
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Towards
Systematic Black-Box Testing

for Exploitable Race Conditions
in Web Apps

Rob J. van Emous
r.j.vanemous@student.utwente.nl

Master Thesis
June 2019

Supervisors:
prof. dr. M. Huisman

dr. ing. E. Tews
(Computest) M.Sc. D. Keuper

Formal Methods and Tools Group
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

ABSTRACT

As web applications get more complicated and more integrated into our daily lives,
securing them against known cyber attacks is of great importance. Performing se-
curity tests is the primary way to discover the current risks and act accordingly.
In order to perform these test in a systematic way, testers create and use numer-
ous vulnerability lists and testing guidelines. Often, dedicated security institutions
like Escal Institute of Advanced Technologies (SANS), MITRE, Certified Secure,
and the Open Web Application Security Project (OWASP) create these guidelines.
These lists are not meant to be exhaustive, but as the introduction in the Common
Weakness Enumeration (CWE) of MITRE and SANS by Martin et al. (2011) puts
it: they "(..) evaluated each weakness based on prevalence, importance, and the
likelihood of exploit". This seems like a reasonable way of thinking, but as we have
shown in this research, it can also lead to oversight of essential, but stealthy security
issues.

In this research, we will focus on one such stealthy issue in web apps called a
race condition. Race conditions are known for a very long time as research by
Abbott et al. (1976) shows. Still, they are a type of security vulnerability that is
often not included in these lists as it is challenging to test for and also is not often
exploited. Based on the lack of research in this field, we argue that especially in the
web-environment, it has resulted in an underestimation of the risks involved. The
races continue to show up in web apps and when exploited, could have a significant
impact as a recent security blog by Jadon (2018) shows. This impact ranges from
circumventing any limited-usage functionality like coupon redemption to enabling
other types of security vulnerabilities like privilege escalation or a Denial of Service
(DoS).

That is why, in this research, we developed the first systematic method to test for
race conditions in web apps from a black-box perspective. We also built a tool to
support the exploitation and evaluated both in comparison with related tools.

1. Methodology - we have devised the first method for systematically testing for
race conditions in web apps from a black-box perspective. Most importantly,

iii

IV

this method contains a list of common race condition vulnerabilities in web
apps and a detailed strategy of how to test for these items.

2. Toolset - Next to this, we have developed the toolset called CompuRacer to
support the tester in the execution of this systematic test. It supports the gath-
ering of HTTP requests of interest, the parallel sending of these requests and
guided evaluation of responses.

3. Evaluation - toolset - Subsequently, we have evaluated both the toolset and
method. In order to do this, we compared the toolset to three related toolsets
on a functional-, usability- and performance-level. For the performance evalu-
ation, we used the tools in a real-life setup on a self-developed web app that
is vulnerable to race conditions. In this evaluation, we tested the raw speed of
sending parallel requests and the ability to exploit race conditions using the ap-
propriate statistical tests. Regarding all of these metrics, the toolset is shown
to be equal or better than all other tools.

4. Evaluation - method - Finally, the method and toolset are evaluated together
on seven web apps ranging from e-commerce platforms to blogs and wikis. We
were able to find much minor race condition related issues in these platforms,
but more importantly, for two e-commerce platforms, a severe vulnerability has
been found and reported which has a significant financial impact.

Based on this, we conclude that we have successfully created a method and toolset
that are sufficient for security testing. We are also aware that much more research
is required to expand upon these findings. Still, we hereby achieved the first step
towards systematic testing for race conditions in web apps, and by that, we hope
that this will have a positive effect on software quality in the future.

PREFACE

In my heart, I am both a meticulous software developer and a curious seeker of truth.
In academics, but also in other aspects of life, I experience that this goes hand in
hand perfectly. I remember that often when a professor teaching calculus would
make a remark about the computational complexity of a function, I would instantly
be prompted to write some code to verify his claims. They were always right.

Likewise, when creating software for other reasons like the automation of processes
and exploration of ideas, it feels like both an amazing privilege and a significant
responsibility. That is why I pursue to develop and encourage well written and secure
software. This often requires countless hours of designing, building, testing, and
building some more, but the end result is worth it. So it has been with my thesis.
"Failures, repeated failures, are finger posts on the road to achievement. One fails
forward toward success." as C.S. Lewis would cleverly put it. The research was
challenging but practical enough to fulfil my creative desire while hopefully still being
a truthful enrichment to the academic world.

v

VI

ACKNOWLEDGEMENTS

There would be no way I could have achieved this result on my own. Firstly, I would
like to thank my parents, brother and girlfriend for their loving support. Secondly,
my committee members, each of whom has been patient with me in times of doubt
and provided me with the necessary guidance throughout the process. Finally, as
a follower of Christ, I would like to thank God for the love and support I believe He
provides for me in life, but especially during this intense final period of my studies.

"For I can do everything through Christ, who gives me strength."
Philippians 4:13 - The Holy Bible (NLT)

vii

VIII

Contents

List of Figures xiv

List of Tables xv

List of Listings xv

List of Acronyms xvii

1 Introduction 1
1.1 Problem description & motivation . 1

1.1.1 Importance of secure web apps 1
1.1.2 Danger of race conditions explained 2
1.1.3 Difficulties in testing for race conditions 6
1.1.4 Overview of current web app testing methods 7
1.1.5 Classical race conditions tests for single-tier applications . . . 8

1.2 Research questions and methodology 10
1.3 Contributions . 11
1.4 Commissioner . 12
1.5 Structure of the work . 13

2 Background 15
2.1 Race conditions . 15
2.2 Web applications . 17

2.2.1 Structure . 17
2.2.2 Communication . 19
2.2.3 Technologies . 20

2.3 Software testing . 22
2.3.1 Essential software testing dimensions 23
2.3.2 Security testing . 27
2.3.3 Location of race condition testing 28

3 State of the art 29

ix

X CONTENTS

3.1 Client-side race conditions . 29
3.2 Detection of server-side race conditions 33

3.2.1 Published work . 33
3.2.2 Articles and blogs . 35
3.2.3 Open source tools . 39
3.2.4 Testing the open source tools 40

4 Creating a systematic method for web app testing 43
4.1 Definition of a race condition . 43
4.2 Development of methodology . 45

4.2.1 Map website functionality . 47
4.2.2 Functionality to race conditions 47
4.2.3 Select HTTP requests . 55
4.2.4 Send HTTP requests . 57
4.2.5 Evaluate attack . 61

4.3 Conclusions . 62

5 Developing the CompuRacer toolset 63
5.1 Requirements . 63

5.1.1 Gathering of HTTP requests 64
5.1.2 Composing and sending of HTTP requests 64
5.1.3 Handling of HTTP responses 66

5.2 Design . 67
5.2.1 Core . 68
5.2.2 Extensions . 71

5.3 Implementation . 73
5.3.1 Core - Main class . 73
5.3.2 Core - REST server . 74
5.3.3 Core - Command Line Interface (CLI) 75
5.3.4 Core - Batch . 78
5.3.5 Core - Async Batch sender . 78
5.3.6 Burp extension . 81
5.3.7 Browser extensions . 82

5.4 Conclusions . 82

6 Evaluation of toolset and testing methodology 83
6.1 Evaluation - Toolset functionality & usability 84

6.1.1 Definition of metrics and scores 84
6.1.2 Rating the tools according to metrics 88
6.1.3 Conclusions . 93

CONTENTS XI

6.2 Evaluation - Toolset performance . 94
6.2.1 Definition of metrics and scores 94
6.2.2 Performance test setup . 96
6.2.3 Results . 101
6.2.4 Conclusions . 117

6.3 Evaluation - Testing methodology . 118
6.3.1 Tested web apps . 118
6.3.2 Test results . 122
6.3.3 Conclusions . 130

7 Conclusions 133

8 Future work 135
8.1 Methodology improvements . 135
8.2 Toolset improvements . 136

8.2.1 Scientific research challenges 136
8.2.2 Engineering improvements . 138

8.3 Evaluation improvements . 141
8.3.1 Performance evaluation . 142
8.3.2 Practical evaluation . 143

References 145

Appendices 155

A Race condition testing tools sources 157

B CompuRacer toolset – README 159

C CompuRacer toolset – Manual 163
C.1 How to add HTTP requests of interest to the tool? 164

C.1.1 Send it from the browser using the Firefox extension 164
C.1.2 Send it from the Burp Suite using the Burp extension 165
C.1.3 Add it manually using the correct JSON format 167

C.2 How to compose a batch of HTTP requests? 167
C.2.1 Creating it manually and adding requests 168
C.2.2 Creating a batch using the automated modes 170
C.2.3 Add it manually using the correct JSON format 170
C.2.4 Import an exported batch . 171

C.3 How to send a batch and interpret the results? 172
C.3.1 Overview tables . 173

XII CONTENTS

C.3.2 Grouped responses . 174

D Toolset performance result histograms 179
D.1 Metric 1 - Test 1 - Local time-difference 179
D.2 Metric 1 - Test 2 - Application time-difference 182
D.3 Metric 2 - Test 1 - Voucher usage ratio 184
D.4 Metric 2 - Test 2 - Number of success codes 187

E Responsible disclosure reports 191

List of Figures

1.1 Simple two-thread race condition . 3
1.2 Duplicate account creation race condition 4
1.3 Session puzzling race condition . 5

2.1 Web app network and communication 18
2.2 Webapp structure and software components 21
2.3 Software testing methodologies . 23

3.1 Race condition testing tools . 30
3.2 Flask testing web app . 41

4.1 Race condition series . 45
4.2 Race condition testing method flow . 46
4.3 Race condition testing checklist . 49

5.1 CompuRacer toolset general design 68
5.2 CompuRacer toolset Core design . 69
5.3 Lifecycle design of the Burp and browser extensions 72
5.4 Sakurity Racer timings . 79
5.5 CompuRacer multi-process timings . 80
5.6 CompuRacer async timings . 80

6.1 Evaluation performance test setup . 96
6.2 Evaluation performance script output 100
6.3 Evaluation performance statistical tests 102
6.4 Overview of the local time-diff . 105
6.5 Overview of the application time-diff 109
6.6 Overview of the voucher redeem ratio 111
6.7 Overview of the number of success codes 114

8.1 Geographical load balancing races . 137
8.2 Geographical DNS test Facebook . 139

xiii

XIV LIST OF FIGURES

C.1 Adding request via Firefox extension 165
C.2 The CompuRacer Core output for a new request 165
C.3 Adding request via Burp extension . 166
C.4 The output for a comparison of requests 166
C.5 The Core output for a duplicate request 167
C.6 Adding batch via CLI . 169
C.7 Exporting and importing batch . 173
C.8 Sending a batch . 177
C.9 The output when comparing two result groups 178

D.1 Local time-diff no proxy . 180
D.2 Local time-diff remote server . 180
D.3 Local time-diff normal proxy . 181
D.4 Local time-diff slow proxy . 181
D.5 Application time-diff no proxy . 182
D.6 Application time-diff remote server . 183
D.7 Application time-diff normal proxy . 183
D.8 Application time-diff slow proxy . 184
D.9 Voucher usage ratio no proxy . 185
D.10 Voucher usage ratio remote server . 185
D.11 Voucher usage ratio normal proxy . 186
D.12 Voucher usage ratio slow proxy . 186
D.13 Number of success codes no proxy . 187
D.14 Number of success codes remote server 188
D.15 Number of success codes normal proxy 188
D.16 Number of success codes slow proxy 189

List of Tables

4.1 A listing of common HTTP methods and whether they are idempotent
or safe. A star indicates that this protocol requirement is often violated
in practice. 55

6.1 Functionality & usability metrics and scores 87
6.2 Functionality & usability metrics applied to tools 88
6.3 Performance test results local time-differences 107
6.4 Performance test results app time-differences 110
6.5 Performance test results voucher redeem ratio 113
6.6 Performance test results success codes 116
6.7 Rated items in race condition security test 123

A.1 Race condition testing tools sources 157

List of Listings

1 Practical test result WebGoat item 4 5
2 Dockerfile for setting up osCommerce 121
3 Practical test result WebGoat item 22a 125
4 Practical test result WebGoat item 22b 125
5 Manually adding a request to the Core 168
6 JavaScript Object Notation (JSON) file of a CompuRacer batch 171

xv

XVI LIST OF LISTINGS

List of Acronyms

AJAX Asynchronous JavaScript And XML

API Application Programming Interface

CI Continuous Integration

CIA confidentiality, integrity and availability

CLI Command Line Interface

CMS Content Management System

CSS Cascading Style Sheets

CWE Common Weakness Enumeration

DBMS DataBase Management System

DOM Document Object Model

DoS Denial of Service

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol (OSI level 7)

HTTP/1.x HTTP version 1.0 or 1.1

HTTP/2 HTTP version 2

HTTPS HTTP over TLS

IP Internet Protocol

JSON JavaScript Object Notation

MitM Man-in-the-Middle

OSI Open Systems Interconnection (model)

xvii

XVIII LIST OF ACRONYMS

OWASP Open Web Application Security Project

PHP Hypertext Preprocessor

RFC Request For Comments

ROI Return On Investment

SANS Escal Institute of Advanced Technologies

SIGSEGV Signal Segmentation Violation

SQL Structured Query Language

SSRC Server-Side Race Condition

SSRCs Server-Side Race Conditions

TCP Transmission Control Protocol (OSI level 6)

TOCTOU time of check to time of use

UDP User Datagram Protocol

WebRTC Web Real-Time Communication

WS WebSocket (OSI level 7)

WSS WS over TLS

XHR XMLHttpRequest

ZAP Zed Attack Proxy

Chapter 1

Introduction

1.1 Problem description & motivation

1.1.1 Importance of secure web apps

In modern society, we have fully integrated web applications into our everyday life.
They are used in all parts of life, including education, entertainment, taxes, shopping
and banking. As we trust these applications with our most important data, it is
essential that these applications are secure and available at all times. Both when
normal users use the web app (during peak hours), but especially when a malicious
user tries to attack it. Preferably, it should not be feasible for an attacker to extract
or destroy private information, act on our behalf, or disturb the availability of these
applications. In other words, the software quality should be at an appropriate level.
The question is, how do we make sure that is the case?

As we know from very early research regarding software testing, finding all flaws in
software is undecidable (Howden, 1976). To our best knowledge, this statement still
holds today. The best possible alternative can be found in a level of software quality
and maturity that is sufficient given the risks involved. In this case, ’risk’ is defined by
(McGraw, 2006, pp. 144-146) as the probability that an asset will suffer an event of
a given negative impact. High risk can, therefore, result from both a high probability
of the adverse event and also from a potentially catastrophic impact.

For example, if the application is a single page web app that only displays static
information, exploitation is not deemed to result in much negative impact and is also
not very likely to be interesting for attackers. Thus, low risks are involved, and the
level of software quality is allowed to be on the lower end of the spectrum. On the
contrary, for a high-valued banking application, it is very interesting for attackers,

1

2 CHAPTER 1. INTRODUCTION

and the financial impact could be significant. Therefore, this poses high risks and
requires an equally high-security standard.

In order to create such a secure software system, it should be designed and im-
plemented with security in mind. Even this is not enough as people are known to
make mistakes which could lead to security bugs. Next to this, developers often ex-
pect educated and benign users to use their application. Not all users are educated
users, or benign. Any user might be an attacker that tries to penetrate the applica-
tion’s safety measures and wreck havoc. Therefore, during and after development,
we also need to perform a variety of automated and manual testing to make sure we
meet our functional and security requirements.

In this thesis, the focus is on the security testing of web applications in order to im-
prove software quality. More concretely, it first points out a lack of knowledge regard-
ing security testing in one specific area. Many manuals exist on how to perform a
black-box security test in a systematic way. However, we will show that an important
issue is consistently lacking in attention both in theory and in practice. This issue is
called a race condition. We will show that exploitation of this issue can significantly
impact the security of a modern web application, but that testers also often neglect
it. Historically, testing for race conditions has received attention, but we show that
this effort is far from mature and cannot easily be applied to the complex multi-part
web applications of today. That is why we will investigate how systematic testing of
this specific issue can be introduced into the skillset of a security tester.

1.1.2 Danger of race conditions explained

Race conditions are a family of bugs that is timing-related. The Common Weakness
Enumeration regarding software systems by the SANS Institute and the MITRE Cor-
poration (2019) lists this issue in the ’time and state’ category (CWE-361) under the
specific item: ’Concurrent Execution using Shared Resource with Improper Synchro-
nisation’ (CWE-362). In other words, it is an issue that can occur when accesses
to a common variable for multiple processes are not properly managed. Providing
several examples might be the easiest way to show how this issue occurs in practice
and how it can have a significant impact on web app security.

For instance, one process might increment a variable with value five by one, while
another process tries to decrement the same variable by one. When the processor
executes these actions sequentially, we will end up with the original value. However,
when these actions are executed in parallel, as is rather normal using the multi-core
processors of today, one might overwrite the result of the other. We illustrate this

1.1. PROBLEM DESCRIPTION & MOTIVATION 3

race condition between two threads in figure 1.1. In this case, the outcome of the
incrementing process (T1) gets overwritten by the decrementing process (T2).

