ f
hold.
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With these operators we can reason about threads of concurrent programs
in isolation. If two threads operate on disjoint parts of the heap they can be
proven separate from each other and later be combined using the ∗ operator.

Permissions However requiring that threads operate on completely sepa-
rate heaps is unnecessarily restricting. Multiple threads can read a shared
variable without problems if it is guaranteed no thread is writing to the
variable at the same time.

To solve this problem permissions are introduced. A thread can have
a read (partial) or write (full) permissions for a certain variable/memory
location [6]. A permission is a value in (0, 1]. The sum of permissions for a
variable for all threads cannot exceed 1. It is therefore guaranteed that if a
thread as a partial (read) permission (0 < p < 1), no other thread can have
a full (write) permission for the same variable. A permission π to variable x
with value v can be written as the predicate x

π7−→ v. Permissions can be split

and combined with the following rule: x
π17−→ v ∗ x π27−→ v ∗−∗ x π1+π27−−−→ v.

2.3 Histories and Futures

When using locking to protect shared variables, verification of functional
properties using permission-based separation logic is difficult. When a thread
releases its lock it can no longer make guarantees about the unlocked variables
because another thread can change it at any moment. Ghost variables can
be used to track local modifications to a variable but this approach is not
modular.

To specify the functional behaviour of concurrent programs with finite
executions, so-called histories can be used [33]. With histories you can locally
specify the actions of a thread using process algebra and later combine the
actions of all threads. An action is an atomic modification of variables and
can have pre- and post-conditions.

Histories are specified with the history predicate Hist(L, π,R,H) [5, 31].
L is the set of locations which belong to this history. π indicates the fraction
of this history: 1 indicates a full history, any fraction thereof a fractional
(local, incomplete) history. R is a predicate over L specifying the initial
state. H is the process algebra term representing the history. A history is
sometimes noted as πHist(L,R,M) [32] (with M = H).

A history can be initialised with a location set L and a predicate R
about the initial state with the specification command crhist(L,R). A full

permission for each location l ∈ L is required, i.e. i
17−→ v. This will produce

10



this history predicate Hist(L, 1, R, ε) and history permissions predicates i
17−→h

v for each l ∈ L. 7→h indicates that changes to the variable must be recorded
in the history. The history permissions are typically stored in a lock.

The history can be split to allow it to be used by multiple threads with
the following rule:

Hist(L, π,R, ε) −∗ Hist(L,
π

2
, R, ε) ∗ Hist(L,

π

2
, R, ε)

Also non-empty histories can be split, but then a synchronisation barrier is
required [32]. Histories can be combined again with the rule:

Hist(L, π1, R,H1) ∗ Hist(L, π2, R,H2) −∗ Hist(L, π1 + π2, R,H1 ‖ H2)

When a threads wants to update variables/locations covered by a history,
it must do so in a so-called action segment. This requires a (partial) history
predicate Hist(L, π,R,H). The modifications are specified in the action con-
tract and the action a is stored in the history predicate: Hist(L, π,R,H · a).
The allowed operations in the action segment are limited to ensure it is seen
as an atomic action by the other threads. For example, no permissions can
be released and no other threads can be started or joined in the segment.

When a thread has a full history, it can reinitialise the history. With
the specification command reinit(L,R′) the predicate Hist(L, 1, R,H) can be
converted to Hist(L, 1, R′, ε) if R′ can be proven to hold after all possible
traces w in process H, i.e. ∀w ∈ Traces(H).{R}w{R′}.

If the history is not needed any more it can be destroyed with dsthist(L).

It requires the Hist(L, 1, R, ε) and the i
17−→h v predicates for all l ∈ L. This

command will return again the normal permission predicates i
17−→ v.

Futures Histories are limited to finite processes because only after termi-
nation of the individual processes you can reason about the global result. To
allow the verification of infinite processes futures are developed [31, 25, 24].
Instead of obtaining the global process at the end of the program, the global
process is defined in advance. In essence a future is a reversed history, e.g.
in an action segment an action is removed from the future instead of being
added to the history. This allows us to specify and verify infinite processes.

2.4 VerCors

VerCors is a tool set for verification of concurrent programs written in Java,
PVL [2] or C. The syntax used by VerCors is an extension of JML (Java
Modelling Language) [17, 13], an annotation language for Java.
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VerCors syntax Description
** separating conjunction (∗)
-* separating implication ( −∗ )
\forall* universal separating quantification (p1 ∗ p2 ∗ ...)
Perm(x, p) permission on x with fraction p ∈ (0, 1] (x

p7−→ )

Perm(x, read) permission on x with unspecified fraction (x
ε7−→ )

Value(x) same as Perm(x, read)

PointsTo(x, p, v) permission on x with frac. p and value v (x
p7−→ v)

PointsTo(x, p, v) ⇔ Perm(x, p) ∗ x = v
create hist; crhist(L,R)
split hist, 1/2, Hist(L, 1, R, ε) −∗ Hist(L, 1

2
, R, ε) ∗ Hist(L, 1

2
, R, ε)

empty, 1/2, empty;
merge hist, 1/2, h1, Hist(L, 1

2
, R, h1) ∗ Hist(L, 1

2
, R, h2)

1/2, h2; −∗ Hist(L, 1, R, h1 ‖ h2)

Table 2.1: Overview of VerCors syntax [1]

VerCors adds the permission-based separation logic elements to JML,
such as the Permission property Perm, the separating conjunction ** (dou-
ble star to distinguish from the multiplication operator), the magic wand
operator -* and the universal separating quantification \forall*. There is
also support for histories and futures in VerCors. An overview of the most
import syntax additions is given in table 2.1.

VerCors additionally supports abstract predicates [27], i.e. parameterized
predicates of which de definition can depend on the actual subclass of an
object. Abstract predicates can be defined in classes as a member with type
resource.

VerCors supports several back ends, for example Chalice1-Boogie2, Car-
bon and Silicon (both part of the Viper suite3). The Silicon back end is
currently worked on the most. All these back ends use the Z3 theorem
prover4 for proving verification conditions.
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send (2, pt);

send (3, pt);
‖ x := recv (pt);

y := recv (pt);

Figure 2.2: 2 threaded sender-receiver [18]

agent5 () {

v1 = recv (1@5); v2 = recv (2@5);

while (v1 = 0 || v2 = 0){

if (v1 > v2 ) {send (v2 , 2@6); v2 := recv (2@5);}

else {send (v1, 2@6); v1 := recv (1@5);}}

while (v1 = 0) {send (v1 , 2@6); v1 := recv (2@5);}

while (v2 = 0) {send (v2 , 2@6); v2 := recv (1@5);}

send (0, 2@6);

}

Figure 2.3: Agent 5 of Merge sort [18]

2.5 Modular Reasoning for Message-passing

Programs

In “Modular Reasoning for Message-passing Programs” [18, 19] Jinjiang Lei
et al. introduce a method for modular verification of message-passing pro-
grams using event traces. In the event trace all send and receive actions are
stored. The event trace is then used to verify the correctness of the message
passing part of the program. This method is based on rely-guarantee-based
reasoning [14].

This paper includes two examples that are verified on paper, a two-
threaded sender-receiver (figure 2.2) and a multi-threaded merge sort (figure
2.3).