Figure 1.1: The figure illustrates two threads T1
and T2 that perform an update action to variable i.
T1 increments the value by one and T2 decre-
ments the value by one. As both threads read the
same value of i = 5, the result of the race condi-
tion is that T2 overwrites the result of T1.

The example does not sound too dan-
gerous, but what if the affected value
is the available money on a bank ac-
count? Alternatively, what if the true/-
false value that indicates whether a user
has access to some secret information?
Instead, what if it might push the sys-
tem in an unexpected state after which
it crashes? These are severe conse-
quences to the integrity, confidentiality
and availability of the application. If one
or both of the involved concurrent pro-
cesses are controllable by an attacker,
it poses a real security threat. Next, we
give two examples of a race condition
bug and its consequences in order to show that these theoretical issues also occur
in practice.

Example 1 - Duplicate account creation

We found a concrete example of an unexpected state that crashed web app func-
tionality during the exploration phase of this research. In this phase, we performed
a test for race conditions on the OWASP WebGoat, which is a deliberately insecure
e-learning web application based on the Spring MVC framework. It is supposed to
be insecure in some aspects, but not regarding race conditions, and that made it an
attractive target.

In this case, due to a race condition in account creation, multiple accounts with
the same username could be created while this should have been impossible. The
result was that the newly created accounts could only log in and log out, but all other
user-specific functionality no longer worked. A more far-reaching consequence was
that the general scoreboard did no longer work for any current or future user. As this
web app could be used for Capture The Flag (CTF) contests, this would be a very
undesirable impact.

4 CHAPTER 1. INTRODUCTION

We found two root issues:

1. The first issue is the fact that the developers did not mark the username as a
’unique’ field in the ’user_tracker’ table in the database. This is shown in the
WebGoat database diagram in figure 1.2.

2. The second issue is found in a TOCTOU or RCA - race condition (see defi-
nitions in section 4.1) in the app server with regards to the check to add only
unique users. In listing 1 a non-synchronised method in the RegistrationController
class is shown that is responsible for adding new users to the database. At line
4, both the ’Read’ and ’Check’ acts are performed to validate whether this is
a new user and at line 8, the ’Act’ is performed by adding the new user. The
time between executing line 4 and line 8 is the race window.

These issues made it possible to successfully add two accounts with the same user-
name in parallel. The ’user_tracker’ table is often read using a Spring function that
expects only one result. As it would get two (or more) results when loading any
user-based functionality, this function would throw the error: javax persistence
NonUniqueResultException with the explanatory text: result returns more than
one elements and the functionality would fail to load. The issue described here is a
clear case of an exploited race condition that impacts the availability of the applica-
tion as a whole.

Figure 1.2: The figure shows the flow from web app functionality to potential race condition vulnera-
bilities. For every vulnerability, the expected impact is also indicated using the appropriate coloured
circles.

1.1. PROBLEM DESCRIPTION & MOTIVATION 5

1 @PostMapping("/register.mvc")
2 @SneakyThrows
3 public String registration(@ModelAttribute("userForm") @Valid UserForm

userForm, BindingResult bindingResult, HttpServletRequest request) {↪→

4 userValidator.validate(userForm, bindingResult);
5 if (bindingResult.hasErrors()) {
6 return "registration";
7 }
8 userService.addUser(userForm.getUsername(), userForm.getPassword());
9 request.login(userForm.getUsername(), userForm.getPassword());

10 return "redirect:/attack";
11 }

Listing 1: The listing shows to method that is called when a new WebGoat user tries to register.

Example 2 - Session puzzling

Figure 1.3: A sequence diagram showing interac-
tion with a server vulnerable to session puzzling
that triggers the race condition.

To further motivate the difficulty in test-
ing for race conditions in web apps, let
us provide a second illustrative exam-
ple of a race condition vulnerability in
a web app. Imagine a web application
that provides access to public and pri-
vate forums about all kinds of subjects.
The user has created an account and
is using the forum now for some time.
One day when he logs in and the appli-
cation redirects him to the profile page;
he receives the information of someone
else. All details are there, and he can
view the contents of all private forums
that this user has access to. Being a
nice person, he decides not to abuse the
issue and log out. Later, when he logs in
again, he is back to his own page. How
is this possible?

The issue described above is not just
a hypothetical situation, but it is a real
session puzzling race condition that is introduced in the Web Application Hacker’s
Handbook (edition 2) written by (Stuttard and Pinto, 2011, pp. 426-427). One of

6 CHAPTER 1. INTRODUCTION

the authors had personally run into this specific issue. In that instance, the login
process required several steps. This is normal in, for instance, multi-factor authenti-
cation. During the process, the server locally stored the username of the user that
was logging in. This username would be used in the end to send the correct session
information to the client of the user. When two users would log in at roughly the
same time, thus within the race condition window, one would occasionally get the
session information for the account of the other. Thus, the sessions would be mixed
up or puzzled.

Even when a login consists of just a single request by a user and the server stores
the username while verifying the credentials using the database, this issue is still
possible. The sequence diagram in figure 1.3 illustrates this issue. Between the
moment Alice’s username is stored at the server and the response of the server
with her session information, Bob could also try to log in, accidentally overwrite the
username and unintendedly give Alice full access to his account.

1.1.3 Difficulties in testing for race conditions

Most web application tests do not formally include the security issue of race condi-
tions. Therefore, any reported race often falls in the category of unexpected find-
ings. Even then, the issue will be difficult to reproduce and therefore, difficult to
understand or resolve. In the case that a tester specifically tests for races, de-
pending on the individual, it does not go beyond some limited effort of the tester to
perform a particular request several times in parallel. For instance, trying to use a
discount code twice. Incidental testing for an issue can hardly be called a thorough
security assessment but is the current state of affairs. The reason behind this lack
of thorough testing for race conditions is that they are relatively difficult to test for.
The difficulty exists because race conditions are probabilistic events that are state
and time-related. They often need a specific program state to become a possible
outcome and even then can only be triggered during a minimal time-frame. This
period is called the race window. In the context of remote security tests, finding and
exploiting these issues becomes even more difficult as security tests mostly hap-
pen without access to the internals of servers or full knowledge of the source code.
Black- or grey-box testing is a common name for testing with (very) limited knowl-
edge. In this case, as (OWASP, 2009) mentions, only the responses from the server
can be monitored, and this increases the difficulty of verifying suspected issues. For
this research, the focus is on black-box testing.

1.1. PROBLEM DESCRIPTION & MOTIVATION 7

As both attackers and testers do not seem to have a systematic method of finding
these issues, their discovery and exploitation remain rare for now. That, in turn,
justifies only limited time and resources to improve on this situation and thus the
problem remains. As we have shown in the examples, incidental findings do show
that race conditions are prevalent in web apps, and therefore the current lack of
systematic exploitation is not a good indicator that this will remain the case in the
future. The MITRE Corporation (2019) page for race conditions also confirms this by
stating "Race conditions in web applications are under-studied and probably under-
reported (..)". That is why the addressing of issue is very important so that testers
will develop systematic testing for race conditions before the attackers do.

Despite the lack of systematic testing for race conditions in web apps, after con-
ducting a thorough search, we could find some effort in this direction in testing
manuals of security organisations and academic writing. We discuss these efforts
below.

1.1.4 Overview of current web app testing methods

For the reasons mentioned before, race conditions have never been a central part
of the main security test manuals of the most renowned security institutions. More
specifically, it is not included in the OWASP top ten lists of 2010, 2013 or 2017
(OWASP community, 2017, p. 6), or the Certified Secure (2018) checklists for server
and client testing. Only the extended weaknesses list of the MITRE Corporation
(2011) contains race conditions on position 33. However, when we dive into the
most elaborate security testing guides for web apps, some pages devoted to race
conditions can be found.

For instance, in the 300+ page OWASP testing guide by (Meucci et al., 2008, pp. 144-
146), it is said that race conditions (..) may occur when a process is critically or unex-
pectedly dependent on the sequence or timings of other events. The authors explain
dangerous areas as places where there is a difference between the time of check
to time of use (TOCTOU) of resources. In other words, they regard any non-atomic
access to a local variable or database as a potential race condition vulnerability wor-
thy of attention. Interestingly, in the latest edition of this document (version 4) by
(Muller et al., 2013, pp. 40,98), even less information can be found regarding race
conditions. There is one link to a blog by Chen (2011) about session puzzling by
using race conditions. This issue is equivalent to our illustrative example. It is an
actual vulnerability as it uses extra server load to make temporary (admin) session
values last long enough to use them to access sensitive information.

8 CHAPTER 1. INTRODUCTION

There does exist some effort in the literature and in practice to resolve this lack of
systematic testing for race conditions in web apps. However, most of these efforts
are only focused on functional or visual issues that occur on the client- or server-
side due to races. Research that seems to focus on exploitable race conditions in
web app logic or database interactions is minimal. The rarely found, related blogs
of security testers seem to be the only recent evidence that people are looking into
the security implications of race conditions in web apps. We will discuss all of these
efforts will in more detail in chapter 3 on state of the art.

Although several tools do exist like Sakurity racer, Race the web, Turbo Intruder
and netCloneFuzzer that target precisely this, in later sections, we will show these
have significant limitations. For instance, these tools only make the exploitation of
a known simple attack surface, like an account creation page, easier. As already
explained, duplicate accounts can often be created due to race conditions. Without
the knowledge of where to look for race conditions issues in web apps, the tools
have only minimal use. Next to this, they are only able to send a single request
in parallel. The lack of support for different requests or send delays is insufficient
when complex configurations of requests are required to trigger a race. Finally,
they provide insufficient help in interpreting the server responses. When a tester
has to verify issues or classify the associated risks, (semi)automated interpretation
of responses is essential. We discuss these tools more in-depth in section 3.2.3 on
related work and will also compare them to our product in chapter 6 on the evaluation
of the testing method and the toolset.

1.1.5 Classical race conditions tests for single-tier applications

In order to solve this lack of expertise, one might be tempted to look at methods
of development and testing that people have used historically. It used to be much
more common to create a monolithic or single-tier application. As Smith et al. (1998)
state, a single-tier application is a system in which the user interface, program logic
and storage interface is all contained in one place and often in one language. In
these rather simple software applications, we can see that Abbott et al. (1976) al-
ready mention concurrency issues and that makes it one of the oldest security prob-
lems.

The development of web applications started at a later point in time, but these could
also be considered sing-tier applications. All logic and storage were located at the
server, and the client browser only had to display the static webpage. If the browser
is not considered to be a different program or just a user interface but is included

1.1. PROBLEM DESCRIPTION & MOTIVATION 9

in the total client-server system as an active entity, the system could also be re-
garded as a two-tier application like (Tanenbaum and Van Steen, 2007, pp. 549-551)
does.

Many tools like (Flanagan and Freund, 2009, 2010; Wilcox et al., 2018) have been
designed over the years to help the developer of single-tier applications to deal with
race conditions. Some of these tools are discussed here. These tools started as
static checks that just looked at the source code without running the application.
They verified the correctness of the application: that the application used proper
synchronisation functions like fork-join pairs, locks, semaphores and mutexes (mu-
tually exclusive access). Later, developers also built dynamic tools that looked at
the application when it was actively running. For instance, FastTrack developed by
Flanagan and Freund (2009) and VerifiedFT developed by Wilcox et al. (2018) were
designed to verify that all concurrent sections either affect each other only temporar-
ily or when they do share some memory or other logic, that they are serializable. In
other words, whether these concurrent statements can be converted to a single se-
ries of non-concurrent statements. These tools have an excellent performance, even
in complex single-tier applications, but when the topology of the system increases
to a multi-tier system with many involved technologies and languages, they are no
longer applicable.

Unfortunately, web applications of today also fall in the category of multi-tier appli-
cations. At least three tiers can be distinguished:

1. App server – This is the heart of the application. It receives and processes
all user requests, communicates with the database, and provides response
pages to the user. A plethora of frameworks, languages and database types
are available to create the app server logic.

2. Web server – This is the entry point of the application for the user and securely
forwards all traffic between the app server and the user.

3. Browser – This shows the web page, but also contains the logic to respond to
user actions, interact with the server and to update the interface.

The intricate architecture of current day web apps clearly shows that we cannot
directly transfer the knowledge of how to test single-tier applications to this domain.
Testing individual parts of these apps for race conditions might still be possible using
traditional methods, but these tests cannot take into account the complex interaction
of different parts and the different languages involved. Next to this, the usage of
event-based languages like JavaScript at the client- as well as the server-side that
have almost no built-in concurrency control, impacts how testing must be performed
(Hong et al., 2014; Ide et al., 2009; Wang, 2017; Wang et al., 2017). Finally, as

10 CHAPTER 1. INTRODUCTION

security testers often only access a web app from a grey- or black-box perspective,
this approach is incompatible with the full source code access that most non-web
app tools require. Based on all this, we must devise entirely different methods to
test for race conditions in web apps.

1.2 Research questions and methodology

It is clear that race conditions can pose a serious threat to the security of modern
web applications and exploitation can have a big (financial) impact. At the same
time, there is both a lack of awareness of these issues and a lack of capability
to efficiently test for them. Existing knowledge on how to test for race conditions is
shown to be not directly applicable as it mostly targets single-tier applications. When
it does focus on web applications, it does not look at the security of the application
as a whole. The handful of tools that does exist appears to be too simple to fit the
current strategy of security testers.

At the beginning of the chapter, it was stated that the thesis would investigate how
systematic testing of this specific issue can be introduced into the skillset of a secu-
rity tester. We can now conclude that at least two hurdles have to be taken to make
this possible: 1) Find out in what places race conditions could occur in web apps,
and 2) explore how these places can be systematically detected and exploited from
a black-box perspective. With this in mind, we propose the following main question
for this research:

How can we perform systematic black-box testing
for exploitable race conditions in web apps?

In order to answer this question, we need an appropriate methodology. We found
a similar type of security testing research, and this inspired our methodology. The
research was done by Kuosmanen et al. (2016) with regards to automated security
testing of WebSocket implementations. They first tried to understand the technology
and common security vulnerabilities. Then, they investigated how to test for these
issues and finally, they created an automated testing tool.

When we apply this to our research, we first need to know where Server-Side Race
Condition (SSRC) vulnerabilities typically occur in web apps and investigate what
impact they have. Then, we investigate how to exploit them from the client-side in
a general and systematic way. We use these findings to create a semi-automatic
testing tool. Finally, this tool should be applied to some real web apps to test the
performance and usability.

1.3. CONTRIBUTIONS 11

We can rewrite this procedure as three research questions:

• RQ1 - In what parts of web app functionality do SSRC vulnerabilities occur?

• RQ2 - How can we make SSRCs more likely to happen from a black-box per-
spective?

• RQ3 - How can we develop an effective tool to help find and exploit SSRCs
from a black-box perspective?

Chronologically, we will start by investigating RQ1 and RQ2, but this will overlap
with the creation and testing process of the tool of RQ3. The reason behind this
is the fact that the knowledge of race conditions in web apps is currently rather
poor. Therefore, we will gain much information about where to find these issues and
how to exploit them by applying the tool in practice. Subsequently, this knowledge
can be used to add information to RQ1 and RQ2. Based on a combination of the
knowledge about how to test for race conditions in a systematic way and the usability
and performance of the final tool, we can answer the main research question.

The value of the research is significant because, to the best of our knowledge, no
research exists that looks into systematic black-box testing for exploitable race con-
ditions. If the results are positive, our research makes a significant leap in closing
this gap of knowledge. If we would have to answer the main question in the negative,
the gained knowledge about the location, impact and exploitation of race conditions
in web apps is still a valuable addition to the current lack of research about this
subject.

1.3 Contributions

Concretely, the following contributions of the thesis can be discerned:

1. Methodology development - A preliminary systematic methodology for test-
ing a web app regarding race conditions from a black-box perspective. The
method includes an answer to the questions of how to discover race condi-
tions (RQ1), how to combine requests to trigger race conditions, and how to
evaluate whether the race happened (RQ2). This methodology both includes a
general solution to these issues and an answer specific to particular web app
types like blogs, wikis and e-learning platforms.

2. Toolset creation - A toolset that can support the tester in following the method-
ology as described before (RQ3). This toolset integrates well with the current
security testing practices by importing requests of interest from existing testing

12 CHAPTER 1. INTRODUCTION

tools. Next to this, it is capable of supporting complex combinations of re-
quests that can be sent in parallel to trigger race conditions. Last, it supports
the tester in evaluating whether the exploitation was successful.

3. Evaluation of methodology and toolset - The existence of a testing method
and a toolset are already an improvement upon the current situation, but with-
out any evaluation regarding the effectiveness of the proposed method and
tool, the validity of the answers to all research questions diminishes greatly.
Therefore, an evaluation of the effectiveness of these contributions is added
as well (RQ1, RQ2, RQ3). This evaluation covers the functionality, usability
and performance of the toolset as compared to similar tools put forward by
related work. Next to this, it contains a practical application of the method and
the toolset to test for race conditions in several web apps. After this application,
we can easily evaluate the effectiveness of the method and toolset combined.

When we obtain the results regarding all research questions, this should lead to a
satisfying answer to the main research question as well. Thus, having the first ver-
sion of a systematic way to perform black-box testing for exploitable race conditions
in web apps.

1.4 Commissioner

As ready indicated in the motivation, during security assessments, testers often run
into a range of particularities of web applications that seemed to be timing-related.
Some of these issues were shown to be exploitable, but a systematic way to find
them was not yet employed. Some research showed that not only Computest, but
most of the companies in this field do not systematically test for race conditions in
the web apps they test. With the knowledge of the possible impact of race conditions
on the security of web apps, Computest decided that this was a perfect topic for a
master thesis.

We conducted the research at a Computest under the guidance of MSc. Daan Ke-
uper at the R&D department. They also graciously provided us with a professional
version of the advanced security testing tool called Burp Suite (Portswigger, 2018a).
This was heavily used in the development and application of our toolset. Computest
is a software testing company that is located in the Netherlands and has about 120
employees. It offers consultancy and training in integrated quality assurance and
supplies services in the areas of performance, security and functional testing. The
end goal is an improvement of software quality to ensure that applications and in-

1.5. STRUCTURE OF THE WORK 13

frastructures work as well as possible (Computest, 2019). This end-goal of software
quality improvement perfectly matches the general goal we have also stated at the
beginning of this chapter.

1.5 Structure of the work

Next, we give an in-depth background of race conditions, web applications and the
testing of software systems in chapter 2. The information should give the reader
enough knowledge of the context to understand the actuality and difficulty of the
problem and the importance of the solution that this thesis tries to provide. In chap-
ter 3, the state of the art research in the detection and exploitation of race conditions
in web apps is given.

Chapter 4 starts with a continuance of our earlier treatment of race conditions based
on our findings. Then it addresses the creation of the first systematic method to test
for race conditions in web apps. Then, in chapter 5, we discuss the requirements,
design and implementation of CompuRacer. This is a software toolset we created
to accompany the systematic method. In chapter 6 the effectiveness of the toolset
and systematic method are evaluated based on their functionality, usability and per-
formance.

Based on this work, the research questions as posed in section 1.2 are answered in
chapter 7. Then, future work to extend on this research is enumerated in chapter 8.
Last, the bibliography is listed, and the appendices, including a detailed manual of
the CompuRacer toolset, finalise the thesis.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Background

In the introduction, we have only briefly introduced several important concepts. More
in-depth knowledge is deemed necessary for the reader to understand the reason
behind different steps that we will take in the thesis. In this chapter, we set out to do
this.

First, we will give a more detailed description of what is already known about race
conditions in general section 2.1. Thus, how they can occur and what types of
impact are expected for web applications. At the beginning of the section 4.1, we
will continue this explanation of race conditions with our definitions and findings
regarding race conditions in web apps. Next, in section 2.2, the essential elements
that web apps most commonly consist of are explained for the reader to get a better
grasp of where race conditions could occur in these web apps. Finally, a background
on software testing, in general, is given in section 2.3. In this section, in line with
the central questions of the thesis, we will pay special attention to how security
assessments and penetration testing of web apps is performed from a black-box
perspective.

2.1 Race conditions

In this research, we will focus on a family of bugs called race conditions. These
bugs are caused by an unpredictable ordering of (atomic) events in which at least
one sequence results in unwanted behaviour of the application. The unpredictable
order is caused by any form of concurrent execution without proper synchronisation
techniques. More specifically, most races are either caused by TOCTOU bugs or by
read-and-then-write bugs, as Northcutt (2007) explains.

15

16 CHAPTER 2. BACKGROUND

Root of the issue Most software is based on assumptions of a happens-before
relation between events like creating a file before writing to it (TOCTOU), storing
the settings of a user before closing the application, or reading from and writing to
a database entry without any other concurrent reads or writes to this entry (read-
and-then-write) (Dean and Hu, 2004). The program will often fail when these as-
sumptions are violated. As already mentioned in the introduction, these bugs are
notoriously hard to debug as they are timing related. Thus, any change to the ex-
ecution order or speed of the program to pinpoint the bug could also influence or
temporarily mask the bug itself. As we have shown in chapter 1, these bugs occur
both in single-tier applications but also in more complex web apps (at client- and
server-side).

Impact of exploitation We can divide the impact of race conditions in web apps,
when there is any impact, into three main types: ’visual’, ’functional’ and ’security.’
The overarching consequences can also be expressed financially or as reputational
damage. Reputational damage or distrust by the clients is often only of concern
because of the financial impact. For this thesis, we are primarily interested in race
conditions that result in security issues, but to clearly be able to identify this kind of
impact, we will also discuss the other types of impact:

1. Financial - The total impact can also be measured financially, but as this
requires a lot more knowledge about the (specific) involved business pro-
cesses, we do not concern ourselves with this measure in this thesis. How-
ever, as the actions of most businesses revolve around the financial Return
On Investment (ROI), a financial incentive for investing in cybersecurity is very
important in practice. Unfortunately, often, companies only see the value of
these types of investments after a catastrophic failure. For reasons behind this
largely ignorance-based issue and appropriate solutions, we refer the reader
to the research on the economics of cybersecurity by Moore (2010).

2. Visual - Visual consequences are about any change in the visual appearance
of a webpage (at the client-side) that is not desired or intended by the devel-
opers, but also does not affect the functionality or security of the application
(Mutlu et al., 2014). This issue can sometimes be observed when a webpage
loads without any styling because the Cascading Style Sheets (CSS) fails to
download or parse in a reasonable amount of time.

3. Functional - Functional race condition bugs are related to any aspect of the
web app not functioning as designed. This malfunctioning could lead to an
exploitable security vulnerability when an attacker can influence the issues. If

2.2. WEB APPLICATIONS 17

not, the issues could still cause unwanted behaviour or crashes. For instance,
multiple background cleanup job of a web server might race and as a con-
sequence, leave the database in an inconsistent state. This issue does not
seem to be influenceable by an attacker, but could still cause crashes in the
application.

4. Security - If, however, the erratic behaviour can be exploited by an attacker
resulting in significant impact, it can be considered a security vulnerability. Ex-
amples of this kind of impact are shown in the introduction chapter (multiple
account creation and session puzzling). The impact of security vulnerabili-
ties can be further subdivided in confidentiality, integrity and availability (CIA)
(Techrepublic, 2019). We will further explain these types of security impact in
section 4.2.

In section 4.1, we will continue with our findings regarding race condition types in
web apps. We will mainly focus on explaining how race conditions start at interleav-
ings of single actions in source code and how these issues propagate to a series of
actions that can eventually also impact the application as a whole.

2.2 Web applications

To discover in what functional parts of a web app certain race conditions could occur
and what kind of impact is expected, it is essential to have a basic knowledge of how
a web app is designed. We will first elaborate on the network setup of a web app.
Then, the communication techniques between client and server are discussed. Fi-
nally, the specific technologies, libraries and tools are discussed that are commonly
used for developing web applications. For all aspects, we will briefly discuss the im-
pact of certain design choices on the expected prevalence of race conditions.

2.2.1 Structure

In this section, the network setup of web apps is discussed. As already mentioned in
the introduction, in the past, web applications have changed from simple single-tier
(or two-tier) applications to complex multi-tier applications. For our thesis, we focus
on state of the art regarding web applications, and that is why only the multi-tier
web applications are discussed. Still, the foundational aspects of the web have not
changed, and that is why we also refer to relatively mature and but well-established
sources.

18 CHAPTER 2. BACKGROUND

As you can see in figure 2.1a, a multi-tier web app can be divided in a client-side
and a server-side. The client-side is comprised of the Hypertext Markup Language
(HTML), CSS and JavaScript files rendered in a browser (Tanenbaum and Van Steen,
2007, chap. 12.1-12.2). The HTML files describe the general structure and static
content of the web app, the CSS describes the look and feel of the application and
the JavaScript files control the dynamic behaviour. The server side can just be a
single web server, application (app) server and a database, but in every medium-to-
large web app, the network structure is much more complex.

(a) The network components involved in hosting
a typical web app

(b) The client-server communication techniques
often used in web apps

Figure 2.1: Web app network components and communication techniques

Often, a load balancer distributes the traffic between multiple servers at multiple
locations. The web server receives the client-requests, responds with the static
content and forwards requests for dynamic content to the application server. The
app server then fetches information from a database or (internal) cache, creates a
response and sends it back to the client via the web server. Web apps are not limited
to one database which can only scale ’vertically’ by using better hardware but also
scale ’horizontally’ by adding more database replica’s.

The purposes of multiple replicated databases are indicated by Özsu and Valduriez
(2011) to be the following: 1) system availability, 2) performance, 3) scalability, and
4) diverse application requirements like for backups. The availability is increased
by having more available database instances than necessary where one could take
over from the other in case of a failure. For further reading with regards to novel
ways to make applications scale using microservices (a separation of every func-
tional part into its own independent subsystem), we would like to refer the reader to
Dragoni et al. (2017). Additional databases can also be used to separate the data
and workload evenly for more performance. Scalability is supported because these
multiple replicas can be placed in different geographical areas to support a wide
variety of users spread across the globe.

2.2. WEB APPLICATIONS 19

As both the number of components of web apps and the performance is increased,
we also expect more options to be available for race conditions to occur. Within
single-tier applications, traditional types of race conditions occur between multiple
processes. In multiple duplicated components or separate services, these race con-
ditions could also occur between these components during the mutual usage, editing
and synchronisation of data. In chapter 4, we will further elaborate on the potential
race conditions between web app components.

2.2.2 Communication

Next to the network setup of a web app, the communication protocols between client
and server also differ per web app, and most web apps use a combination of tech-
niques for different parts of functionality. From the black-box testing perspective,
having in-depth knowledge about these communication techniques is very impor-
tant as these are the only means by which race conditions might be triggered at
the server from the client. In this thesis, only the request-response type of com-
munication is taken into account, but in the section 8.2.1 on the future work we will
also discuss race condition exploitation options using the other two techniques. In
figure 2.1b, the three main types of communication are listed. We will explain these
techniques below.

1. Request-response - the client initiates the request for data. In normal Hypertext
Transfer Protocol (OSI level 7) (HTTP), a client first creates a TCP connec-
tion to the server and then (re)loads a full page via several HTTP requests
(Tanenbaum and Van Steen, 2007, chap. 12.3). In contrast, in Asynchronous
JavaScript And XML (AJAX) or Comet, this behaviour is changed. These tech-
niques still rely on the creation of a TCP request but are much more versatile.

AJAX is the name of all techniques that allow the client (via JavaScript XML-
HttpRequests) to ask the server asynchronously for an update to a part of the
webpage without a page-reload (Woychowsky, 2007). Comet or long-polling is
a specific type of AJAX in which the asynchronous request blocks until there
actually is an update (Carbou, 2019). This avoids some of the unnecessary
polling by temporarily moving the initiative to the server.

2. Push updates - Contrary to the standard HTTP requests and AJAX and con-
tinuing in the direction of Comet, the initiative has been fully moved from the
client to the server in this branch of techniques. The only responsibility of the
client is to subscribe to the types of events (Server-Sent Events) she is inter-
ested in. When the server encounters an event of this type, it will update the

20 CHAPTER 2. BACKGROUND

client until she unsubscribes. Server-Sent Events (SSE) can be sent using the
Comet technique (Pohja, 2009).

Officially, SSE are part of the HTTP version 2 (HTTP/2) specification and are
one of the most distinguishing new features. HTTP/2 is an update to the old
HTTP version 1.0 or 1.1 (HTTP/1.x) Standard in which Transmission Control
Protocol (OSI level 6) (TCP) streams can be shared between HTTP requests
(speedup), binary data is transferred instead of text strings, some headers
are made optional, and headers can be compressed. SSE also allows for the
server to send several files like scripts, pictures or CSS alongside an HTTP
response page. It already knows that the client requires them eventually and
therefore avoids multiple request-response cycles to load a single page.

3. Bi-directional - Especially, for live chats, web-based games, media streaming,
live statistics of sports or stock prices, long polling techniques or SSE might
still not be sufficiently flexible. Also, the overhead per request is still significant.
Improvement is found in using a real-time web protocol like WebSocket. Web-
sockets are part of the HTML5 specification and were fully supported by most
browsers at around 2011.

It is a protocol at the same Open Systems Interconnection (model) (OSI) level
as HTTP and HTTP over TLS (HTTPS) called WebSocket (OSI level 7) (WS)
and WS over TLS (WSS) respectively, and therefore the initial HTTP proto-
col needs to be upgraded (changed) when a client wants to communicate to
a server using this technology. As the final Request For Comments (RFC)
by Fette and Melnikov (2011) shows, WebSockets allow for full-duplex real-
time communication between the client and server side of web apps. Thus,
the server, as well as the client, can push updated data to each other at any
moment in time with a minimal overhead compared to HTTP.

2.2.3 Technologies

Next to the network setup and communication protocols used in a web app, we are
also interested in the technologies that are currently in use to develop web apps.
How these technologies support developers in creating secure web apps greatly in-
fluence the generalisability of any race condition findings in a specific web app.

When most of the web application logic is self-created by the developers, most find-
ings of bugs will be specific to this web app. On the other end of the spectrum, we
see Content Management Systems (CMSs) like the favoured Wordpress CMS that
only requires minor configuration from the developers. Therefore, most findings will

2.2. WEB APPLICATIONS 21

be equivalent to all web apps built using these systems. The middle ground is cov-
ered by web apps supported by (elaborate) frameworks like Python Django.

The listing of commonly used web app technologies in figure 2.2 is based on the
popularity of the languages and techniques as indicated by the global survey of
Stack overflow (2018), the popularity ranking of databases by DB-Engines (2018),
the suggestions of blogs by web development companies like B. and V. (2018) of
RubyGarage and Lozinsky (2017) of WebiNerds, and the advice of security testers
at Computest. Both SQL and NoSQL databases are included.

Figure 2.2: A listing of some of the most common web app structure and software components.

As race conditions are explained above to require parallelly accessed storage, the
way the database copes with parallel transactions greatly influences the existence
and exploitability of race conditions in the web app as a whole. The way a database
can deal with this is described in its ACID compliance. The ACIDity of databases
is as (Özsu and Valduriez, 2011, pp 21-23) explains, the extent to which different
parallel transactions are capable of influencing each other. As you might expect,
complying to the ACID standards becomes more complicated when databases are
also allowed to be (partially) replicated and distributed geographically. Especially
now that more NoSQL databases like MongoDB become at least document-level
ACID compliant and stable at massive scales, as Vial (2018) shows, there is a move
from traditional relational databases to NoSQL databases. Still, both types are used
in practice and therefore are included in the figure.

Redis is also a NoSQL database, but it is more commonly used as a key-value
caching solution and is therefore placed in this block together with the alternative

22 CHAPTER 2. BACKGROUND

called Memcached. The server-side logic is shown as a programming language
+ web development framework because these components are often inseparable.
However, for some languages, more framework options are available like the Py-
lons Project (2019) which is web framework for Python or the Meteor framework for
JavaScript (Vanian, 2019).

The reader should now have a more in-depth idea of how web apps are developed
nowadays. In this thesis, we will not focus on researching race conditions in specific
technologies, but rather on the user-faced functionality (of any technology) that a
tester can actually influence from a black-box perspective. However, during the
selection of web apps for practical testing in section 6.3, we have tried to find a set of
web apps that, when combined, use most of the technologies discussed here.

2.3 Software testing

Companies that build web app software are focused on delivering fast, feature-
packed and high-quality software. For about 20 years, companies are no longer
using static ’waterfall’ methods of design, development and testing, but are using
various methods of Agile development and Continuous Integration (CI) (Kurapati
et al., 2012). This results in a development process in which every day (or week) a
slightly improved (nightly) version of the system is built and tested.

It is clear that the methods of testing have considerably evolved, but the statement
by Hetzel (1984) still holds: "Software testing is any activity aimed at evaluating an
attribute or capability of a program or system and determining that it meets its re-
quired results.". Next to this, the goal of the most mature type of testing is defined by
Beizer (2003) to be to create a serious mental discipline to ensure software quality.
This idea is a significant improvement over the novice mindset: ’debug it until it com-
piles’ and is a more foundational goal than: ’test software to reduce failure-related
risks’. At the same time, it is something that is known to be very hard to realise in
practice.

As already mentioned in the introduction, the topic of this thesis is one small part
of this overall goal of ensuring software quality. In this section, we will show where
black-box security testing for race conditions in web apps could integrate with exist-
ing security testing. To do this, first, four major dimensions to software testing are
explained. After this, zoom into how security testing is performed, and finally, we try
to pinpoint the location along each of these axes of our topic of black-box testing for
race conditions.