Message sends and receives are modelled as events in event traces or
event graphs, which are a way to model the relations between these events.
Events contain a port (or channel) identifier and a value and are linked to
the previous event in the agent (local direct predecessor). Receive events
are also linked to the corresponding send event. Using these two references,
a Happens-Before relation for a trace tr can be defined: event e happened
before event e′ (notation: e ≺ e′) iff e is the local direct predecessor of e′, e

1http://research.microsoft.com/en-us/projects/chalice/
2http://research.microsoft.com/en-us/projects/boogie/
3http://www.pm.inf.ethz.ch/research/viper.html
4https://github.com/Z3Prover/z3
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is the sending event for receiving event e′ or there is an event e′′ for which
e ≺ e′′ ∧ e′′ ≺ e′ holds.

This paper defines a logic based on Hoare logic to reason about a program
containing send and receive instructions for message queues. It splits the pre-
and post-conditions P and Q of the classical Hoare triple ({P} C {Q}) in
local state and assumptions about the environment (other threads/agents),
resulting in a triple {r, p} C {r′, q} in which r and r′ represent the assump-
tions about the environment and p and q the local states.

In these triples, a send event can be noted as pt!m in which pt is the port
and m the message. A receive event is similar notated as pt?m. p∗ q denotes
a separating conjunction similar to separation logic, p ◦ q is the sequential
conjunction which also (roughly) requires that events in p happen before q.
emp is an empty trace.

The sender agent from the first example (figure 2.2) would produce the
Hoare triple {emp, emp} send (2, pt); send (3, pt); {emp, pt!2 ◦ pt!3}.
This indicates no starting assumptions, and it generates two send events
without new environment assumptions.

The receiver agent is more complicated: {emp, emp} x := recv (pt);

y := recv (pt); {pt!2 ◦ pt!3, (pt?2 ◦ pt?3) ∧ x = 2 ∧ y = 3}. It ensures two
receive events and sets x = 2 and y = 3. It also assumes the environment
has two send events, the first one containing 2 and the second 3.

The composition of the two agents results in {emp, emp} send (2, pt);

send (3, pt); ‖ x := recv (pt); y := recv (pt); {emp, x = 2 ∧ y =
3∧(pt!2◦pt!3)∗(pt?2◦pt?3)}. The assumptions about the environment of the
receiver are met by the sender, so the combined system has no environmental
assumptions.

The paper contains a set of inference rules to reason about the programs.
These inference rules formalize the reasoning with the new Hoare triples.

The proposed method has some limitations. It assumes that all message
arrive without loss and in the same order. There is as far as I know, no tool
support available.

2.6 Rely-Guarantee Based Reasoning for

Message-Passing Programs

Jinjiang Lei et al. later published the article “Rely-Guarantee Based Rea-
soning for Message-Passing Programs” [20]. This is an extension of their
previous paper [18] discussed in the previous section. In this paper they add
an example with non-deterministic behaviour (figure 2.4) and they verify a
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leader election algorithm (figure 2.5). The rest of the paper is essentially the
same as the previous.

2.7 Message Passing Interface

The Message Passing Interface5 (MPI) is a library interface specification for
communication between parallel and distributed processes. The interface is
initially defined for C/C++ and Fortran but language bindings for several
other languages such as Java are also available. The fist version was published
in 1994 by Dongarra et al. [10] and the latest version is version 3.1 published
in 2015 [22].

MPI has several communication modes for send operations:

Synchronous mode The message will be directly copied from the sender to
the receiver. The send operation only finishes when a matching receive
operation is started.

Buffered mode In buffered mode the message will first be copied to an
internal buffer. The operation finishes when the message is placed in
the internal buffer, but the message might not be delivered yet. The
operation returns an error when there is no buffer space available.

Standard mode The MPI library will automatically choose buffered mode
when there is buffer space available or otherwise use synchronous mode.

Ready mode Ready mode send can be used when the matching receive
operation is already started. This allows for some optimizations in
some systems. The semantics are the same as for the standard or syn-
chronous mode. When no matching receive is available, the behaviour
is undefined.

For all modes of the send operation there exists a blocking and a non-
blocking variant:

Blocking A call to a blocking operation only returns when the operation
finished. The used send buffers can be safely reused as the message is
either send to the receiver or copied to the internal buffer.

Non-blocking A call to a non-blocking returns immediately and uses a
Request object to refer to ongoing operation. With a test and wait

call the process can check if the send operation is finished. Non-blocking
methods are prefixed with an i, e.g. isend.

5http://mpi-forum.org/

15

http://mpi-forum.org/


There are no different communication modes for the receive operation,
the receive operation can receive messages from all send modes. The receive
operations does have a blocking and a non-blocking variant.

To differentiate between messages send to the same destination a tag can
be added to a message. The receiver can filter incoming messages on source
and/or tag.

Besides point-to-point communication, MPI also supports broadcast mes-
sages and barriers. Other features include multiple communication universes,
persistent communication requests and data types. These features are how-
ever not used in this paper and therefore not discussed here.

Java In Java there are two mayor MPI-like interfaces: mpiJava [3, 8] and
MPJ [9]. MPJ was developed as a common interface for MPI implemen-
tations in Java as successor of the functionality comparable but different
interfaces: mpiJava, JavaMPI [23] and MPIJ [15].

MPJ Express6 is popular and actively developed [30] MPI implementa-
tion. Despite its name and original intentions, MPJ Express implements the
mpiJava 1.2 API. MPJ/Ibis7 is an implementation of the MPJ interface from
the VU Amsterdam [7].

6http://mpj-express.org/
7http://www.cs.vu.nl/ibis/mpj.html
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send (2, pt); ‖ send (3, pt); ‖ x := recv (pt);

y := recv (pt);

Figure 2.4: 3 threaded sender-receiver [20]

agent_i(){

ld_i := ff;

send (token_i, i + 1);

tk_i := recv (i - 1);

while (tk_i = 0){

if (token_i < tk_i) {send (tk_i, i + 1);}

if (token_i = tk_i) {ld_ i = tt; send (0, i + 1);}

tk_i := recv (i-1);

}

if (ld_i = ff){send (0, i + 1);}

}

Figure 2.5: Leader election [20]
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Chapter 3

Specification of asynchronous
methods

A key part of active objects is the asynchronous method call. This chap-
ter shows how asynchronous method calls can be scribed using the VerCors
extension of JML. It also shows that this specification can be used by Ver-
Cors to automatically verify a local asynchronous method call. The formal
description of asynchronous method calls is used in later chapters in the
specification of active objects.

An asynchronous method call differs from a normal, synchronous, method
call because the caller does not wait for the called method to be finished, but
executes some other code in parallel. This can be useful when the method
takes a longer time to complete, for example because it needs to access slow
resources or executes remotely using active objects.

When the caller needs the result of the asynchronous method, it either can
get it directly if the call is already finished, or the caller will block till the call
is finished. How this last part is implemented differs between programming
languages. In Java the Future1 class can be used for this.

3.1 Specification of the Future class

The Java language has no built-in mechanism for returning values of asyn-
chronous calls, therefore a dedicated class or interface must be used to provide
this feature. The Future interface of the java.util.concurrent package
seems to be the best interface for this, as the Java API specifies: “A Future

represents the result of an asynchronous computation.” [26].

1Not to be confused with the Future in specifications described in section 2.3
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Listing 1: Specification of Future class

public class Future {
2 //@ public resource getToken();

//@ public resource postGet(Object value) = true;
4

/∗@
6 ensures getToken();

@∗/
8 public Future() {

//@ assume getToken();
10 }

12 /∗@
given frac p;

14 requires [p]getToken();
ensures [p]postGet(\result) ;

16 @∗/
public Object get() ;

18 }

The Future interface is used as follows: an asynchronous method call
will return a Future instance instead of its actual return value. When the
caller needs the actual return value it will call the get method on the Future
instance. If the result is not yet available, the call will block it it is available
and return the value. If the value is already available, it will return it directly.

We have based our specification of the Future interface on the specifica-
tion of the Thread class by Amighi et al. [1]. The specification of Future is
given in Listing 1.

For specification purposes we changed the Future interface to a class,
so it can have a constructor which returns the getToken, a token which is
required by the get method. This token is used to get permissions back
(using the postGet predicate) from the active object call. This is similar to
the joinToken and postJoin predicate of the join method in Thread.

The get method is parametrized with the fraction p to allow to retrieve
only a part of the post-condition postGet. This enables sharing the Future

object between multiple threads or other objects. Because there is only one
full getToken, only one full postGet can be retrieved from the get method.

If the postGet predicate refers to the parameters of the asynchronous
method, these parameters must also be stored in the Future object as specification-
only fields.

The original interface has four other methods: cancel, get with a time-
out, isCancelled and isDone. Because these methods are not essential, we

19



have not included them in our specification.

3.2 Example: ForkJoinTask

To demonstrate the usage of the specification of the Future class, we have
implemented a ForkJoinTask, based on the idea of the ForkJoinTask from
the Java API.

A ForkJoinTask is a mechanism in the Java API to run a tasks in parallel.
The exec method defines the task of the ForkJoinTask object. The task is
executed in a different thread than the main thread and the result can be
collected using the get method (from the Future interface).

The source is given in listing 2. In this example the task will always
return the value 5 in a ValueContainer instance. The correctness of this
implementation is verified using the VerCors tool set.

Two extra predicates are added, preExec and execToken. preExec con-
taining the precondition for the exec method, similar to preFork in Thread.
In this example, the precondition is just true.

The execToken is a token which guarantees that the exec method is
executed at most once.. It also contains the permissions to store the result
value and modify the done state variable.

The variable done indicates if the result is available. The variable value

contains the result value when done is true.
The specification variable dummy is used by the getToken predicate and

the invariant. Only the permissions on this variable are used, not the value.
When the get method is called, the permissions on the dummy variable are
obtained from the getToken. Subsequently the permissions on the dummy

variable are exchanged for permissions on the post-condition (postGet predi-
cate) using the invariant. In the specification variable getExecuted is stored
which amount of the postGet predicate is already returned using the get

method.
The CSL invariant stores a half permission to the done variable, full

permission to the getExecuted variable and a getExecuted fraction of the
dummy variable. When done is false, the getExecuted fraction must be none.
When done is true, it also contains an additional read permission for the done
variable indicating it cannot be changed back to false, read permission for the
result value and a 1− getExecuted fraction of the postGet predicate. The
sum of the permissions on the dummy variable and the postGet predicate is
then always 1. This ensures that no more than a full postGet can be returned
by the get method.

The constructor will return both the execToken and the getToken. In
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multi-threaded programs, the execToken will normally be passed to the ex-
ecuting thread and the getToken to the calling thread.

The exec method does the real execution of the task. In this example it
will simply return a ValueContainer with the value 5.

The doExec method calls the exec method, stores the result in the value
variable and sets done to true.

The get will wait till done is true using a while-loop. After that the
fraction p is added to getExecuted to get the postGet predicate from the
invariant. The result value and a p fraction of postGet will be returned.

Listing 2: Specification of ForkJoinTask class

public class ForkJoinTask /∗ extends Future ∗/ {
2 /∗@

public static resource preExec() = true;
4 public resource execToken() = Value(this.done) ∗∗ PointsTo(this .done.val , 1/2,

false )
∗∗ Perm(this.value , 1);

6 public resource getToken() = Perm(this.dummy, 1);
public resource postGet(ValueContainer value) = PointsTo(value.x, 1, 5);

8

private boolean dummy;
10 private frac getExecuted;

resource csl invariant () = Value(this.done) ∗∗ Perm(this.done.val , 1/2)
12 ∗∗ Perm(this.getExecuted, 1)

∗∗ (this .getExecuted != none ==> Perm(this.dummy, this.getExecuted))
14 ∗∗ (! this .done.val ==> this.getExecuted == none)

∗∗ (this .done.val ==> (Value(this.done.val) ∗∗ Value(this . value)
16 ∗∗ [1 − this.getExecuted]postGet(this . value))) ;

@∗/
18

private AtomicBoolean done;
20 private ValueContainer value ;

22 /∗@
ensures execToken();

24 ensures getToken();
@∗/

26 public ForkJoinTask(){
this .done = new AtomicBoolean();

28 //@ this.getExecuted = none;
//@ fold this .getToken();

30 //@ fold this .execToken();
}

32

/∗@
34 requires preExec() ;

ensures postGet(\result) ;
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36 @∗/
private ValueContainer exec() {

38 ValueContainer res = new ValueContainer();
res . set (5) ;

40 //@ fold postGet(res) ;
return res ;

42 }

44 /∗@
requires preExec() ∗∗ execToken();

46 ensures Value(this .done) ∗∗ Value(this .done.val ) ∗∗ this .done.val ;
@∗/

48 public void doExec() {
//@ unfold this .execToken();

50 this . value = exec();
this .done.set(true);

52 }

54 /∗@
given frac p;

56 requires p > none ∗∗ [p]getToken();
ensures [p]postGet(\result) ;

58 @∗/
public ValueContainer get() {

60 boolean d = false;

62 //@ loop invariant d ==> Value(this.done) ∗∗ Value(this.done.val) ∗∗ this .done
.val ∗∗ Value(this . value) ;
while(!d) {

64 d = this.done.get() ;
}

66

//@ unfold [p] this .getToken();
68 /∗@

atomic(this) {
70 frac oldGetExecuted;

oldGetExecuted = this.getExecuted;
72 assert oldGetExecuted + p <= write;

this .getExecuted = oldGetExecuted + p;
74 }

@∗/
76

return this . value ;
78 }
}
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Listing 3: get method of ValueContainer class

/∗@
2 given frac p;

given int res ;
4 requires p != none ∗∗ PointsTo(x, p, res ) ;

ensures PointsTo(x, p, res ) ∗∗ \result == res;
6 @∗/

public int get() {
8 return x;

}

3.3 Limitations and bugs in VerCors

During the development and verification of the Future and ForkJoinTask

classes we have discovered some limitations and bugs in the VerCors tool.
Some issues are already solved, but there are others remaining:

• Because class parameters are not yet implemented in VerCors, for each
Future with a different ‘postcondition’ (postGet predicate) a new sub-
class is required.

• It is not possible to access a ghost parameter of an overridden method,
such as the p parameter of the get method. This was overcome by
making ForkJoinTask not a real subclass of Future.

• It is also not yet possible to use generics. Subclasses of Future which
use a result type other than Object can therefore not be real subclasses.

• It is not possible to do arithmetic operations on instance ghost variables
with type frac directly. A workaround is to first store the value in a
local ghost variable, as on line 71 of listing 2.

• Declaring and assigning a local (ghost) variable in one statement some-
times fails due to a bug. A workaround is to split the assignment to a
second statement, as on lines 70 and 71.

• The property that a frac is always larger than zero is not automatically
available everywhere. The get method of ValueContainer (listing 3)
can not be verified without p != none in the precondition (line 4).