2.3. SOFTWARE TESTING 23

2.3.1 Essential software testing dimensions

In this section, we will discuss four major dimensions (or axis) of software testing, as
shown in figure 2.3. We would like to stress that not every option along every axis
is compatible with every option along a different axis. That is why, for every axis,
the compatibility with the other axis is discussed. For instance, static performance
testing or black-box functional testing are not feasible options.

Figure 2.3: The figure shows all aspects of the four major dimensions of software testing that are
discussed in this section.

The first axis is based on the three different aspects of software quality that could
be tested: functional, performance or security (Moilanen et al., 2015). You could
also consider adding the legal requirements to software quality as a fourth aspect,
but we do not know of any legal requirements to software quality that cannot be
assigned to either of the three aspects already mentioned.

• Functional - Whether every aspect of the system is implemented correctly
according to the requirements. This results in a system that works as expected
during a typical run.

• Performance - Whether the system is robust enough to be able to reliably
support the expected (peak) load without failure.

• Security - Whether the risk that the system can be made to function in a not-
intended way resulting in a negative impact is of an acceptable level.

Interestingly, improvements to any software based on functional and performance
tests can also improve the security of the application as functional bugs or perfor-
mance issues could be misused by an attacker. However, this does not mean that
the specific security aspect of software testing can be omitted. One reason for this

24 CHAPTER 2. BACKGROUND

is that the testers need to adopt an adversary mindset for most security testers. In
other words, he needs to think like a hacker who wants to get in using any possible
method (outside of the exact specification and design) instead of a developer who
tends to only check conventional methods.

Although functional and performance tests do require manual labour to set up, after
this phase, it can often be run automatically. For security testing, we can automati-
cally check for most known vulnerabilities in software and dependencies, but these
checks are neither durable nor conclusive. On the one hand, this is because new
security bugs are found, and any listing of potential vulnerabilities quickly becomes
outdated. It is also due to the very versatile and creative interaction with the system
that is required to perform thorough security testing. Any determined hacker would
perform such manual labour as well, and he would only need one way in. On the
contrary, a security tester often tries to discover every way in – the whole attack
surface.

The second axis corresponds to the five software development levels where test-
ing could take place: unit, module, i, system and acceptance as (Ammann and
Offutt, 2016, chap. 1.1) show. One might be tempted to include regression testing
as well, but this is not an additional level. It is the act of comparing the software
product as a whole between different versions as a part of maintenance. The in-
depth explanation of every level is shown below and is adapted from (Ammann and
Offutt, 2016, chap. 1.1):

• Unit testing - This often targets the smallest amount of code at the level of
functions and methods. The method is tested with different kinds of expected
and not expected input data to confirm a correct implementation.

• Module testing - This level targets a combination of methods and functions
with the same purpose. In Object-Oriented (OO) programming, this is a class.
Else, it could refer to a single file. The test assesses whether the methods
within the class work together to abide by the detailed design of the application
properly.

• Integration testing - This encompasses testing a combination of classes that
form a single subsystem of an application. Based on the subsystem design,
the tester assesses whether the structure and behaviour of this part match the
design.

• System testing - This level targets the assembly of the different subsystems
and their connectors into the complete system. The tester evaluates whether

2.3. SOFTWARE TESTING 25

the system matches the requirements to the system as a whole. This is the
’architectural design’.

• Acceptance testing - This highest level of testing is also about the complete
system. However, now, the tester determines whether the actor-needs as de-
scribed in the requirements are fulfilled. It requires users with the appropriate
domain knowledge as it evaluates whether the system does what the users
themselves want.

Both the functional and the security aspects of software quality, as mentioned above,
can be tested at all levels. Performance tests, however, are often based on specific
user-activity based requirements and can, therefore, only be performed as system
or acceptance testing.

The third axis is the access and knowledge level of the tester regarding the inter-
nal working of the system under test: black-box, white-box or grey-box (Acharya and
Pandya, 2012). The exact definition of these terms does not seem to be used con-
sistently throughout literature. We have used the most common way to explain them.
In most cases, regardless of this level, the tester does know the user-requirements
of system or how it should behave.

1. Black-box - The tester known next to nothing about the internal workings of
the system (like statements and branches) and cannot view the source code.
He does know how the system should behave according to its requirements,
he can run the system, and interact with it from the outside to evaluate the
consistency of this expected behaviour. In this case, the tester does not have
significantly more information than a typical user or attacker of a system has.
Thus, a manual and a compiled version of a piece of software or the Internet
Protocol (IP) addresses of the web app servers.

2. White-box - Next to the abilities and knowledge of the black-box tester, this
tester also has full knowledge of the design and internal workings of the system
and can view the source code and any related documentation. The test can,
therefore, be executed from the inside of the application either by a developer
or an independent tester. The advantage of this technique is that a tester can
reliably test almost all execution paths of a system. This allows for the most
thorough testing.

3. Grey-box - This is a hybrid form of the types described above. As Acharya and
Pandya (2012) describes, in this case, the tester knows some things about
the internal workings of the system and might have access to parts of the

26 CHAPTER 2. BACKGROUND

documentation or source code. Both the advantages and the disadvantages
of the other types could apply to this technique dependant on the specific case.

Interestingly, in contrast to the other work by Acharya and Pandya cited earlier, (Am-
mann and Offutt, 2016, chap. 1.4) claim that the test distinctions made above have
become obsolete as several new types of abstract software models are a more pow-
erful way to describe this aspect of testing. However, to the best of our knowledge,
these distinctions are still in common use, and we also deem them sufficient for
explaining the topic of this thesis. That is why we have decided to stick by these
terms.

Regarding the first axis, functional tests are often executed from a white-box per-
spective, while performance and security tests can be performed both from a black-
or grey-box perspective. Any part of the second axis, as described before, can be
tested using the white-box approach. Contrarily, only system and acceptance test-
ing seem to be possible using a black-box method. A grey-box approach might be
able to target all levels depending on the specific case.

The fourth axis is the testing method: static, symbolic or dynamic (Godefroid
et al., 2008). This indicates how the software is analysed to perform the tests. This
analysis could be purely based on the source code itself, or it could require the tester
to execute the software.

1. Static - This method could be considered the oldest form of testing. It requires
access to the source code of the application and at least verifies whether the
code abides by the syntax of the language itself. Any other checks that do
not require knowledge of the value of variables or other execution-related be-
haviours can also be considered static testing. Often, these kinds of checkers
are already built into Integrated Development Environments (IDEs) to quickly
spot errors while developing an application.

2. Dynamic - This method runs the application using predefined or automatically
generated input and tries to discover whether all reachable program states are
valid and do not result in errors. Contrary to static analysis, it requires a cer-
tain knowledge of valid inputs and outputs of the program, which is not always
desirable. It does, however, have the power to show that a system not only
works in theory (static) but also in practice. As the system must be success-
fully compiled and executed before dynamic testing is possible, a dynamic test
following and complementing a static test is a common procedure.

2.3. SOFTWARE TESTING 27

3. Symbolic - Just like dynamic testing, this method tries to infer the run-time
behaviour of the application. However, it does not do this by simply running
the application itself, but by also assigning a symbolic value to each variable.
Based on the requirements of the system, it can then calculate what ranges
of different variable values will occur during program execution. It does not
require knowledge of valid inputs like dynamic testing does. Unfortunately, ex-
haustive testing in large systems is often not possible due to ’path explosion’.
This is the name for an exponentially large number of paths through the pro-
gram, or states, due to branches (like if, while, for, fork statements) that have
to be explored. Concolic testing tries to resolve this issue by combining sym-
bolic analysis with concrete (dynamic) testing using actual inputs to a running
program to quickly rule out (prune) unfeasible paths and thereby resulting in a
more manageable state-space (Sen et al., 2005).

Regarding the first and second axes, we estimate that they are compatible with all
testing methods described above. However, with regards to the third axis, only the
dynamic method seems to apply to black- and grey-box testing. Static and symbolic
testing requires full access to the source code that is only possible when the access
and knowledge of the tester are of the white-box level.

2.3.2 Security testing

As mentioned before, only the security aspect of software quality is targetted in the
thesis. That is why we will explain particular types of security testing and some
available tools in more detail.

Security testing types Security testing can be divided into three main types: pen-
etration testing, vulnerability assessments and security auditing. The first type is
similar to what a malicious hacker would do. Without much knowledge about the
internal workings of the completed system (black- or grey-box), the tester tries to
find a way into the application and continue as far as possible. The final target is
an essential asset like a particular company document, passwords, or other secret
information.

During vulnerability assessments, however, the tester tries to cover the whole attack
surface of an application without going further than a proof of concept for every
vulnerability found. This is mostly done from a black-box or grey-box perspective and
is a breadth-first test compared to the depth-first penetration test. After performing a

28 CHAPTER 2. BACKGROUND

vulnerability assessment, the findings can also be used for a subsequent penetration
test as Goel and Mehtre (2015) indicate.

Security auditing is a white-box testing method in which the security tester has ac-
cess to the entire source code of the running system while, just like with a vulnera-
bility assessment, he tries to cover the whole attack surface.

Security testing tools Although most security testing is done manually, there are
still a large number of tools available to support the testing. We will not go into tools
that are designed to exploit a specific vulnerability. Instead, two general toolsets will
be discussed that support web app security testing. The first tool is the Zed Attack
Proxy (ZAP) by OWASP (2018). It is free, open-source and actively maintained by
hundreds of developers. The second tool is called Burp Suite and is paid proprietary
software made by Portswigger (2018a).

Both tools act as a Man-in-the-Middle (MitM) proxy to capture all internet traffic of
interest and then allow for active and passive scanning to build a sitemap (graph
of functionality: attack surface) of the web app. Next to this, HTTP requests can be
replayed with (automated) alterations to headers, tokens, passwords and other data.
Finally, they can both actively test the web app for common security bugs that can
be found in the testing lists mentioned before.

2.3.3 Location of race condition testing

Based on the definition of the four dimensions of software testing, we can now locate
the testing goal of this thesis on these axes. For web apps, we test 1) the security
aspect (race conditions) 2) on the level of system and acceptance (and regression)
3) from a black-box perspective 4) using dynamic analysis. Next to this, based on
the security testing types as defined above, black-box race condition testing seems
to fit best into vulnerability assessments. Finally, regarding the available general
testing tools, both are applicable, but we will only use the Burp Suite.

In this chapter, we have defined clearly what the race conditions entail, how a web
app is designed, and what encompasses software testing. Hopefully, this has re-
sulted in the essential background knowledge to understand the further contents
and decisions put forward in the thesis. In the next chapter, we will describe state of
the art with regards to security testing for race conditions in web apps.

Chapter 3

State of the art

The most crucial requirement to be able to place the research and its added value in
context is by looking at state of the art. State of the art comprises all research that
looks at the testing for race conditions regarding the detection, repair and exploita-
tion of these vulnerabilities. We can differentiate between client-side and server-side
races. For every category, we evaluate the maturity of the state of the art research
regarding race condition testing. Next to this, we discuss the differences and simi-
larities between the existing work and the thesis.

3.1 Client-side race conditions

Although this research is not about the functional or visual testing of web applica-
tions, for several reasons, research about client-side race conditions is still included.
As the field of race condition testing in web apps is dominated by tools to detect the
races that happen at the client-side, and this is still a very closely related topic, it is
still considered a valuable source from which to learn.

29

30 CHAPTER 3. STATE OF THE ART

Figure 3.1: An overview of a number of race condition testing tools over time and their relations.

In figure 3.1, we have listed all tools for client- and server-side detection, repara-
tion and exploitation that were considered. When a tool was not named, we have
listed the authors instead. Most tools target the client-side detection or reparation of
races, and only four tools try to exploit races at the server-side. We will present the
exploitation tools Sakurity racer, Race the web, Turbo Intruder and netCloneFuzzer
in the next section on server-side race conditions. In order to properly understand
the workings of the client-side tools, and to what extent they target exploitable race
conditions, we tried to acquire the source code.

For every tool displayed in blue and dark grey, this proved to be successful, and we
include the links to the sources in appendix A. For the dark grey tools, however, we
either did not manage to successfully install and run the tool after several days or
weeks of effort, or we did not use it for other reasons. R4 was too difficult to set
up due to software incompatibilities and old age. RClassify was never meant to be
open-source, was scarcely documented and even after significant effort, it did not
fully work in the end. We decided not to use ARROW by Wang et al. (2016) and
EventRace-Commander by Adamsen et al. (2017a), because they are race-repair
tools and therefore not comparable to the other tools.

For the light grey tools, acquiring the source code was not possible. We discuss
these tools below.

• Zheng et al. (2011) - The static JavaScript analysis tool by these authors looks
at atomicity violation problems in AJAX. It requires access to the server-side
Hypertext Preprocessor (PHP) code to extract all JavaScript code. Based on
generated call and control flow graphs, it tries to infer possible race conditions.
The researcher has not open-sourced the tool.

3.1. CLIENT-SIDE RACE CONDITIONS 31

• WebRacer by Petrov et al. (2012) - This is the first dynamic race detector for
web apps. The research does not point to any sources, and this is also con-
firmed by a Computer Science reproducibility research led by Collberg (2014)
in which the authors of the tool respond that the sources are not available. Its
techniques will be discussed later in comparison to its successor: EventRacer.

• WAVE by Hong et al. (2014) - This performs simple event handler inference of
client-side JavaScript to detect races. It, however, cannot point to the primary
cause of race conditions like, for instance, R4 does. The paper contains a link
to the sources, but these are no longer available at this website.

• Mutlu et al. (2014) - The tool by these authors focuses entirely on visually
observable race conditions. By randomly changing the order and adding delay
to XMLHttpRequest (XHR) requests and responses, the tool tries to trigger
race conditions at the client-side. The authors do not mention the sources of
their tools.

• Mutlu et al. (2015) - In an extension to their research as cited above, these
authors use the same delay techniques, but the focus is shifted entirely to find-
ing race conditions that affect the persistent client state. The paper provides a
link to the source code, but we cannot resolve this link.

Therefore, we are left with three detection tools that we could successfully use, and
they will be explained more in-depth: EventRacer, InitRacer, AJAXRacer. Next to
this, we will explain R4 and RClassify to more accurately show the improvements of
the race condition detection tools over time.

• EventRacer by Petrov et al. (2012), is based on WebRacer which uses an in-
strumented version of the WebKit browser to track and record most Document
Object Model (DOM) load/update and JavaScript events that happen during
the (automated) exploration of a webpage. This recording is then used to cre-
ate the happens-before graph of events. Events that access similar memory
parts and are not in a specific order (thus not included in the happens-before
graph) are expected to be prone to race conditions. By using heuristics about
where races can and cannot take place at the client, EventRacer improves on
WebRacer and filters out a significant number of false positives.

• R4 by Jensen et al. (2015), continues where EventRacer left of by including a
harmfulness classification to every race condition. It can differentiate between
temporal or non-functional race conditions and race conditions that result in
changes to JavaScript variables, session information or cookies. Next to this,
it tries to improve its true positive rate by exploring new paths in the web app
exploration that were not triggered during the (automated) exploration.

32 CHAPTER 3. STATE OF THE ART

• RClassify by Zhang and Wang (2017), also builds on the results of EventRacer
but takes every different direction than R4 in improving on this. It requires
the tester to have a local version of the web app client-side code and then
adds additional instrumentation to both the JavaScript and HTML files. This
instrumentation will be used to approximately replay the race condition prone
sections that were found by EventRacer. By replaying the run with and without
the specific race, it verifies whether the race condition impacts the web app
client state (JavaScript variables, session information or cookies).

• InitRacer by Adamsen et al. (2017b), is an entirely new kind of tool in multiple
ways. Instead of changing the browser as EventRacer and derivatives do, it
injects instrumentation in every script and HTML file that the website loads
using a MitM proxy by Mitmproxy (2018). This instrumentation makes sure
that the tool can record every event and subsequently, that it can arbitrarily
trigger these events using Protractor. Protractor is a Selenium-like end to end
test framework for Angular by Google (2018). Another unique feature is that it
specifically looks at races that happen during the first couple of seconds when
loading (initialising) a webpage.

• AJAXRacer by Adamsen et al. (2018), is made by the same author as Ini-
tRacer but targets a very different part of the web app functionality. As the
name indicates, it focusses on race conditions in AJAX communication. AJAX
is the name for all client-side technologies that enable asynchronous com-
munication between client and server. As this involves requests with non-
deterministic callback timing and ordering from the server, this could result in
races. Just like InitRacer, it uses a proxy and Protractor browser automation
to inject instrumentation and control the browser. Unlike InitRacer, it requires
the tester or an automated spider to run through the web app in order to obtain
an event-graph of AJAX-requests and responses. Then, it uses this graph to
create and trigger pairs of AJAX-events to see whether this has a visual impact
on the webpage.