Support for comparing and subtracting fractions was not yet available in
VerCors. We have added this functionality to VerCors.
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3.4 Asynchronous methods

Because of the mentioned limitations, the specification of asynchronous meth-
ods requires a separate Future subclass for each method. In an ideal situ-
ation it would be nice to use the general Future class for specification of
asynchronous methods. A specification could then be something like this:

/∗@
2 requires true;

ensures \result .getToken() ∗∗ \result . contract == {PointsTo(value.x, 1, 5)};
4 @∗/

public Future<ValueContainer> getFive();
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Chapter 4

Implementation of active
objects using MPI

This chapter describes our implementation of active objects using MPI mes-
sages in Java. With this implementation, a programmer can define and use
active objects in a distributed Java program. The communications between
the processes is done via message passing using an MPI library.

The basics of the implementation are quite simple. Each active object
method call is translated to two MPI-messages: a message from the caller to
the callee containing the name of the called method and the parameters and
a message from the callee to the caller containing the result of the method
call.

This chapter first gives an overview of the MPI operations used in our im-
plementation, then we explain in more detail how we encoded active objects
using the MPI operations. Subsequently we will discuss how we implemented
this encoding in Java and tested it.

4.1 MPI

We first give a brief overview of the main operations in the Message Pass-
ing Interface. In MPI many different operations are available for sending
and receiving messages. However for our implementation we only used the
basic send, receive and operations. The send and receive operations have a
non-blocking variant (starting with an i) and a blocking variant. For each
operation we describe its parameters, return value and the effects of the
operation.

• isend: non-blocking send operation
parameters: destination, tag, datatype and message buffer with mes-
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sage
returns: request handle
This operation sends a message to the given destination. This method
returns immediately. With the wait method the program can wait till
the message is copied to the internal buffer or is sent.

• irecv: non-blocking receive operation
parameters: source (or any), tag (or any), datatype and message buffer
in which the received message will be stored
returns: request handle
This operations receives a message from the given source with given
tag. This method returns immediately. With the wait method the
program can wait till the message is actually received.

• wait: wait for a non-blocking request to be finished.
parameters: request handle
returns: status information, depending on request type
This method returns when the related request is finished, e.g. a message
is received.

• send: blocking send operation
parameters: same as isend

returns: nothing
This operation sends a message to the given destination and blocks until
the message is copied to the internal buffer or is sent. This method is
equivalent to r = isend(...); wait(r);.

• recv: blocking receive operation
parameters: same as irecv

returns: status information: source, tag, message length
This operations receives a message from the given source with given
tag. This method returns when the message is received. Equivalent to
r = irecv(...); wait(r);.

MPI supports many more operations, for example sending broadcast mes-
sages and barrier synchronization. These are not used in our implementation
and are not discussed further.
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4.2 Encoding of active objects with MPI

Caller When a caller calls an active object method, it will first call the
MPI-method send with the method name and parameters as message and
the callee as destination. Then it will call irecv to indicate it wants to
receive the result1. When the caller wants to use the result, it calls the wait

method. If the result is not yet available, the caller will block. When the
result is available the wait method returns and the caller can use the result.

Active object The active object (callee) will first call recv to wait for
an incoming active object method call. When an active object method call
is received, recv returns. The active object will then execute the actual
method. When the method call returns, the result will be sent to the caller
with send. After that, the active object will loop back to the recv call to
receive another method call.

Tags To distinguish between messages sent to the same MPI node, tags
can be used. For method call messages, an identifier for the active object
is used. This identifier must be unique for all active objects on the same
MPI node. For result messages an identifier for the related call is used. This
identifier is generated by the caller and sent to the callee in the method call

1irecv can also be called before send. This allows the callee to use rsend (ready-mode
send) to send the result, since it is guaranteed that irecv is already called. This could be
more efficient in some situations.
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message. This identifier must be unique for all (concurrent) method calls
from the same caller MPI node and must also not conflict with active object
identifiers on the same MPI host.

This allows multiple active objects on the same MPI node, as the incoming
messages are routed to the correct active object based on the message tag.
Similarly an MPI node can have multiple outstanding active object method
calls, as the irecv/wait methods can wait on the correct result based on the
tag for the call.

4.3 Implementation in Java

We have created an implementation of active objects using MPI in Java. We
have created this program using the MPJ Express library, an MPI imple-
mentation for the Java programming language.

This implementation has a limitation: the parameters of active object
method calls must either be primitive types, serializable objects or references
to other active objects. Non-serializable objects cannot be used as they
cannot be converted to a byte stream and sent to another node. We think
however that this restriction is reasonable and not restricting any actual
programs.

4.3.1 Active object

The implementation of the active object is relative simple. Each active object
will be a thread. The thread will receive a message for its object, execute
the named method with the given parameters, send the result back to the
caller and repeat this process.

For the execution of the method two methods can be chosen: in the same
thread as receiving the messages or a separate thread per method call.

Executing the method calls in the thread which receives the messages in
simpler to implement and verify. Also probably no locking in the active object
is required as only a single method can be called at the same time. This
process does not allow for simultaneous or recursive active object method
calls to the same object since all calls will be executed sequentially. Recursive
calls will deadlock since the inner call cannot start before the outer call is
finished.

Creating a separate thread per method call allows for simultaneous and
recursive calls. The active object might require a locking mechanism depend-
ing on its data structure. This implementation can be harder to verify, but
this can be solved by using histories or futures.
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4.3.2 Caller

To be able to call methods on active objects, the caller node must have a
reference to the active object. This is achieved by making a proxy object
for the active object, containing the MPI node id and the tag of the active
object. This proxy object has the same methods as the remote object.

When a method on the proxy object is called, a message must be sent
to the MPI node on which the active object resides, containing the method
name, parameters and call identifier. To encode the information a Call

object is used. This is essentially a tuple containing the method name, the
parameters and the call identifier (the tag for the response).

To allow asynchronous method calls, these proxy methods do not return
the actual result value, but a Future object to access the return value at a
later moment, as discussed in chapter 3.

When the caller calls an active object method, a Future object is created.
This Future object is associated with the request handle return by the irecv
call. When the caller wants to use the result value (calls future.get()) the
MPI wait function is called. Because MPI allows only one thread to call
wait on a single handle, the Future object makes sure it is only called once.
Multiple threads calling the get function are handled in the Future object
internally.

As Java supports method overloading, multiple methods with the same
name but different parameter types can exists. To also support overloading of
active object methods, the method name in the Call object can be extended
to also encode parameter types, for example using method descriptors as
defined in section 4.3.3. of the Java Virtual Machine Specification.

4.3.3 Object creation

To allow creation of objects we made a Factory active object which is created
at the start for each MPI node. The constructors of other classes can be
called via this factory. The Factory will then create the active object and
the corresponding proxy object. It will return the proxy object to the caller
of the constructor. The Factory is an active object itself, so it allows for
asynchronous creation of objects.

To simplify the program, it is also possible to start a program with prede-
fined instances at specific MPI nodes and disable active object creation and
the Factory object.
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4.3.4 Proxy classes

For all active object classes a proxy class must be created containing the
code to forward method calls to the actual active object. These proxy classes
must currently be created by hand. However the required information can
be extracted from the actual classes and automatic generation of the proxy
classes should be possible.

4.4 Testing

We have tested the implementation using a couple of small programs. We
have tested with multiple MPI nodes (2 - 8) on a single computer. We have
not tested the programs in a real distributed setup.

The source code is available at TODO Add url.
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Chapter 5

Verification of the active
objects implementation

To verify the correctness of our program, a couple of steps have been taken.
MPI programs are concurrent and/or distributed and thus possibly non-
deterministic. To be able to specify and verify our implementation in a
modular fashion, we have chosen to used permission-based separation logic
extended with futures as described in sections 2.2 and 2.3.

To be able to use those futures, first action and processes must be defined
(sections 5.1 and 5.2). Using these actions and processes we annotated the
MPI library (section 5.3). These annotations use a predicate describing what
valid MPI messages, this is explained in section 5.4. With these building
block we then annotated our implementation (starting section 5.5). In the
final section we describe the status of tool support for our specification.

This chapter shows it is possible to annotate the MPI operations in the
library using futures. It also show it is possible to annotate most parts of
our active objects implementation.

5.1 Actions

To create a specification using futures, actions must be defined as these are
used in the process algebra terms in the future predicates.

We based the actions on the MPI operations as discussed in section 4.1.
Compared to the MPI operations, the actions have more parameters. These
parameters are used to store extra information needed for the specification,
such as return values.

The defined actions are:

• isend(source, dest,msg, tag, r): Non-blocking send action.
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isend(0, 1, 5, 100, 1) ·
irecv(1, 0, ANY TAG, 2) ·
waitsend(1) ·
waitrecv(1, 0, 6, 200, 2)

‖

irecv(ANY SOURCE, 1, 100, 1) ·
waitrecv(0, 1, 5, 100, 1) ·
isend(1, 0, 6, 200, 2) ·
waitsend(2)

Figure 5.1: Example of two parallel processes (0 and 1)

• waitsend(r): Wait for non-blocking send identified by r to finish.

• irecv(source, dest, tag, r): Non-blocking receive action. source and
tag can be wildcard (any source and/or any tag).

• waitrecv(source, dest,msg, tag, r): Wait for non-blocking receive to
finish. source and tag are actual values here (no wildcards).

The parameters of the action are defined as follows:

• source: MPI identifier of the sender.

• dest: MPI identifier of the receiver.

• msg: Message value sent/received.

• tag: Tag to distinguish between messages sent to the same receiver.

• r: Result handle to link isend and waitsend or irecv and waitrecv
actions.

In these actions a single message value is assumed. The MPI library can
send an array of values in each message, but this was not needed for our
program. As future work, the actions could be modified to use an array of
message values.

Although there is only one wait command in MPI, it is split in a wait-
send and a waitrecv action because of semantic differences. The waitsend
only waits for the send operation to finish, but the waitrecv action also
receives values which are not known at the time of the irecv action: the
actual source and tag and the message value.

Example The example in figure 5.1 contains two processes in parallel to
show the usage of actions. The left process, numbered 0, starts a send oper-
ation from 0 (itself) to process 1 with message 5, tag 100 and request handle
1. It then starts a receive operation from process 1 to 0 (itself) with any tag
and request handle 2. Then it waits till the send is finished (with handle 1)
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and finally till the receive is finished. The receive operation has actual source
1, destination 0, message value 2, actual tag 200 and request handle 2.

The second process first starts a receive operation from any source to
process 1 (itself) with tag 100 and request handle 1. It then waits till the
receive is finished, this has actual source process 0 and the destination, actual
tag, and request handle are 1, 100 and 1. Next it starts a send operation from
process 1 (itself) to process 0 with message 6, tag 200 and request handle 2.
Finally it will wait till the send operation with handle 2 is finished.

As you can see, the send in the left process matches with the receive in
the right process and vice versa.

5.2 Processes

The actions defined in the previous section can be combined to processes.
These processes can be used to specify the composed MPI operations send
and recv from section 4.1 and to specify the encoding of active objects as
discussed in section 4.2. The processes used in the verification are discussed
below.

Blocking send The isend and waitsend actions can be combined to the
send process, a blocking send process:

send(source, dest,msg, tag)
=∑

r isend(source, dest,msg, tag, r) ·
waitsend(r)

The blocking send process is a non-blocking isend action directly followed
by a waitsend action to wait till the send operation is completed.

The sum
∑

r indicates that the parameter r is not defined up front, but is
determined by the first action in the sum. This is sometimes called an output
parameter. It can be used for a generated identifier such as r, but it can also
be used for received values such as msg. In this case it indicates the value r
is needed by the actions, but not relevant for the general send process.

Blocking receive The irecv and waitrecv actions can be combined to
the recv process, a blocking receive process:
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recv(req source, act source, dest,msg, req tag, act tag)
=∑

r irecv(req source, dest, req tag, r) ·
waitrecv(act source, dest,msg, act tag, r)

The req source and req tag are the requested source and tag and can
contain the wild cards ANY SOURCE and ANY TAG. The act source and act tag
contain the actual values. When the requested source is the wild card, the
actual source can be any valid source. When a specific source is requested,
the requested source and the actual source must be equals. The same holds
for the requested and actual tag. In a formula this would be:

req source = ANY SOURCE ∨ req source = act source

or
req source 6= ANY SOURCE⇒ req source = act source

And similar for the tag:

req tag = ANY TAG ∨ req tag = act tag

or
req tag 6= ANY TAG⇒ req tag = act tag

Method call A typical client would execute the following process when
calling an active object method:

callMethod(i, j, t,m, p, res)
=∑

c send(i, j, < c,m, p >, t) ·∑
r irecv(j, i, c, r) ·

waitrecv(j, i, res, c, r)

with:

• i: MPI identifier of the caller

• j: MPI identifier of the callee

• t: Active object identifier

• c: The unique call identifier generated by the caller

• m: The method name
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• p: Call parameters

• < c,m, p >: The Call object

• r: Result handle returned by the irecv call

• res: Result of the active object method call

Before send the precondition of the active object method should hold.
After the waitrecv finishes, the postcondition holds.

Active object process A typical active object process would be:

activeObject(j, t)
=∑

i,<c,m,p> recv(i, j, < c,m, p >, t) ·∑
res excecuteMethod(p, res) ·

send(j, i, res, c)
· activeObject(j, t)

executeMethod is a dummy process representing the execution of the
method. Before executeMethod the precondition of the method holds, after
executeMethod the postcondition should hold. The method could include
other active object method calls, so the executeMethod process can include
send, irecv and waitrecv actions.

After receiving a method call, executing the method and sending the
result back, the process repeats itself. This variant doesn’t allow parallel
execution of methods of the same active object.

Composition The processes of the clients and the active objects are com-
bined with the MPI system process defined by Wytse using parallel compo-
sition.

5.3 Annotation of the MPJ library

To use the existing MPJ Express library in the verification, it must be anno-
tated first. This means adding pre- and postconditions to all methods used
in our implementation. To do so dummy classes have been created.

Most method specifications use the ghost parameters Future fut, frac
p and process P. These are required for reasoning with futures. fut contains
a reference to the future specification object, the fraction p is the amount of
permissions on the future and the process P is the process remaining after
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Listing 4: Specification of the Isend method of the MPJ Intracomm class

/∗@
2 given Future fut ;

given frac p;
4 given process P;

given frac bufp;
6 requires fut != null ∗∗ p != none;

requires buf. length == 1 ∗∗ offset == 0 ∗∗ count == 1;
8 requires Perm(buf[0], bufp);

requires valid (Rank(), dest , buf [0], tag) ;
10 requires Future(fut , p,

\sum(int r; ; fut . isend(Rank(), dest , buf [0], tag, r) ∗ P(r))) ;
12 ensures Value(\result . recv) ∗∗ \result . recv == false ∗∗

Value(\result .bufp) ∗∗ \result .bufp == bufp ∗∗
14 Value(\result .buf) ∗∗ \result .buf = buf;

ensures \result .waitToken();
16 ensures Future(fut , p, P);

@∗/
18 public Request Isend(Object buf, int offset , int count, Datatype datatype,

int dest , int tag) throws MPIException {
20 }

executing the current method. P is sometimes parametrized with an output
parameter of one of the actions.