Conclusions Ten tools were discussed, of which five tools could successfully be
installed and run. Overall, based on the results in the related papers, this research
does seem to find and report visual or functional race conditions in every part of the
client-side due to internal-, user-, or communication-events like AJAX. However, it
fails to look at the security implications of these races. Our research differs from
these tools as it does not target client-side race conditions and especially looks at
the security implications of race conditions. Next to this, our research does not
only result in a toolset that supports security testers, but it also results in a full

3.2. DETECTION OF SERVER-SIDE RACE CONDITIONS 33

methodology that guides the user in the security test itself. This method helps to
discover where the race conditions occur and how they can be triggered.

3.2 Detection of server-side race conditions

Contrary to the client-side tools, some research does focus on the security impact
of race conditions in web apps. As such, they are a great starting point for the
exploration of systematic testing of this security issue.

3.2.1 Published work

Only four works were found that focus on server-side race conditions. They are
discussed below. Conclusions regarding the impact of their research on our work
are discussed at the end of the section:

• The work by Paleari et al. (2008) seems to be the first research in this di-
rection. They note that concurrency is one of the oldest security problems,
because it is both hard to detect and because "(..) a typical programmer does
not conceive his web application as a multi-threaded or multi-process entity".
A lot has changed in web development since this research was conducted, but
these statements still hold. The research focuses on race conditions in the
interactions between a multi-threaded web app and the underlying DataBase
Management System (DBMS).

They test the following popular Content Management System (CMS): Joomla,
Wordpress and phpBB. The test does not include the popular Drupal CMS.
The test itself encompasses capturing the requests from the application to
the database and forwarding these in parallel to the database. The parallel
requests should result in race conditions at the database. They especially look
for security relevant findings, and this resulted in the following insights.

In the applications that they tested, they were able to register multiple users
with the same name, perform more login attempts, cast more votes, and send
more messages than was officially allowed due to races in the logic that checked
for these conditions. Obviously, having more login attempts makes brute forc-
ing attacks easier, but the other findings are only a security issue when it re-
sults in a (financial) advantage like multiple one-time bonuses, results in an
unexpected state of the application or helps in certain privilege escalation or
DoS attacks.

34 CHAPTER 3. STATE OF THE ART

• The second work we would like to discuss is a section of the book by (Stuttard
and Pinto, 2011, pp. 426-427). Chapter 11 in this book is about attacking
the application logic of web apps and ends with a discussion of a number of
previously executed attacks that were done by the authors. The 12th example
is discussed in our introductory chapter in section 1.1.2. This example ends
with a number of steps that a tester or hacker can take in order to perform a
black-box test for race conditions.

They state that this kind of test is not straightforward and that "It should be
regarded as a specialised undertaking, probably necessary only in the most
security-critical of applications"1. We agree that, currently, it is a specialised
undertaking, but when a better testing methodology and supporting toolset is
created, this issue should be partially alleviated. The authors then list several
hacking steps that boil down to:

1. Functionality - Select web app parts with the most important functionality
like the login, password change, or funds transfer.

2. Requests- Select a limited number of requests to perform one action
within the functionality and define a means to verify that the attack is
successful.

3. Attack - Select high-spec machines and send these requests in parallel
on behalf of different users.

4. Evaluation - Evaluate the results and filter out the potentially the large
number of false-positives as this load-test type of attack could result in a
lot of non-related anomalies.

Together with tips and hacking steps found in other sources, we will use these
steps as a start for our systematic methodology for testing race conditions in
web apps (see section 4.2).

• The third research is executed by Zheng and Zhang (2012) who perform static
analysis of the interaction between a web server and its external resources
from a white-box perspective in order to find race conditions. They state that
most other research only seems to focus on in-memory race conditions, but fail
to also look at resource contention in external. The research explicitly refers
back to the research by Paleari et al. discussed above and distanced itself
from it in several ways. It is similar in that both look at calls from PHP scripts
to external resources, but the work by Paleari et al. is dynamic in nature and

1In the remainder of this chapter, we will show that this issue is far more prevalent and has more
impact than these authors suspect.

3.2. DETECTION OF SERVER-SIDE RACE CONDITIONS 35

therefore requires concrete database interaction traces to work with. It also
does not look at the program semantics. This research converts the PHP code
to C and has developed a "(..) context- and path-sensitive interprocedural
static analysis to automatically detect atomicity violations on shared external
resources in PHP code". They found 113 errors in real web applications, of
which some are security issues with financial impact.

• The fourth research is executed by Billes et al. (2017) is about the automatic
detection of race conditions in collaborative web applications like Google Docs.
As these applications are meant to be used with multiple users at the same
time, race conditions between updates to the same data are likely to occur
and can result in diminished user experience. That is why they set out to cre-
ate a black-box visual analysis tool that first learns potential behaviour from
recorded user interactions and then replays these sequences to find conflicts
automatically. They could successfully find several functional issues in col-
laborative web applications. The approach seems similar to what Mutlu et al.
(2014) have performed, but instead of replaying actions using recorded XHR
requests, they record and replay user interaction using the Selenium Web-
Driver. This test method is also comparable to how Adamsen et al. (2017b) try
to find client-side race conditions.

3.2.2 Articles and blogs

Next to this research, we found multiple blogs of primarily security researchers and
testers explaining certain race condition exploitation techniques. Sometimes, they
even include a proof of concept tool. As findings written in blogs cannot be trusted
with the same confidence as academic and peer-reviewed papers, these sources
were only included based on the following requirements.

The blog had to be written by a recognised security specialist or be published by
an established security institution or company. Next to this, the focus of the blog
should be descriptive of the tests that they conducted and easily verifiable. The latter
requirement can either be fulfilled by the availability of a proof of concept tool, or a
proof that developers of a vulnerable application acknowledged the issue. Six blogs
that seem to abide by these requirements and display the most significant insights
and findings were selected, and we discuss them in chronological order.

36 CHAPTER 3. STATE OF THE ART

SANS security blog In the SANS security laboratory: Methods of Attack Series
by Northcutt (2007), one entry is about race conditions. He describes races as "(..)
that small window of time between when a security control is applied and when the
service is used". This is similar to the TOCTOU type of race condition as described
before. However, the main focus of this blog is not on web apps but native low-level
languages like C++. So, unless the developers of a web app have also written the
server-side in C++, this approach is not directly comparable to our research.

Defuse security blog Another blog about practical race condition vulnerabilities
in web apps by Defuse Security (2011) is much more similar to our research. The
proof of concept target is a multi-process bank account web app written in PHP
and run on an Apache server. It contains a typical TOCTOU bug as the database
is first queried to check the balance of the user, and if allowed, it withdraws the
desired amount. Many concurrent requests are shown to withdraw more money than
originally available: an exploitable race condition. Instead of using transactions or
SELECT FOR UPDATE Structured Query Language (SQL) methods to avoid these
races, the author proposes to use System V-like semaphores or use locking files to
synchronise the requests within the PHP language.

McAfee security blog We also look at a McAfee blog by Pandey (2016). Inter-
estingly, he also notices that security tests often omit race conditions: "The general
consensus is that race-condition attacks are unreliable and cannot be identified us-
ing the black-box/grey-box approach.". At the same time, they conclude that modern
tools have a real potential to identify race condition from the tester perspective. Sim-
ilar to the banking test app, a web app is written in Java with Servlets (framework
for Java web development) on Apache. Using the Intruder tool in Burp, they con-
currently replayed the request to transfer money between accounts for 25 times and
this resulted in the source account having a negative balance.

Independent hacker blog Another blog written by Franjković (2016) is dedicated
to "(..) raise awareness about race condition attacks in both developers and se-
curity people (..)". This bug hunter was able to find and report all kinds of bugs
related to race conditions. He found a race in the voucher redeem functionality in
Facebook, Mega and DigitalOcean that allowed for redeeming the vouchers multiple
times. Another exciting part of the blog is the bugfix for a race condition in Keybase
invites-system that created a new race condition bug. The first bug made it possible
to send out more than the allowed single invite, but the fix allowed for using a single

3.2. DETECTION OF SERVER-SIDE RACE CONDITIONS 37

invite multiple times. Both resulted in the same issue of allowing a user to invite
more users than he is permitted to invite.

The blog contains a link to writeups of all issues, but no proof of concept tool is
included to verify the results. Finally, the author encountered another fascinating
and complex race condition bug in Facebook account registration, where he could
confirm an email address that he did not own. After creating an account, but not yet
verifying his email, he sent several parallel requests to change his email address
to both the email under attack and his own. The requests would trigger the send-
ing of a new email-address-verification email to his original address, but this would
often contain the token to validate the email address under attack (instead of his
own).

Lightning security hacker blog The next blog is written by Cable (2017), a hacker
at Lightning Security. This is the only blog that contains a live example of a race
condition. The example, written in NodeJS, simulates the transfer of money between
banking accounts with a TOCTOU bug. It allows for transferring more money than
available by quickly clicking the send button multiple times. Next to this, he discusses
some real race condition hacks like a Bitcoin transfer site where he could act similar
to the banking example and a HackerOne report on single-use vouchers that could
be redeemed multiple times. The suggested solution is using locks in the database
or back-end language. Regarding the detection of race conditions he concludes that
"(..) you should look for race conditions whenever a one-time action occurs, whether
sending money, redeeming coupons, or casting a vote."

Second independent hacker blog The last blog we would like to discuss is writ-
ten by professional bug hunter Jadon (2018). It uses the examples from the McAfee
blog and then shows how he used Burp to trigger a race condition as well, but now
on a real web app. This web app provided free console (command-line interface)
service, but this was limited to two consoles per user. By using 100+ intruder re-
quests to add consoles while he also removed consoles manually, he was able to
get three consoles. He concludes with the suggestion that a tester should make
changes to a source while sending concurrent requests as "(..) there are higher
chances you get it executed".

Conclusions Based on the published research regarding race conditions, we see
that in the first and third work, static and dynamic white-box analysis of race condi-
tions in external resource access of PHP scripts can yield valuable results. These

38 CHAPTER 3. STATE OF THE ART

works are more similar to our purposes than the race condition tools for single-tier
applications that were described in the introduction. In fact, we see no reasons why
they could not become a part of the white-box aspect of system testing or secu-
rity audits of source code in the future. However, our work is focused on black-box
testing of web applications and any source code analysis is not possible. Both tech-
niques, when used together, could improve the security test as a whole, but in and
of itself, this work cannot use any of their methods.

Regarding the second work, as said before, the concrete ’hacking’ steps for black-
box race condition testing will be used as a starting point for our systematic method-
ology. Finally, regarding the fourth work, this is the most similar to our research.
The differences lie in the fact that they created an automatic tool for testing for race
conditions in collaborative web applications only, where we actually have created a
systematic method that educates the tester himself to find all kinds of race conditions
in web apps using our toolset. Next to this, their research only targets on functional
race conditions where we primarily target intentionally adverse attacker behaviour
that impacts the security of applications. That is why their toolset does not seem
to be specifically tailored for triggering race conditions using high-speed parallel re-
quests and might only be usable when the race window is rather high.

Based on the six security blogs, we can make the following conclusions. First, race
conditions in web apps are not limited to a single language, framework, or server
type but occur across the whole spectrum and can often be feasibly exploited. Next
to this, most sources admit that the awareness of the widespread existence and
consequences of these bugs is significantly below par. Furthermore, The primary
bugs that are found in practice are vouchers, links or functionality that the tester can
use more times than allowed. These bugs could cause direct financial damage, but
do not interfere with the confidentiality, integrity, or availability of the web app.

Sometimes a more sophisticated race bug is found that requires several steps, but
could actually in a confidentiality or integrity infringement. The first type could be
considered the low-hanging fruit regarding race conditions, and the more complex
variant the hard-to-reach fruit. It is clear from these blogs that none of these types
is tested for systematically either by developers or security testers. Not only that,
but the sources also confirm that there is no systematic method available to them
regarding the testing for race conditions.

Based on these sources, the thesis tries to improve on the current situation in two
ways. Primarily, by creating the first effort towards a systematic security testing
method for race condition vulnerabilities in web apps and also, by creating an elab-
orate tool to support this.

3.2. DETECTION OF SERVER-SIDE RACE CONDITIONS 39

3.2.3 Open source tools

Next, four open source tools will be discussed that target general server-side race
condition bugs in web apps. The research behind these tools is the most closely
related to this thesis.

• Turbo Intruder by Kettle (2019) is an extension for the popular security tester
tool called Burp Suite. It is created during the execution of this research and
therefore, it was initially not considered. The primary goal of the tool is to be
able to send brute force requests as fast as possible. Although the developers
have not explicitly made the tool for testing race conditions, its versatility still
makes this possible.

It is written in Java and uses a self-made HTTP stack that can send requests
very quickly. It can use all the advantages of Burp regarding request gathering
and the viewing of results. In this research, we have considered version 1.0.9
(latest). This version was released at 29-03-2019.

• Sakurity Racer by Sakurity (2017), is a Chrome browser plugin and intercept-
ing proxy written in JavaScript and NodeJS made by researchers at Sakurity.
According to the designers, it is applicable for all simple web app actions that
the user is supposed to do a limited amount of times. For instance: performing
financial or trade transfers and using vouchers and discount codes.

When enabled, the plugin will block and forward all whitelisted HTTP requests
of the web app in the active tab for three seconds. The extension forwards the
requests to a NodeJS which will concurrently repeat every request five times
(default value). The tester must manually verify the possible races. In this
research, we have considered the latest version of this software. It has no
version number attached, but it is last updated at 22-09-2017.

• Race the web by Hnatiw (2016), is an application written in Go, is presented
in the Hackfest conference of 2016 and is written about in this blog by Secu-
rity Compass (2016). Contrary to the Sakurity Racer, it is not able to gather
interesting requests by recording the actions of the tester but requires him to
supply the HTTP requests manually. After setting the number of concurrent
requests it has to perform, it can be started. The tester can also set up and
execute a test via API calls to the included server, and therefore, the whole
process can be integrated more easily into other automated tests.

Where Sakurity Racer requires the tester to look at the results manually, this
tool automatically tries to match all equivalent responses to makes anomalies
more evident. Whether the races have caused these anomalies instead of

40 CHAPTER 3. STATE OF THE ART

some randomness, an overloaded server or other bugs must still be looked
into manually. In this research, we have considered version 2.0.1 (latest). This
version was released at 3-10-2017.

• netCloneFuzzer by Jans (2016), presents itself as a website race-condition
tester on live HTTP and HTTPS events for Windows 7 and 10. Just like Saku-
rity Racer, it acts as an intercepting proxy, but it also has a simple Graphical
User Interface (GUI). It is a .NET application written in C# which is based on
the HTTP proxy server library called Fiddler.

By using the GUI, intercepted messages can be manually changed or updated
based on regular expression rules. netCloneFuzzer will hold the HTTP re-
quests until they are prepared and then sends them all at once. Unlike Race
the web, it supports no grouping of response messages, and evaluation must
be done manually. In this research, we have considered the latest version
of this software. It has no version number attached, but it is last updated at
09-08-2017.

3.2.4 Testing the open source tools

Installing tools As a part of finding out to what extent server-side race condition
testing tools like Sakurity racer, Race the web, Turbo Intruder and netCloneFuzzer
already fulfil the requirements of effectively exploiting Server-Side Race Conditions
(SSRCs), the tools have been installed and set up. Unfortunately, the developers of
netCloneFuzzer have only tested it on the Windows 7 and 10 operating systems, and
on macOS, it currently crashes with a Signal Segmentation Violation (SIGSEGV) on
startup. Therefore, it is excluded from this test. As Sakurity Racer does not group
the response output in any way, we have made an effort to add a table of HTTP
response codes, message lengths and contents to the output. Next to this, an HTTP
response code counter is added to spot anomalies faster.

3.2. DETECTION OF SERVER-SIDE RACE CONDITIONS 41

Figure 3.2: A view on the Flask testing web app in a browser.

Development of vulnerable web app In order to test their functionality, a delib-
erately insecure voucher-redeem web app is written in Python with the Flask frame-
work and uWSGI on an NGINX server with a MariaDB database. The web app
sources can be found on the public GitHub page of Computest2 under the folder
TestWebAppVouchers. In this web app, we spawn multiple processes to handle re-
quests concurrently.

It supports redeeming two types of vouchers at three security levels. These op-
tions can be selected using the radio buttons as visible in figure 3.2. The ’Redeem
voucher’ button is used to redeem a voucher according to the selected settings. The
’Reset database’ button will reset all voucher usages. The grey text-area is used to
communicate actions and responses to the user. For a redeemed voucher, it shows
the redeem-time at the application server and the number of vouchers left (including
the just-redeemed one). We explain the three security modes below:

1. Secure - The first option does not contain a race condition. It is made fully
thread-safe by using a single database transaction to check whether the voucher
is unused and if so, removes it from the database and returns a success code.