Related to this are the pre-conditions (requires) fut != null ** p !=

none and Future(fut, p, someProcess * P) where someProcess is the
process executed by the method. The post-condition (ensures) Future(fut,
p, P) indicates that this process is executed.

As mentioned earlier we assume single value messages, therefore buffers
must contain exactly one value: buf.length == 1 ** offset == 0 ** count

== 1.

Isend method The specification of the Isend method (listing 4) contains
an extra ghost parameter frac bufp. This indicates the amount of per-
mission on the buffer is given in the pre-condition Perm(buf[0], bufp).
This permission is needed to read the message value from the buffer. The
pre-condition valid(Rank(), dest, buf[0], tag) indicates that the com-
bination of the source, destination, message value and the tag must be a valid
message. More about the valid predicate in section 5.4.

The result of this method is a Request object. The post-condition grants
read permissions to specification fields in this object and ensures that the
contents are what you expect. It also grants the waitToken indicating Wait
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Listing 5: Specification of the Irecv method of the MPJ Intracomm class

/∗@
2 given Future fut ;

given frac p;
4 given process P(r) ;

requires fut != null ∗∗ p != none;
6 requires buf. length == 1 ∗∗ offset == 0 ∗∗ count == 1;

requires Perm(buf[0], write ) ;
8 requires Future(fut , p,

\sum(int r; ; fut . irecv (source , Rank(), tag, r) ∗ P(r))) ;
10 ensures Value(\result . recv) ∗∗ \result . recv == true ∗∗

Value(\result . source) ∗∗ \result . source == source ∗∗
12 Value(\result . dest) ∗∗ \result . dest == Rank() ∗∗

Value(\result .tag) ∗∗ \result .tag == tag ∗∗
14 Value(\result . r) ∗∗ \result . r == r ∗∗

Value(\result .bufp) ∗∗ \result .bufp == write ∗∗
16 Value(\result .buf) ∗∗ \result .buf = buf;

ensures \result .waitToken();
18 ensures Future(fut , p, P(r)) ;

@∗/
20 public Request Irecv (Object buf, int offset , int count, Datatype datatype, int

source , int tag) throws MPIException {
}

can be called on the result object. The permission on the buffer won’t be
given back at the end of this method since the message value might not be
read from the buffer yet.

The process executed by this method is a isend action with the given
parameters.

Irecv method The Irecv method (listing 5) requires full permission on
the buffer (Perm(buf[0], write)) as the incoming message value will be
written to it. The result of this method is also a Request object and the
post-conditions are similar to the Isend method. The process of this method
is the irecv action with an arbitrary r value.

Wait method Wait (listing 6) is a method of the Request object returned
by Isend or Irecv. The pre- and post-conditions of this method depend on
whether the Request object is from a send or receive operation, indicated
by the specification variable recv. In both cases the method requires read
permissions on the recv and r variables and the waitToken to ensure this
method is only called once. This method will also return the permissions on
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Listing 6: Specification of the Wait method of the MPJ Request class

/∗@
2 given Future fut ;

given frac p;
4 given process P(msg);

requires fut != null ∗∗ p != none;
6 requires Value(this . recv) ∗∗ Value(this . r) ;

requires this .waitToken();
8 requires ! recv ==> Future(fut, p, waitsend(this . r) ∗ P(null)) ;

requires recv ==> Value(this.source) ∗∗ Value(this.dest) ∗∗
10 Value(this .tag) ;

requires recv ==> Future(fut, p,
12 \sum(int act source, int act tag , Object msg;

this . source != ANY SOURCE ==> act source == this.source ∗∗
14 this .tag != ANY TAG ==> act tag == this.tag;

waitrecv( act source , this . dest , msg, act tag , this . r) ∗
16 P(msg)));

ensures Value(bufp) ∗∗ Value(buf) ∗∗ Perm(buf[0], bufp);
18 ensures recv ==> Value(\result.source) ∗∗ \result.source == act source;

ensures recv ==> Value(\result.tag) ∗∗ \result.tag == act tag;
20 ensures recv ==> buf[0] == msg;

ensures recv ==> valid(act source, dest , buf [0], act tag) ;
22 ensures Future(fut , p, P(msg));

@∗/
24 public Status Wait() {

}
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Listing 7: Specification of the Send method of the MPJ Intracomm class

/∗@
2 given Future fut ;

given frac p;
4 given process P;

given frac bufp;
6 requires fut != null ∗∗ p != none;

requires buf. length == 1 ∗∗ offset == 0 ∗∗ count == 1;
8 requires Perm(buf[0], bufp);

requires valid (Rank(), dest , buf [0], tag) ;
10 requires Future(fut , p, fut .send(Rank(), dest , buf [0], tag) ∗ P);

ensures Perm(buf[0], bufp);
12 ensures Future(fut , p, P);

@∗/
14 public void Send(Object buf, int offset , int count, Datatype datatype,

int dest , int tag) throws MPIException {
16 }

the buffer required by the Isend or Irecv method. When the request is from
Isend, the process is the waitsend action with parameter r.

When the request if from Irecv, also read permission on the source,
dest and tag fields is required. The return value of this method is a Status

object containing the actual source and actual tag as specified in the post-
condition. The method ensures that the buffer contains the received message
and that the combination of source, destination, message and tag is valid,
as required by the Send method. The process executed by this method
is
∑

act source,act tag,msg waitrecv(act source, dest,msg, act tag, r), i.e. the
waitrecv action with input parameters dest and r and output parameters
act source, act tag and msg. When the source parameter of the irecv

method is not ANY SOURCE, act source is equal to source, the same holds for
tag and act tag.

Send method The Send method (listing 7) is the combination of the Isend
and Wait method. The pre-conditions are therefore similar to the Isend

method, and the post-conditions to the Wait method for send requests. The
process is equal to the isend action followed by the waitsend action.

Recv method Similarly, the Recv method (listing 8) is the combination of
the Irecv and Wait method. The pre-conditions are therefore similar to the
Irecv method, and the post-conditions to the Wait method. The process is
equal to the irecv action followed by the waitrecv action.
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Listing 8: Specification of the Recv method of the MPJ Intracomm class

/∗@
2 given Future fut ;

given frac p;
4 given process P(msg);

requires fut != null ∗∗ p != none;
6 requires buf. length == 1 ∗∗ offset == 0 ∗∗ count == 1;

requires Perm(buf[0], write ) ;
8 requires Future(fut , p,

\sum(int act source, int act tag , Object msg;
10 this . source != ANY SOURCE ==> act source == this.source ∗∗

this .tag != ANY TAG ==> act tag == this.tag;
12 fut . recv(source , act source , Rank(), msg, tag, act tag , r) ∗

P(msg)));
14 ensures Value(\result . source) ∗∗ \result . source == act source;

ensures Value(\result .tag) ∗∗ \result .tag == act tag;
16 ensures Perm(buf[0], write ) ;

ensures buf[0] == msg;
18 ensures valid ( act source , Rank(), buf [0], act tag) ;

ensures Future(fut , p, P(msg));
20 @∗/

public Status Recv(Object buf, int offset , int count, Datatype datatype,
22 int source , int tag) throws MPIException {

}
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5.4 valid predicate

The valid(source, dest,msg, tag) predicate is a predicate that specifies which
messages (a combination of a source, destination, message value and tag) are
valid messages in the current MPI program. What a valid message is and
therefore the definition of the of the valid predicate depends on the MPI
program.

In our active object implementation a message is valid if it is either a
valid call message or a valid response message.

valid(source, dest,msg, tag) =
( isCallMessage(dest, tag) ∨ isResponseMessage(dest, tag) ) ∧
( isCallMessage(dest, tag)⇒
validCallMessage(source, dest,msg, tag) ) ∧

( isResponseMessage(dest, tag)⇒
validResponseMessage(source, dest,msg, tag) )

Intuitively: a valid message is either a call or response, a call must be a
valid call and a response must be a valid response.

Call message A call message is valid when the message value is a Call

object with the correct destination and tag/object id, it represents a valid
active object method call and a message back to the source with the callId
as tag would be a response.

validCallMessage(source, dest,msg, tag) =
msg instanceOf Call ∗ dest = msg.dest ∗ tag = msg.objectId ∗
validCall(msg.dest,msg.objectId,msg.signature,msg.params) ∗
isResponseMessage(source,msg.CallId)

An active object method call is valid when the combination of destination
and object id refers to an existing active object, the signature is a valid
method signature for the active object class, the number and types of the
parameters are valid for the method, and the pre-condition of the method
is met. This full definition of this predicate depends on the existing active
object classes in the program.

Response message A response message is valid if the post-condition of the
method call identified with the destination (caller) and the tag (call id) is met
and the message value (return value) is of the expected type. This definition
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of the validity of the response message requires some extra administration,
since the post-condition can refer back to the parameters used in the method
call. Therefore we wrapped the result value in an instace of the new Result

class and added a reference to the related Call object as specification-only
attribute to this new object. This allows us to refer to the method parameters
in the validResponseMessage predicate.

validResponseMessage(source, dest,msg, tag) =
msg instanceOf Response ∗ source = msg.call.dest ∗ tag = msg.call.callId ∗
postCondition(msg.call.dest,msg.call.objectId,msg.call.signature,
msg.call.params,msg.result)

Note that the destination of the original call (msg.call.dest) is the source
of the response message and that the tag is now the callId received from the
caller. postCondition is the predicate that specifies that the post-condition
for the called method is valid. This full definition of this post-condition
predicate depends on the existing active object classes in the program.

5.5 Annotation of implementation methods

In this section we will describe the annotations of the methods we created
and implemented ourself, especially the helper methods in the MPAO classed
used by all active objects and all callers. The annotations of the methods
we implemented follows generally the same structure as the annotated MPI
methods discussed in section 5.3. We will describe the methods roughly in
the order they are called: calling an active object, receiving an active object
call, sending the result value and receiving the result value.

Notable will be a lot of administrative overhead: caring around a lot of
read-only permissions (using the keyword Value) and variables containing
information about sending and receiving messages. There are three main
causes for this.

The first problem is that read permissions on field declared final (read-
only) are not automatically derived while this should be possible.

The second problem is the limitation of the Java programming language
to only allow returning a single value in a method. When multiple values need
to be returned a wrapper class must be created introducing more annotations.

Finally when using futures in specifications requires information to be
present at more points, which requires more specification-only variables and
related annotations. It also prevents the hiding of some variables in pred-
icates because the variable values are needed in action parameters in the
futures.
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Listing 9: Specification of the callMethod method of the MPAO class

/∗@
2 given Future fut ;

given frac p;
4 given process P(r) ;

requires fut != null ∗∗ p != none;
6 requires validCall (workerId , objectId , signature , parameters);

requires Future(fut , p,
8 \sum(int callId , int r ; ;

fut .send(Rank(), workerId , new Call( callId , signature ,
10 parameters), objectId ) ∗

fut . irecv (workerId , Rank(), callId , r) ∗ P(r)) ∗
12 P);

ensures \result .getToken();
14 ensures Value(\result . request) ;

ensures Value(\result . request . source) ∗∗ Value(\result . request . dest) ∗∗
16 Value(\result . request .tag) ∗∗ Value(\result . request . r) ∗∗

Value(\result . request .buf) ;
18 ensures \result . request . source == workerId ∗∗

\result . request . dest == Rank() ∗∗
20 \result . request .tag == callId ∗∗

\result . request . r == r ∗∗
22 \result . request .bufp == write ∗∗

\result . request .buf == \result.buffer ;
24 ensures Future(fut , p, P(r)) ;

@∗/
26 public static MPAOResult callMethod(int workerId, int objectId ,

String signature , Serializable [] parameters) {
28 }
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Listing 10: Specification of the receiveCall method of the MPAO class

/∗@
2 given Future fut ;

given frac p;
4 given process P(msg);

requires fut != null ∗∗ p != none;
6 requires Future(fut , p,

\sum(int source, Call msg; ;
8 fut . recv(ANY SOURCE, source, Rank(), msg, objectId, objectId, r) ∗

P(msg)));
10 ensures Value(\result . call ) ∗∗ \result . call == msg;

ensures Value(\result . source) ∗∗ \result . source == source;
12 ensures \result . valid () ;

ensures Future(fut , p, P(msg));
14 @∗/

public static ReceivedCall receiveCall ( int objectId ) {
16 }

This method requires access to the internal Request object and all of its
fields

callMethod The callMethod method (listing 9) is used when an active ob-
ject method is called. It forwards the method call to the correct MPI node
followed by the start of the receiving process for the result value. These
to steps are also shown in the future process, first a send action followed
by an asynchronous receive (irecv) action. The precise call identifier r is
not relevant, any unique identifier will do, hence the use of the sum. This
method also requires the validCall predicate discussed in section 5.4 indicat-
ing, among other things, that the pre-condition is met.

The post-condition ensures that all the information in the MPAOResult

result object is readable and correct and the getToken allows the get method
of the MPAOResult result object to be called.

receiveCall The receiveCall method (listing 10) is called on the node
containing the active object to receive method calls. The future specifies
the recv action to receive a method call message send by the callMethod

method. The source is not specified beforehand, instead the ANY SOURCE

constant is used as requested source parameter. The tag must be objectId,
so this value is used for both the requested tag and actual tag in the action.
There are no specific pre-conditions for this method.

The post-condition ensures the received call and the actual source are
returned in the ReceivedCall object and that this object is valid, i.e. the
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Listing 11: Specification of the sendResult method of the MPAO class

/∗@
2 given Future fut ;

given frac p;
4 given process P;

requires fut != null ∗∗ p != none;
6 requires postCondition(Rank(), call . objectId , call . signature ,

call .parameters, result ) ;
8 requires Future(fut , p, fut .send(Rank(), call . source ,

new Response(result), tag) ∗ P);
10 ensures Future(fut , p, P);

@∗/
12 public static void sendResult( int source , Call call ,

Serializable result ) {
14 }

valid predicate form section 5.4 holds.

sendResult The sendResult method (listing 11) is used for sending the
result of an active object method call back to the caller. The obvious pre-
condition of this method is that the post-condition of the active object
method call must hold. The future indicates that de result will be sent
to the source of the call.

MPAOResult.get The pre-condition of the MPAOResult.get method (listing
12) is quite large because a lot of permissions are needed for the future
waitrecv action. The pre-condition also requires the getToken to ensure it
is only called once. The important post-condition of this method is the valid
predicate, of which the post-condition of the active object method call can
be derived. Because this method can only be called once, the RemoteFuture

object is used to wrap the MPAOResult object to allow it to be used from
multiple threads.