2. Insecure - The second option contains a race condition that is difficult to ex-
ploit. It uses queries in two separate database transactions to create a TOC-
TOU race condition.

3. Very insecure - The third option contains a race condition that is easy to ex-
ploit. It works similar to the Insecure option, but also sleeps for 3 seconds
between the two transactions to make the race almost certain.

2Link to the GitHub page: https://github.com/computestdev/CompuRacer

https://github.com/computestdev/CompuRacer

42 CHAPTER 3. STATE OF THE ART

It supports single- and multi-use types of vouchers. We explain these types be-
low:

1. Single-use voucher - This type of voucher can only be redeemed once and
resembles a gift card. As shown at the bottom of figure 3.2, the code COUPON1
can be used to redeem a voucher of this type.

2. Multi-use voucher - This type of voucher be redeemed multiple times and
resembles a discount coupon that a company can send to multiple users. As
shown at the bottom of figure 3.2, the codes COUPON2 and COUPON3 can be used
to redeem vouchers of this type.

Note a limitation to the tool: the behaviour is undefined when the user tries to redeem
a voucher that is not equal to the selected voucher type.

Results & conclusions All tools could be used to trigger the Insecure and Very
insecure option, but the responses of the server were difficult to manually process
using the Sakurity Racer or Race the web tools as Sakurity Racer just printed ev-
erything on the command line and the response-grouping functionality of Race the
web did not always work. Turbo Intruder, however, did show a tabulated result view
of the responses that was easy to process.

The tools have a very different method of request gathering (hardcoded, config-file
and proxy), are written in very different programming languages and have different
methods of checking whether a race condition took place. The most important limi-
tations of these tools are the limited ability to import requests from different sources,
the lack of support for sending sequences of different parallel requests (possibly
after logging in) and finally, only a limited ability to check server responses for suc-
cess. Despite the shortcomings, these tools are still useful as a starting point for this
research.

Three of these tools have been developed in 2016 and 2017 and do not seem to be
actively maintained. The Turbo Intruder, however, is still under active development in
the spring of 2019. The fact that these tools are recently developed shows that both
the issue of race conditions in web apps and the creation of toolsets for targetting
these issues is still very active. As the goal of these tools is so closely related to this
research, during the evaluation in chapter 6, they will be directly compared to our
toolset.

In the next chapters, the core elements of the thesis will be discussed, starting with
the systematic testing method in chapter 4.

Chapter 4

Creating a systematic method for
web app testing

In this chapter, a systematic method is developed for performing security tests on
web apps regarding race conditions. As no equivalent method exists, this method
has to be designed from the ground up. First, a more elaborate definition is given of
the race condition bug in section 4.1. Based on this definition, the detailed methodol-
ogy is designed in section 4.2. This method contains all steps between the mapping
of race condition-prone web app functionality and the successful exploitation of all
race conditions that were found.

4.1 Definition of a race condition

In this section, we will try to define the race condition bug at the most basic level.
Using this definition, we will try to fill the gap between the theoretical knowledge to
the practical application of security testing for this issue.

On the most basic level, a race condition is unsynchronised access of multiple par-
allel processes to a variable when at least one of the accesses is a write. The fact
that it is not synchronised makes it uncertain to the developer in what order the
threads will access the variable. This is only a problem when at least one of the
threads update the variable, for this makes the parallel actions non-commutative. In
other words, a different order is likely to give a different outcome in program state.
Depending on whether a thread reads the variable before or after the update action,
it will read a different value and all subsequent actions based on the value will be
different.

43

44 CHAPTER 4. CREATING A SYSTEMATIC METHOD FOR WEB APP TESTING

When we zoom out from single read/write actions, we see that these single actions
are part of a series of actions that often appear as one action from the developer
side. The non-deterministic interleaving of processes violates the apparent atomicity
or non-interruptability of these series of actions. For instance, when a variable is
incremented by one, a read, an update and a write action are executed. It is often
assumed that no writes will happen to the variable between the read and write action
as these writes would be overwritten. Also, in an if- or while-statement, a read, check
and action are performed. It is assumed that no writes will happen to the variable
that would result in a different outcome to the check and the subsequent action.

We have defined what the race condition, but for it to be an issue of interest for
security testers, it must both be exploitable and have an impact. If there is no way
to influence the race condition or it has no noticeable impact on the program, it is
of little concern. Therefore, a tester must either be able to influence one of the
involved threads or add a thread in which he performs a write-action on the shared
variable. Next to this, after the race happens, the subsequent actions of a thread
must be influenced and have a lasting impact on variable values or the flow of the
application.

Regarding the impact of race conditions on web applications, we get a rough im-
pression by looking at the CWE-362 that was already mentioned in the introductory
chapter (MITRE Corporation, 2019). Next to an overview of the vulnerability and
how to prevent, detect and exploit it, the document also lists three different types of
exploitation impact:

1. Resource exhaustion - The "(..) race condition makes it possible to bypass a
resource cleanup routine or trigger multiple initialisation routines (..)". Thereby,
exploitation results in using (far) more resources than necessary or expected,
possibly resulting in a Denial of Service (DoS). Therefore, this type of impact
affects the availability of the application.

2. Unexpected states - The "(..) race condition allows multiple control flows to
access a resource simultaneously (..)". This uncontrolled parallel access might
result in unexpected control flows within an application and thereby result in
crashes. Again, this type of impact affects the availability of the application.

3. Confidence breach - The "(..) race condition is combined with predictable
resource names and loose permissions (..)". In this case, an attacker might be
able to read or overwrite confidential data.

We would also like to suggest that the second issue of altering control flows could
also result in the third issue of viewing or overwriting confidential data. As we will
be testing applications from a black-box perspective, these impacts have to be de-

4.2. DEVELOPMENT OF METHODOLOGY 45

tectable from this point of view. The first two issues might be detectable by looking
at the response time of the server or when we are getting frequent error-responses
from the server. The last issue can be detected by trying to access functionality that
we should not have access to.

Figure 4.1: The figure shows the two basic series
of actions that are prone to race conditions. For
both examples, two parallel processes are shown
(vertically) in which the second process displays
the interfering read/write action that would result
in a race condition.

Taking all of this into account, we can
differentiate between two types of sub-
sequent actions that have an impact:
writing a value or performing a different
action. This leads to two different series
of actions that are prone to race con-
ditions. We have named them accord-
ingly: ’Read Check Action’ (RCA) and
’Read Update Write’ (RUW) race con-
ditions. These types are shown in fig-
ure 4.1.

The figure also shows what kind of ac-
tion would influence or be influenced by
the series if it would occur in parallel.
During the RUW series, any read-action
would be influenced, and a write action
would be overwritten. The RCA series itself could be influenced by a write that hap-
pens in parallel. In the larger picture of two parallel series, the two RUW series
could interfere with each other, and the RUW and RCA series could interfere with
each other.

4.2 Development of methodology

In this section, an initial systematic testing methodology for race conditions in web
apps is developed. The security test is supposed to be executed as a system, accep-
tance or regression test of a mostly completed software product (see background on
software testing in 2.3). Next to this, the method assumes the test is dynamic, and
the tester only has black-box knowledge and access to a web application. We have
based our methodology on the simple hacking steps that were listed in section 3.2.1
of the related work and expanded upon that based on our own research.

Just like most security testing methodologies, it starts at the web app under test
and ends with a list of suspected vulnerabilities. Between these two points, we can

46 CHAPTER 4. CREATING A SYSTEMATIC METHOD FOR WEB APP TESTING

discern at least five steps:

1. Map website functionality - How can we map website functionality from a
black-box perspective?

2. Functionality to race conditions - Where to look for race conditions per dis-
covered functionality type?

3. Select HTTP requests - How to select HTTP requests for triggering a sus-
pected race condition?

4. Send HTTP requests - How can we send the requests to make the race con-
dition likely to happen?

5. Evaluate attack - How can we evaluate whether a race condition occurred?

These steps are illustrated in figure 4.2. After completing one iteration of the five
steps, the new findings might show more potential race conditions. In this case,
the process should be repeated from step 3. After several iterations, the found
vulnerabilities can be reported.

Figure 4.2: The figure shows the flow, and aspects of the methodology for testing race conditions in
web apps.

Next to these five steps, the figure shows that that the method also requires three
additional items: 1) a web app functionality mapper tool, 2) a testing checklist that
indicates the potential issues in certain functionality and 3) a toolset to support the
attack. In this section, each of the steps and the usage of the additional items are
explained. This should result in a sufficient initial method for systematic testing for
race conditions in web apps.

4.2. DEVELOPMENT OF METHODOLOGY 47

4.2.1 How can we map website functionality from a black-box
perspective?

The first step is common to most security testing of web applications and therefore,
can be re-used for race condition testing as well. Typically, a security test starts with
a mapping of the application as (Stuttard and Pinto, 2011, p. 73) indicate. During this
period, the tester clicks through most of the functionality of the web application while
a proxy tool is used to capture the requests between the client and the application
(see ’Web app mapper tool’ in figure 4.2).

This tool can use the requests to map the logical (the URL structure), functional
(what part does what) and authentication (which user can do what) structure of a
web app. Often, this tool can also extend the manual research by using a spider that
automatically crawls any additional URLs within the testing scope that were found
in response content. Using some heuristics, it can also try out some paths that can
reasonably be expected in any web app (like a configuration or admin page).

The result is a sufficiently complete mapping of website functionality. This is also
called the attack surface. From here, the known functionality can be tested for se-
curity vulnerabilities. In this research, the Burp toolset that was intruded before is
used as a website-functionality mapper, but any other mapper like the OWASP ZAP
is also applicable. Both tools were introduced in section 2.3.

4.2.2 Where to look for race conditions per discovered function-
ality type?

The second step is to compose a list of possible race conditions that could exist for
each functionality type that was found. For every item in this list, it is also important to
estimate what kind of impact the exploitation of the race condition would have. To the
best of our knowledge, there does not exist a direct mapping between the way to test
for other security vulnerabilities and testing for race conditions regarding this step.
That is why a new method must be devised. As it is unfeasible to create a mapping
between any web app functionality and possible race conditions, a combination of
two approaches is suggested:

1. Checklist - The tester should consult a basic checklist of race conditions for
general types of functionality in web apps. The place of the ’testing checklist’
in the methodology is shown in figure 4.2. The essential checklist of race
conditions in web app functionality is not found in testing manuals or literature.
That is why we have created these items ourselves based on a combination

48 CHAPTER 4. CREATING A SYSTEMATIC METHOD FOR WEB APP TESTING

of the limited suggestions of different sources and our own experience with
testing for race conditions.

2. Extension strategy - The tester should be aware of and apply a general strat-
egy for extending this list for the specific web app under test to cover all func-
tionality. The most basic strategy is determining for every part of the unlisted
web app functionality whether a particular action should only be performed
a limited number of times and what would happen if this restriction is circum-
vented by a race condition. If this might result in a security impact, effort should
be made to exploit the race condition and add the result to the other findings.

Basic race condition testing checklist

As this is the first checklist for race conditions in web apps, it was kept simple and
compiled with only a few types of web apps in mind. For three particular types
of web apps, the specific attack surface is considered when creating the checklist.
Based on these examples, a tester is encouraged to apply the extension strategy as
discussed before during the testing of a specific web app.

The considered types are blogs, wikis and e-commerce web apps. The reasons
behind the choice for these application types are twofold. Firstly, the research tries
to target as much concrete and open source web apps as possible. By using types
of web apps that are very common and in widespread use without much difference
between setups, the findings will be more generally applicable. Platforms for chats,
forums, games and private clouds were also considered, but time constraints did not
allow for adding these types as well. Secondly, for testing, easy setup is desirable,
and these common types with many implementations are more likely to be available
in a packaged format like Docker containers (Merkel, 2014).

4.2. DEVELOPMENT OF METHODOLOGY 49

Figure 4.3: The figure shows the flow from web app functionality to potential race condition vulnera-
bilities. For every vulnerability, the expected impact is also indicated using the appropriate coloured
circles.

Based on these types, the functional categories of ’Accounts’, ’Content’, ’Shopping’
and ’Other’ are defined. For each category, several subcategories are established
regarding the type of functional action like ’Creation’, ’Deletion’, ’Vouchers’ or ’Ad-
min’. Finally, the actual race condition items are listed, including an estimation of the
impact. This impact is indicated using the well-known CIA system: Confidentiality:
viewing what you should not view, Integrity: changing what you should not change
and Availability: limiting the access to the content for other users. This estimation of
impact is in line with the impact types that we discussed in section 4.1.

Each (sub)category or item might or might not be present in a specific web and
could, therefore, be skipped. The last category can be used to hold all race con-
dition findings that are not included in the checklist but were added based on the
application of the extension strategy. In figure 4.3, the checklist is included in the
form of an action diagram that a tester can follow to test a web app for race condi-
tions.

Testing checklist items explained

For every race condition item in figure 4.3, we will indicate from what access level
(guest, normal user or admin) a tester should try to perform a certain action. We
also explain why this functionality could contain race conditions and what kind of
exploitation impact is to be expected.

50 CHAPTER 4. CREATING A SYSTEMATIC METHOD FOR WEB APP TESTING

1. Accounts - These items depend on the existence, creation, deletion and ad-
ministration of user accounts in the web app.

1.1. (1) Log in - As a guest, try to log in to one or multiple accounts in parallel.
If the session state is not properly synchronised by the server, parallel
login actions might influence each other. For two different accounts, this
could lead to puzzled sessions, which is a confidentiality issue (see exam-
ple 2 in section 1.1.2). For the same account, it might lead to immediate
integrity issues, or when further (parallel) actions are taken on behalf of
two different sessions, these actions might interfere at a later point in time.
Parallel log out actions can also be tested, but no real-life exploitation of
this functionality is known to the author.

1.2. (2) Password reset - As a user, try to reset the password in parallel using
’Forgot password’ functionality. Often, this reset includes an email with
a new password or an access token. Resetting the password in parallel
could lead to multiple emails with different passwords or tokens that create
integrity issues when subsequently, more than one of them is used. Next
to this, using a single token in parallel might also result in integrity issues.

1.3. (3) Update settings - As a user, try to update user account settings in
parallel. If any limited or unique fields are included like an email address,
changing this value might lead to integrity issues in the application. If the
email address can be changed in parallel to the same value as a victim
user who changes this email address, this could also result in access to
his account. This is a severe confidentiality issue, but it is difficult to set
up as it requires some form of surveillance of the victim’s actions and still
involves much luck.

1.4. Creation

1.4.1. (4) Multiple creation - As a guest, try to create multiple new ac-
counts in parallel using the same identifier (ID). If this ID should be
unique, this limitation might be circumvented by a race condition. In
this case, it could result in unexpected duplicate accounts that in-
fluence the stability (availability) when this results in errors, but also
influence the integrity when it results in data loss in the application.

1.4.2. (5) Create and use - As a guest, try to create a new account while
at the same time logging in and using this account to perform an
action. If the application first assigns default values to a new ac-
count and overwrites these values at some point during the creation
process, these actions might be interruptable. If the default values,

4.2. DEVELOPMENT OF METHODOLOGY 51

for instance, assign too many rights to the user accounts, we might
be able to act using these default rights before they are overwritten.
These activities could involve viewing or changing data that we should
not have access to resulting in confidentiality and integrity issues in
the application.

1.5. Deletion

1.5.1. (6) Multiple deletion - As a user, try to delete a single account in par-
allel. Due to the interference, it might only delete the account partially,
or delete more than one account. In both cases, the integrity of the
application is compromised. The invalid data could subsequently lead
to unexpected states in the server application resulting in crashes and
a lack of availability.

1.5.2. (7) Delete and create - As a user, try to delete a single account while
also adding the same or a different account. Based on the results of
item four and six above, both multiple creation and deletion could lead
to invalid data and unexpected states in the program. By combining
these issues into one test, the creation of a partially deleted account
or the deletion of a partially created account can be tested. The issue
influences both the integrity and availability of the web app. Finally,
if another user deletes his account while we create an account with
the same identifier, it might be possible to get access to his (partially
deleted) data resulting in a confidentiality breach.

1.5.3. (8) Delete and use - As a user, try to delete and use an account in
parallel. Similar to item five above, the rights or restrictions of a user
might already be deleted before the account as a whole becomes un-
available. During this race window, the user might be able to access
or change data that should be restricted impacting both the integrity
and confidentiality of the application. Just like in item six and seven,
the invalid data could subsequently lead to unexpected states in the
server application resulting in crashes and a lack of availability.

1.6. Admin

1.6.1. (9) Change roles - As an admin, try to change the roles and access
rights of other users and admins in parallel. This might lead to par-
tially implemented access rights for users which suddenly can or can-
not access some confidential information. This vulnerability can only
be executed by someone who already has admin rights and therefore
might be less interesting from a security tester perspective as this

52 CHAPTER 4. CREATING A SYSTEMATIC METHOD FOR WEB APP TESTING

person can already perform much more damaging actions. Still, as
an attack method for an insider, it is a very stealthy way to provide
a partner with access rights without the logging file showing such an
action (it just shows a simple change in roles).