RemoteFuture object The RemoteFuture object implements the Java Future
interface as discussed in chapter 3. It is based on the ForkJoinTask from
listing 2. This class calls the MPAOResult.get method the first time its own
get is called. We didn’t succeed to get the annotation of this class correct,
because the amount of extra administrative information that was needed to
correctly call the MPAOResult.get with a future and to correctly derive the
post-condition from the valid predicate. These information must be stored
as specification-only fields and maybe included in the already complicated
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Listing 12: Specification of the get method of the MPAOResult class

/∗@
2 given Future fut ;

given frac p;
4 given process P(msg);

requires fut != null ∗∗ p != none;
6 requires Value(this . request) ;

requires Value(this . request . source) ∗∗ Value(this . request . dest) ∗∗
8 Value(this . request .tag) ∗∗ Value(this . request . r) ∗∗

Value(this . request .buf) ;
10 requires getToken();

requires Future(fut , p,
12 \sum(Object msg;; waitrecv(this . request . source , this . request . dest ,

this . request .msg, this . request .tag, this . request . r) ∗ P(msg)));
14 ensures Value(this . request . source) ∗∗ Value(this . request . dest) ∗∗

Value(this . request .tag) ;
16 ensures \result == msg;

ensures valid (this . request . source , this . request . dest , \result ,
18 this . request .tag) ;

ensures Future(fut , p, P(msg));
20 @∗/

public Serializable get() {
22 }

csl invariant as seen in listing 2.

5.6 Active objects

In a similar fashion also the object containing the actual callers, active objects
and proxy classes can be annotated. These annotation are similar to the
annotations in the previous section but parameters such as method signatures
can be filled in and predicates such as postCondition can be made specific.

5.7 Verification

Automatic verification of the created annotations was not possible because
we used some features which are not (yet) implemented in the tool. These are
discussed in the next section. Although we tried hard to get the specifications
correct, we did not verify them by hand because of time constraints.
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5.8 Tool support

It was not possible to use the VerCors tool set with these specification. This
is because it has no mechanism yet to specify future action parameters with
unknown values. For example when receiving messages, the message value is
not known beforehand, but it currently must be specified in the future. In
our specifications we used the sum notation to solve this. Another possibility
is to use explicit OUT (output) parameters in actions. Both options are not
yet supported in VerCors.
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Chapter 6

Conclusion

The main question of this research was

To what extent can an active object
implementation with MPI be verified?

To a large extent an active object implementation can be specified using
the current techniques although some specific parts in the specification lan-
guage are not yet well defined. The specification is quite large compared to
the actual source code and it is not trivial to write.

Automatically verifying the implementation is not yet possible since some
of the required features are currently missing. Manual verification is possible
but probably not feasible since the specification is quite large. When the
necessary techniques are developed and implemented in the tool, automatic
verification should be possible in the future.

How can active objects be described and verified using permission-
based separation logic? It is possible to describe active objects using
permission-based separation logic. We used a similar to describing threads
with preFork and postJoin predicates. The Java interface Future is used as
base for returning result values.

To test our specification we created a sample program and verified it
using the VerCors tool set. There are some limitations with the tool. For
example, a Future subclass must be crated (or generated) for each active
object method.

How can active objects be implemented using MPI? Active objects
can easily be implemented by sending an MPI message when an active object
method is called and sending an MPI message back with the return value.
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This can be done in Java using the MPJ Express library. Because Java
does not support dynamic method creation, for each active object class a
proxy class must be created which sends the active object method call to
the actual active object. These proxy objects can probably be generated
automatically. This implementation also uses the Java Future interface to
return result values.

Can the active objects implementation in MPI be verified? To
verify an implementation it must first be annotated. We annotated the the
required methods of the MPJ Express library and most parts of our active
objects implementation. However we could not annotate all parts.

Annotating the MPJ Express library was not straightforward. The MPJ
Express library consists of several classes which functionality depend on each
other. This required ghost variables and corresponding permissions to simu-
late the inner workings. This resulted in a lot of administrative work in the
specification of the library and in the methods using the library.

Another difficulty was the specification of the future processes. A future
process must be specified at the start of the program. However not all re-
quired values are known in advance since they are generated by the MPJ
Express library or received from other MPI nodes. This can be solved by us-
ing the sum notation in the process term or using OUT parameters. However
these theories are not mature yet.

Also because behaviour must be specified up front sometimes extra ghost
parameters, ghost variables or permissions are needed which weren’t needed
for verification using histories. Future processes can also be counter-intuitive
because you need to reason in the opposite direction of the program flow.

In one class these problems combined making it impossible to annotate
the class without redesigning it or adding a lost of extra annotations and
ghost variables.

Also automatic verification was not possible because specification tech-
niques were used which are not yet supported by the tool set.

The current specification techniques seem to be suitable for programs and
data structures which are simple or repetitive in a predictable manner, for
example mathematical or algorithmic problems. These problems can often
be described in a single mathematical property, predicate or process term.

When the program or the structures become more complex the speci-
fications grow fast. A solution can be dividing a program or structure in
smaller parts. However this creates its own problems. For example, all im-
plicit knowledge and permissions must be specified explicitly in pre- and
postconditions when splitting a method into multiple methods.
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Can an example be verified using the developed techniques? As it
was already difficult to specify the active objects implementation, we didn’t
specify and verify an example program. For programs many of the same
problems exists as mentioned earlier. In our judgement specifying and veri-
fying a small and simple active object program should be doable. However
verifying larger, realistic and complex programs will require large efforts for
making a complete specification.

Tool support During this project we encountered some problems and limi-
tations in the verification tool VerCors. Some of the bugs were fixed or worked
around. It is not possible to use the sum notation or OUT parameters in
future processes which are required in our specification. Also other minor
features were missing, such as class parameters, generics, static variables
and methods and packages. Because of this we could not validate our full
implementation using the tool. However the specification of active objects
developed in chapter 3 can be used and validated using the tool.

6.1 Future work

In this project we concluded that there is no clear way for including unknown
data in future processes. A technique and syntax for specifying input or
other external data in futures and referring to that data in the rest of the
specification can greatly improve the usability of future processes. The sum
notation or OUT parameters should be developed further.

Currently there are only future processes for example programs. Defining
a future process for larger programs can be a complex task. Developing a
strategy or best practice for defining future process can help for specifying
realistic programs.

In some cases like the Java Future interface and its implementations
the specification of some methods, like assertions about return values, can
greatly depend on the use cases. It would be nice to develop a way to have
parametrized specifications, for example using class parameters.

Currently it is a lot of work to specify all permissions for variables used in
pre- and postconditions. However there is no need to check for permissions on
variables final since their value cannot be changed. Automatically assuming
read permissions on final variables can reduce the specification overhead
when a lot of immutable variables are used.

VerCors Most of the features mentioned above do not have support in
VerCors yet, such as the sum notation or for future processes. There are also
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some tool specific recommendations:
During this project there was no support for Java packages in VerCors.

This limited the possibilities to add structure to a project. Also existing pro-
grams use packages to structure their program and resolve naming conflicts
between classes. Package support allows larger project and existing code to
be verified while maintaining structure.

Knowledge of the inner workings of the tool is sometimes needed to solve
problems in the specification. Better documentation and more descriptive
error messages can shorten the time needed to find and solve errors in the
specification of a program.

The documentation on VerCors is short and for some parts non-existing.
Documentation containing all the features, assumptions and magic names of
the tool can greatly improve the learning time for new users of the tool. It
also helps finding the right techniques for specifying particular constructs in
the source code.
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