2. Content - These items depend on the existence, creation and deletion of con-
tent in the web app. This content could be a blog item, a forum topic, a chat
message, a photo or other types of storage and media.

2.1. (10) Likes/votes - As a guest or user, try to like or vote for an item in
parallel. Often, a limit of one like or vote per user is maintained. A race
condition might circumvent this limit and allow for multiple votes by one
user. Often, removing one vote resets this limit again providing the at-
tacker with virtually unlimited votes. An attacker could use this to skew
voting results in his advantage, impairing the integrity of the application.

2.2. (11) Comments - As a guest or user, try to add a comment in parallel,
or edit / delete in parallel. Just like items three up to eight, this could
lead to inconsistent or partially deleted comments (compromised integrity)
resulting in errors and a lack of availability of the application.

2.3. Creation

2.3.1. (12) Multiple creation - As a guest or user, try to create a certain
unit of content with a unique identifier in parallel. Just like item four,
this could lead to unexpected duplicate (supposedly unique) identi-
fiers compromising the integrity of the application and lead to errors
(impacting availability) when other users want to view or edit this con-
tent.

2.3.2. (13) Updates/moves - As a guest or user, try to update or move ex-
isting units of content in parallel. By updating it to different values
in parallel, the result might be inconsistent if no thread-safe data up-
date merging methods are used. Similarly, moving the data in parallel
might move it partially or fully to both locations creating inconsistent
data or invalid duplicates. Again, both integrity and availability might
be influenced by the exploitation of these issues.

2.4. Deletion

2.4.1. (14) Multiple deletion - As a guest or user, try to delete the same
or different content in parallel. When automatic counters are used to
identify this data, these counters might not be reset correctly, result-
ing in a value that is either too low or too high. In the former case,

4.2. DEVELOPMENT OF METHODOLOGY 53

newly created content will conflict with or overwrite existing content
(impacting integrity). Also, partial deletion can occur that also ren-
ders a parent-object, like a website root for a blog or forum, invalid
resulting in a lack of availability of a larger number of components.

2.4.2. (15) Delete and update/move - As a guest or user, try to delete con-
tent while updating or moving it. Just like items thirteen and fourteen,
this could result in partially, updated, moved or deleted data impact-
ing the integrity and availability of all content that is dependant upon
this particular item.

3. Shopping - These items depend on the ability to buy or sell products using the
web app. A web app that supports other types of (financial) transactions could
be tested similar to item thirteen where content is moved in a parallel, and an
equivalent (financial) impact is to be expected.

3.1. (16) Reviews - As a user, try to create, update or delete a review about a
product in parallel. Just like item three up to eight and eleven, this could
lead to inconsistent or partially deleted reviews (compromised integrity)
resulting in errors and a lack of availability of the application. Next to
this, reviews should often only be done once per user, and just like item
ten, this limit might be circumvented by a race condition. This results in
a skewed review consensus in the advantage of an attacker and thereby
another breach of application integrity.

3.2. Cart

3.2.1. (17) Limited items - As a guest or user, try to add more items than
allowed to the shopping cart using parallel add-requests. These items
might be limited per user during a discount-period to avoid people
buying in large volumes for profitable resale. The tester should try
to add these items to the cart in every possible way. Not only using
the normal ’Add to chart’ request, but also, if present, the request
that is used for the ’+’ or ’change-amount’ functionality from within
the shopping cart. Additionally, he should try to finalise the order
in parallel or change the contents in parallel with the submission to
circumvent any checks. This could result in an integrity issue with
direct financial consequences for the web application owner.

3.2.2. (18) Out of order - As a guest or user, try to add more items than
available to the shopping cart using parallel add-requests. Similar to
item seventeen, the limit imposed on the number of items that are
available to a user might be circumvented by a race condition. In

54 CHAPTER 4. CREATING A SYSTEMATIC METHOD FOR WEB APP TESTING

this case, it might result in serious unexpected situations in the order-
packaging process. If this process is (fully) automated, having the
requirement of a larger amount in an order than is available could re-
sult in costly delays and also impact the availability of the application.

3.3. Vouchers

3.3.1. (19) Use in same order - As a guest or user, try to redeem a voucher
in parallel within the same order. The check for the availability of the
voucher might contain a race condition and result in multiple redemp-
tion’s of the voucher and more discount. This is an integrity issue that,
just like item seventeen, results in direct financial consequences for
the shop owner. This issue becomes even more interesting when the
voucher is a gift card that can be partially spent. In this case, adding
it multiple times might only result in partially spending one of these
duplicated cards.

3.3.2. (20) Use in different orders/accounts - As a guest or user, try to
redeem a voucher in parallel using different orders from the same or
different accounts. Just like item seventeen and nineteen, this results
in direct financial consequences for the shop owner. This strategy
looks similar to item nineteen but is a valuable addition as using the
same voucher multiple times within a single order (or shopping cart)
is often blocked. This was the case for both Platform A and B that
we tested. This alternative method of adding the voucher once to
different orders and placing these orders in parallel still accomplishes
the result of spending the voucher more times than allowed. In this
case, a partially spendable voucher might even duplicate after using it
in multiple different orders as the remaining amount might be returned
once per order through a new voucher. For both new vouchers, this
attack could be repeated to result in an exponential increase in the
total spendable voucher amount.

3.4. Admin

3.4.1. (21) Multiple item creation - As an admin, try to add, update or
delete a shop item in parallel. Just like items 12 up to 15, this could
lead to duplicate ’identifiers’, partially deleted items and overwriting
other items. This results in integrity issues regarding the items of the
other sellers and availability issues for the users of the shop.

4. Other - Here, the tester should add any other race conditions that were found
in the web app when using the extension strategy.

4.2. DEVELOPMENT OF METHODOLOGY 55

4.1. (22) Additional race conditions - As an admin, user or guest, try to ex-
ploit any functionality that imposes a limit on the user which might be cir-
cumvented by race conditions. Alternatively, race conditions can also be
exploited by using a (complex) combination of the items that are already
listed above.

4.2.3 How to select HTTP requests for triggering a suspected
race condition?

Based on the definition of race condition types at the start of this chapter, we have
shown in figure 4.1 that both elemental race condition types require at least one
parallel write action to take place. The HTTP-level black-box test-equivalent of a
write action is an HTTP request that explicitly changes something at the server.
Therefore, it is crucial during a race condition test to use at least one state-changing
HTTP request. According to the official HTTP/1.1 RFC by (Fielding et al., 1999, pp.
51-57), this excludes safe methods like GET, HEAD, OPTIONS and TRACE as can
be seen in table 4.1. Idempotent requests like DELETE and PUT only work once
and every additional request should be ignored. Therefore, we are left with POST
and PATCH as possible race-prone request types. As Sturgeon (2016) explains:
where POST fully replaces content, PATCH is only meant to edit it.

Table 4.1: A listing of common HTTP
methods and whether they are idempotent
or safe. A star indicates that this protocol
requirement is often violated in practice.

HTTP
Method Idempotent Safe

CONNECT Yes Yes
GET Yes* Yes*
HEAD Yes Yes
OPTIONS Yes Yes
TRACE Yes Yes
DELETE Yes* No
PUT Yes* No
PATCH No No
POST No No

However, it is essential to be aware that de-
velopers do not always strictly abide by these
standards and therefore, a non-safe GET or
non-idempotent PUT are still very likely to be
used in practice. That is why we have marked
the idempotence (and safety) of the GET,
DELETE and PUT methods in table 4.1.

For instance, in e-commerce platform A, which
is a web app that we tested, a GET request
was used to add a new item to the webshop
while a POST request would have been ap-
propriate. Also, for HTML 5 forms, only the
GET and POST methods are natively available
and this is not likely to change (Faulkner et al.,
2017, Section 4.10.18.6.). So, when a devel-
oper creates a ’delete item X’ web form, he can
only use a POST request. Only by using asyn-

56 CHAPTER 4. CREATING A SYSTEMATIC METHOD FOR WEB APP TESTING

chronous XHR requests as explained in section 2.2, a developer can send PUT,
PATCH and DELETE requests. In general, any state-changing HTTP request which
is sent in parallel with any other type of HTTP request could hypothetically trigger a
race condition.

For each testing item, using the ’Web app mapper tool’ as explained before, the
tester should monitor what kind of HTTP requests are sent during the regular usage
of a particular web app function. During the monitoring process, any state-changing
usage of requests which are not meant for this purpose should also show-up, and
the tester can act appropriately. Then, he should select a minimal subset of these
requests to be used in the test setup.

How much parallel requests is enough? To be more confident that requests of
interest arrive at the server in parallel, more than one request per type should be
sent. For instance, if two different requests A and B should arrive at the server
in parallel, both A and B could be sent five times for a total of ten parallel requests.
Adding parallel requests results in an exponential increase in the chance of success.
The mathematical basis for this increase is found in the birthday problem that was
first discussed by H. Davenport (Ball, 1960).

For the birthday problem, the chance of a collision in birthday increases somewhat
exponentially (following a sigmoid pattern) and is asymptotically close to one when
we have a group of about 60 people. Thus, when approximately 20% of the day-
options are covered. The specific function for the probability p(n) that at least 2 per-
sons have the same birthday, where n is the number of people, is given below:

p(n) = 1− 365!
365n(365− n)!

As only the event that two requests arrive at the server within the race window (a
collision) matters (not the absolute arrival time), and we have a limited range of
options, this principle is equivalent to the birthday problem. When sending an HTTP
request, we can define the range of possibilities as the twice the connection jitter
value (absolute variance) divided by the race window. If we take a jitter value of
50 ms and a race window of 2 ms (thus 25 time-slots), we would, based on the
function above, need about 15 parallel requests to have more than 99.5% chance of
collision.

Unfortunately, the race window is not known from a black-box perspective, so we
cannot perform this calculation in practice. Also, parallel requests are still no guar-
antee that a race condition will occur as this is also influenced by, for instance,
the server state and the database configuration. Nevertheless, the principle shows

4.2. DEVELOPMENT OF METHODOLOGY 57

that relatively few parallel requests are required to result in a high chance of suc-
cess.

4.2.4 How can we send the requests to make the race condition
likely to happen?

The critical element of exploiting race conditions is speed. The parallel requests
should be able to arrive at the server within the race window, and this window might
be very tiny. As far as we know, this cannot be done manually and should be sup-
ported by a software tool. As indicated in the introductory chapter, several tools
exist that explicitly or optionally support this process. In chapter 5, we develop our
extensive toolset to support and in chapter 6, we evaluate this toolset in comparison
with the other available tools.

A number of aspects regarding the web app functionality and server state should
also be taken into account when trying to make race conditions likely to happen.
These aspects influence the ability to send parallel requests, the level of automation
and also influence the size of the race window. They are listed below:

• Proximity to target web app - When testing for race conditions in a web
app, the parallel requests that are sent from the client are also supposed to
arrive at the server at roughly the same time. When the client is located far
away from the server both regarding the absolute distance and the number
of network node hops, this affects the time between requests in unpredictable
ways. For every kilometre, the light speed adds some absolute delay to every
request and for every node hop (router, firewall, load balancer or server) some
unpredictable processing time is added.

The absolute time added to every request (latency), is not essential as long
as this value is consistent for all parallel requests. The variance in this latency
(jitter) has a much more negative impact on the ability to stay within the race
condition window. That is why we suggest the tester to place the exploiting
client as close to the target web app as possible. Preferably within the same
local network, but at least within the same country. Often, ping requests can
be used to estimate the latency and jitter of the connection to the server.

• The load on the server - During a race condition test, the time it takes for
a server to process a request fully has a direct impact on the race condition
window. When the component that is prone to the race condition experiences
more traffic load during the test, the race condition window is expected to in-

58 CHAPTER 4. CREATING A SYSTEMATIC METHOD FOR WEB APP TESTING

crease. Also, the requests of the test are expected to be better masked by the
other traffic. Both of these changes are good, but with the increase in load,
the variability of the race window and the number of (time-out) errors is ex-
pected to increase as well. Therefore, we refrain from a general suggestion
regarding the preferred load on the server during a test. However, a tester
should undoubtedly take this factor into account, and when the exploitation of
an expected race condition does not work, this might be traced back to a very
low (small race window) or very high (highly unpredictable race window) server
load.

• Component duplication and load balancing - As explained in section 2.2
on the background of web apps, in order to scale a web app to support more
concurrent users, a combination of component duplication and load balancing
is used. For instance, a single web app uses five instances of the database
are used alongside three web servers. A load balancer equally divides the
incoming requests between the web servers and database servers. When a
tester then wants to test a race condition and sends a request in parallel, these
requests might end up at a different web server and database. Depending on
the place where the race condition could occur, this would make exploitation
much harder.

If the race happens at the memory of the web server, we would require at
least four parallel requests for two of them to inevitably hit the same server.
This is called the pigeonhole principle: if n items are put in m containers with
n > m, then at least one container must contain more than one item. In the
case of a race condition within the database, it would even require six requests
to make sure two of them hit the same database server. Preferably, the tester
knows whether these techniques are used for the web app under test and
would adapt his exploitation strategy accordingly. If not, the tester could also
try to get this information by assessing the difference in the result between
sending for instance 5 or 25 parallel requests to the server.

• Database type and isolation level - The isolation level of a database changes
the extent to which separate parallel transactions influence each other (con-
currency side-effects). However, as Milener et al. (2018) indicate, it will only
change the amount of isolation between a write and read action and not the
isolation between two write-actions. The latter actions are always fully isolated.
Therefore, the setting is not interesting for a race condition between two write
actions, but it does affect the two parallel series of actions that contain both
reads and writes as introduced in section 4.1.

4.2. DEVELOPMENT OF METHODOLOGY 59

Four isolation settings are often supported: 1) Read uncommitted, 2) Read
committed, 3) Repeatable read and 4) Serializable. In the Serializable case,
the transactions are fully isolated. In the Repeatable read case, the phantom
read phenomenon may occur. This is the case when one transaction adds
rows to a table while another transaction (partially) reads these rows. In the
Read committed case, both phantom and Non-repeatable reads can occur.
Non-repeatable reads happen when two read actions (within the same trans-
action) during a write transaction result in the return of different row-values.
Finally, in the Read uncommitted case, phantom, Non-repeatable and dirty
reads can occur. Dirty reads are similar to Non-repeatable reads, but now
the different read values also occur before the write transaction is committed.
All of the phenomena discussed above can result in inconsistencies between
different parallel reads and writes and result in a negative impact.

Still, this setting can often not be accounted for during a black-box race con-
dition test as the tester has no knowledge of this value and its default value
varies wildly between databases. Only when the tester invents a way for the
specific application under test to see whether the associated phenomena are
present, this setting might be discoverable from a black-box perspective. If this
value is known, a tester might use the knowledge of the related phenomena
when testing for race conditions.

• CAPCHA’s in web forms - These are challenges or puzzles added to web
forms that require human interaction. The name comes from ’Completely Au-
tomated Public Turing test to tell Computers and Humans Apart’. The form
cannot be submitted successfully until the challenge is completed.

Impact: The usage of these challenges limits our ability to automatically fetch,
fill in and submit forms, but this is probably not an issue. We often already
perform the fetching and filling in of forms by hand and only automate the
submission of the webforms. When a web app accepts identical but veri-
fied CAPCHA’s, there is no problem. Only when it requires unique verified
CAPCHA’s per form-submission, this is an issue. This functionality could also
contain a race condition and would be an interesting addition to the security
test. A solution to this issue is to gather several verified CAPCHA’s beforehand
and use them in the parallel requests.

• Cross-Site Request Forging (CSRF) tokens in forms - These tokens are
attached to forms in web apps to avoid Cross-Site Request Forging (CSRF).
This is an attack where a user that is logged in to a particular application A
visits a malicious website B. This website B makes a malicious request that

60 CHAPTER 4. CREATING A SYSTEMATIC METHOD FOR WEB APP TESTING

involves submitting a form to the application A using the active session of the
user. When CSRF tokens are used, a random number is generated when
fetching the form on the web page using the conventional method, and this
needs to be added to the form submission. The malicious user cannot easily
discover the value of this number, and the user is now protected.

Impact: Just like with CAPCHA’s, we often want to submit forms in parallel.
We first visit the page and get the CSRF token before we submit the web form,
but if the application requires a unique token for every form submission, this
no longer works. A workaround would be to first fetch a unique CSRF token
for every parallel request that we want to send. In testing of the web apps
that are mentioned in the thesis, we did not stumble upon unique CSRFs per
form submission. We only saw rather constant CSRFs that were tied to the
form type or the user session. Therefore, it seems that currently, there is no
problem here.

• Rate limiters and bans - Sometimes, websites employ rate limiters or serve
bans to avoid the brute forcing of user names and passwords or inhibit spam
regarding comments and messages. Initially, the server often uses some form
of rate limiting (or tar pitting) that temporarily blocks access. For every sub-
sequent block, it increases in duration and eventually, the client gets banned
permanently.

How clients are identified in order to apply temporary or permanent blocks
varies greatly in practice. For spam caused by logged in users, a block can
directly be linked to the account, but for unknown guests, identification is much
harder. When a login fails a few times, the account that is tried could be blocked
based on the filled in username, but this is discouraged because it essentially
enables a denial of service (DoS). An attacker could create a script to regularly
perform many failed login attempts for an existing user and this result in a
permanent block.

A better alternative is the tracking of the client IP address or other heuristics,
but this is both not fully effective and results in the same denial of service possi-
bility. The attacker could use a proxy to circumvent an IP address-based block,
and could also spoof someones IP address to get them blocked. To the best
of our knowledge, the preferred option is to show a CAPCHA to the user after
several failed login attempts. Assuming CAPCHA’s cannot be automatically
filled in, this essentially resolves the issue without creating the DoS issue.

Impact: - In our case, we do send multiple requests to all kinds of functionality,
including logins and content creation forms. We often do not require more than

4.2. DEVELOPMENT OF METHODOLOGY 61

a few requests to test functionality for race conditions, so it seems like this is
not a problem. Only when the web app or connection is so unreliable that
chances of success are meagre, and we need tens of requests, this might
be a problem. Still, connection reliability can be improved when we run an
application locally or rent a server at the same location as the target web app
(see the first enumeration point). Also, even when we get blocked, all requests
up to the point that the block became active, and the current test might still
succeed.

4.2.5 How can we evaluate whether a race condition occurred?

As this research focuses on black-box testing, networking setup or source code is
expected to be unknown during a test. Also, no specific debugging information is
supposed to be available. Fortunately, at least two types of information sources are
still available:

1. Direct responses - The requests that are used to trigger a race condition
will also receive HTTP responses. Although any debugging information is not
expected to be present, both the response code and the response timing are
valuable metrics. When the normal response code to a request (when sending
once) results in a certain response code, say 200-code (success), and an
error results in a 404-code (resource not found), the tester can check whether
this is still the case when requests are sent in parallel. When the parallel
requests, however, get two or more 200-codes as responses, this indicates a
race condition might have occurred at the server. Next to this, the response
timing can be used similarly. When there is a difference between the time it
takes to process a successful request and a faulty request, we can use this to
our advantage to detect race conditions.

2. Expected state - The alternative source of information is found in an expected
state of the application. For instance, when we test for item 4 (Multiple account
creation), we can evaluate whether we created a duplicate account by logging
in, changing the ’unique’ identifier (like the email address), log out and log in
again using the original identifier. This should not work if only one account was
created but is likely to work when two accounts were created (and therefore
only one email address was changed).

Based on a combination of the methods described above, the tester should be able
to verify whether a race condition occurred and report the results.

62 CHAPTER 4. CREATING A SYSTEMATIC METHOD FOR WEB APP TESTING

4.3 Conclusions

In this chapter, we have successfully developed a method to perform sufficient
systematic security testing for race conditions in web applications. The method
discusses all aspects starting at the web app under test, then discovering race
condition-prone functionality, attacking this functionality and finally verifying the dis-
covered race condition vulnerabilities. As indicated in figure 4.2, additional items
were required for this methodology. The web app mapper tools were already shown
to exist, and we devised the testing checklist ourselves in this chapter. The only
requirement we are still missing is a toolset to help the tester in the practical attack.
This tool will be designed and implemented in the next chapter.

Chapter 5

Developing the CompuRacer
toolset

In this chapter, we discuss the development of the CompuRacer toolset in detail. The
name for the toolset is a portmanteau of the commissioning company ’Computest’
and ’racer’ which refers to something that exploits race conditions. The project is
fully open sourced, including a README and an elaborate manual. The sources
can be found on the public GitHub page of Computest1.

First, the requirements for the toolset are explained in section 5.1. Then, the high-
level design based on the requirements is shown in section 5.2. Last, the concrete
implementation of the tool is discussed in section 5.3. In other words, we first answer
the question: What should the toolset be able to do?, then: How will the toolset be
organised to fulfil the requirements? and lastly: How is this design implemented
concretely into a software product?.

5.1 Requirements

The requirements to the toolset have to be defined first in order to design and im-
plement a toolset that supports systematic black-box testing for SSRCs. These
requirements flow from the introduction in chapter 1, where it was stated that there
did not seem to exist a sufficient tool to support in testing for race conditions. The
requirements are created for three different phases: obtaining requests, composing
& sending requests and handling responses. For every phase, functional & usabil-
ity requirements are described. Next to this, for the second phase: composing &
sending requests, performance requirements are stated as well.

1Link to the GitHub page: https://github.com/computestdev/CompuRacer

63

https://github.com/computestdev/CompuRacer

64 CHAPTER 5. DEVELOPING THE COMPURACER TOOLSET

5.1.1 Gathering of HTTP requests

The tool should be able to support the easy gathering of HTTP requests of interest in
order to use these for triggering race conditions at a target web app. How this is done
should integrate well with the current practices of security testers. These desires
lead to the following requirements regarding the functionality & usability:

1. Straightforward importing of HTTP requests - It should be possible to im-
port HTTP requests into the tool using a method that is quicker than manually
copy-pasting requests to a file or the CLI. This method should integrate into
the normal testing process of security testers. This includes the ability to eas-
ily use the requests gathered with the Burp Suite or using a browser. It is
expected that this results in multiple components that work together to gather
and use requests.

2. Aliveness checks between components - Based on the point above, the
toolset is expected to consist of multiple components. Each component could
independently fail from the others and result in issues. For instance, a gath-
ering tool that is supposed to forward requests to the exploitation tool should
make sure the following tool is alive. Otherwise, forwarded requests could be
lost. That is why the gathering tools should only forward requests when the
receiver is deemed alive and indicate this state to the tester.

3. Request correctness checks - To avoid unexpected issues when sending
requests to the target web app, requests that are imported into the toolset
should be checked their correctness. Even when the requests are forwarded
from other tools like the Burp suite, issues like malformed HTTP headers, un-
supported body content or incorrect body length could be present and should
be checked for.

4. Persistent request storage - Requests should be stored in the toolset to allow
for re-use within a test. This request-storage should not only be in memory, but
also on a medium that persists its state after restarting the testing environment
on the software- or hardware-level.

5.1.2 Composing and sending of HTTP requests

The essential part of the toolset functionality is to compose and send HTTP requests
in such a way as to trigger race conditions at the server of a web app. Therefore,
the selection of requests of interest, the configuration of how they are sent, and
then sending them should work smoothly. Triggering race conditions requires the

5.1. REQUIREMENTS 65

requests to arrive at the server with a time difference that is as small as possible to
stay within the race window, so this should be pursued. These desires lead to the
following requirements:

Functional & Usability

1. Creation of batches of parallel requests - As stated in the section 4.1, a test
for race conditions always contains at least two actions that interfere with each
other. When testing an application from the client-side, these actions take the
form of HTTP requests. The tool should, therefore, allow the tester to combine
any similar or different HTTP requests in a batch and send this batch at once.

2. Configuring time delays - The tool should allow for setting the time offset
between sending different requests in a batch. This makes it possible to send
some sequential requests in advance of the actual parallel requests to set
up a certain state like logging in, changing settings, or adding products to a
shopping basket.

3. Sending requests sequentially - To verify whether a race condition occurred
or to reset the state during the test, the tester might want to send a request
multiple times sequentially. Therefore, the tool should support this option for
any request in a batch.

4. Automatic batch creation - Next to the ability to create batches of requests
manually, it should be possible to redirect requests that are added to the toolset
directly to a batch. This batch could be an existing batch or a newly created
batch. It should also be possible to let the tool automatically send this newly
created batch after a certain delay. This functionality helps in the integration
of the tool used in the testing process. When the tool is set up and configured
to create and send batches automatically, the tester can quickly test several
different request combinations and only needs to check the results using the
interface of the toolset.

5. Comparison of requests - Adding the right requests to a batch when requests
are almost equal can be difficult. Also, similar requests forwarded from different
sources might be slightly different. To aid the tester in comparing requests in
these cases, the tool should include a powerful field by field or line by line
comparison method that highlights differences between requests.

66 CHAPTER 5. DEVELOPING THE COMPURACER TOOLSET

Performance

1. High raw speed - As already stated at the start of this subsection, the essen-
tial part of the tool is to trigger race conditions at the server. The raw speed
at which multiple requests are sent in parallel can be used to estimate this
performance. Concretely, the tool should have an equal or lower time differ-
ence between parallelly send requests than other comparable tools currently
in existence.

2. Effectiveness in triggering races - This requirement is comparable to the
first, but it targets the actual ability of the tool to trigger race conditions. The
tool should be able to trigger as much as possible race conditions at a web
app that could feasibly be triggered from a black-box perspective. This is the
case when the race window is at least some (tens of) milliseconds bigger than
the expected deviation in latency between the client and the server (jitter).

5.1.3 Handling of HTTP responses

After sending a batch of HTTP requests, it is vital to be able to validate whether this
has caused a race condition. Thus, do the response contents or the timing show
any anomalies that indicate successful exploitation? If so, what request triggered
it, at what moment, and how did the server respond? If not, what happened in-
stead? These desires lead to the following requirements regarding the functionality
& usability:

1. Storing of responses per batch - To evaluate whether responses are inter-
esting, these responses need to be stored in the same batch that sent the
requests. This should be done in a way that allows for the tester to investigate
what requests created an anomalous response and at what time this occurred.

2. Aggregation of response content - Storing all responses in a batch allows
for the tester to evaluate anomalies, but this is not straightforward. When for
instance, many requests are sent or when large and mostly equivalent re-
sponses are received, the tester has to look through an unfeasible amount of
data. Therefore, the tool should support the aggregation of responses that
already takes care of sorting out the simple cases. For instance, empty re-
sponses due to timeouts can often be ignored. Also, the same responses only
need to be shown to the tester once.

3. Summary of differences - Next to a grouping of responses as described
above, several aggregated aspects of the responses should also be calculated

5.2. DESIGN 67

automatically. For instance, a count of the different response codes, number
of headers and body lengths (in bytes) can quickly show the tester what kind
of anomalies can be expected in the responses. The tool should support this.

4. Parsing of result-bodies - Next to the aggregation of responses and the cre-
ation of aspect summaries, investigating the bodies of the requests themselves
should also be supported. For instance, a single- or multi-part form, but also
a JSON string could be parsed and be shown in a prettified way with one key-
value pair per line. Next to this, an HTML response is much more informative
when it is parsed and shown in a browser. The tool should support easy view-
ing for these four types of responses.

5. Comparison of responses - Similar to the comparison of requests described
in section 5.1.2 above, the tester should also be able to compare responses
field by field or line by line while the differences are shown. More specifically,
the tool should let the tester pick any group from the aggregated results of the
same request and perform this powerful comparison.

5.2 Design

In this section, based on the requirements laid out in section 5.1, the design of the
CompuRacer toolset created and explained. First, based on the requirements, it
becomes apparent that two types of components are required: a type that gathers
HTTP requests and a type that uses the requests to trigger race conditions and
to evaluate results. We have decided to split the toolset into three separate parts
or tools: the Core application, Burp extension and browser extensions (Chrome
& Firefox). All extensions are used to gather and alter requests of interest. These
requests are subsequently sent to the Core application. From the Core, the requests
can be sent to trigger a race condition at the target web app, and it can also be used
to analyse the responses afterwards.

68 CHAPTER 5. DEVELOPING THE COMPURACER TOOLSET

Figure 5.1: The figure shows how the toolset fits within the normal activity of a security tester.

Figure 5.1 illustrates the main network structure of the CompuRacer toolset. On the
left, in orange, all parts that are related to the Burp Suite are displayed. On the right,
in yellow, all parts that concern the browser are displayed. In grey, the Core element
of the toolset is shown. The user controls the CompuRacer toolset via the CLI of
the Core, the Graphical User Interface (GUI) of Burp Suite and the browsers. Next
to this general structure, a more detailed description is given of the design of the
three sub-components. For every tool, where applicable, it is described how the tool
should fulfil the requirements defined before.

5.2.1 Core

The Core is the part of the toolset that contains most of the functionality and hereby
also fulfils most requirements. More specifically, the Core is supposed to take care of
all requirements of the second and third phase: ’Composing and sending of HTTP
requests’ and the ’Handling of HTTP responses’. Next to this, regarding the first
phase: ’Gathering of HTTP requests’, it is responsible for receiving requests from
gathering-tools and responding to their aliveness checks (requirements 1 and 2). It
is fully responsible for requirements 3 and 4.

5.2. DESIGN 69

Figure 5.2: The figure shows how the Core application is designed.

In figure 5.2, the design of the Core application is shown. HTTP requests enter the
Core via a REST server (2). The main program (1) receives the HTTP requests from
the server and stores them in its local storage. Via the CLI (3), the main program
can be controlled to create and store batches of requests that can later be sent on
command via the async batch sender (4) to the target web app. The async batch
sender will forward all responses back to the main program for further automatic and
manual analysis directed by commands from the CLI. In this section, we will not go
into the implementation of these specific components. However, the design of some
concepts for the CompuRacer toolset as a whole will be discussed instead.

Batches of requests

This design concept is about the parallel and sequential requests and their delays
within the batches. The batch is a concept used in the CompuRacer to hold a
configuration of requests that can be sent at once. Every request is added to this
batch with the number of parallel and sequential duplication’s. The sending part of
the toolset can use the batch object as an accurate and complete description of how
the attack should be executed.

70 CHAPTER 5. DEVELOPING THE COMPURACER TOOLSET

Request receive modes

This design concept is about different modes of the Core that determine what it
will do when a new request is added via the extensions. These modes create a
level of automation that allows the tester to circumvent the normal steps required to
create and send a batch of requests. Next, we will explain in detail how every mode
influences the behaviour of the Core after adding requests2.

• On - In this mode, all requests that are received within a small interval will
together be added to a specially reserved batch. The mode uses its own se-
quential and parallel duplication settings to add the requests. Then, the batch
is sent automatically. Just like the normal batch, the results can be viewed,
and it can be copied to a regular batch.

• Curr - In this mode, all requests that are received are added to the current
batch. It uses the same sequential, and parallel duplication settings as the ’on’
mode does. In contrast to the ’on’ mode, will not send the batch automatically.
As the normal flow of activities always includes creating a batch and adding
stored requests, this mode removes the second step and makes the process
more user-friendly.

• Off - In this mode, no additional action will be taken when a request is received.

Last-byte synchronisation in sending

This design concept is about the synchronised sending of the last byte of the body
of parallel requests. As long HTTP requests tend to be split into several TCP/IP
packets when transmitted, the low local time difference between requests could sig-
nificantly grow in unexpected ways when the packets reach the web server. As web
servers often wait for the entire HTTP request headers and body to be received, syn-
chronising the last TCP/IP packet between parallel requests could severely reduce
the unexpected time delays.

The idea originates from two tools that support this functionality. The first is a very
basic race condition testing tool by Riancho (2019) which is available on GitHub. It
was not discussed earlier because it is largely undocumented, difficult to, and the
author could not get the tool to work. In rc_exploit/utils/create_threads.py on
the lines 52 to 55, it is clear that last-byte-synchronisation is used. Next to this, in
the Turbo Intruder tool that was introduced in section 3.2.3, similar functionality is

2although duplicate requests will not be added to the total request list, they will trigger the mode
actions with the current request as an argument.

5.2. DESIGN 71

found. The Turbo Intruder developers have added this feature to ensure "(..) all
your requests hit the target in as small a window as possible, which can be done by
queuing all your requests before starting the request engine." (Kettle, 2019).

Presentation of results

This design concept is about the presentation of the results in a concise manner.
This presentation contains several summary tables for a quick overview and a group-
ing of unique responses for detailed analysis. These tables will show a count of the
unique status codes, body length (bytes), number of headers and the header length
(bytes). This allows the tester to spot any anomalies in the responses quickly. The
grouping of unique responses is done based on the HTTP headers and body con-
tent, which removes uninteresting clutter in the results. The grouping helps the tester
to more easily spot differences in the results and determine whether a race condi-
tion has occurred. For both the send and response times of all responses in a single
group, only the minimum and maximum times are shown. The timing information
within the headers like the ’Date’ and ’E-tag’ fields are largely non-informative and
therefore are ignored in the grouping process.

5.2.2 Extensions

The extensions are the part of the toolset meant for gathering requests. As the
tester might use different browsers or tools for their work, multiple ways have been
designed to gather requests. This should result in the process of testing for race con-
ditions that easily integrates with the normal security testing processes and thereby
fulfils requirement 1 of the first phase. Therefore, both an extension is created for
the popular testing tool called Burp Suite, and also for both the Chrome and Firefox
browsers.

In figure 5.3, the design of the lifecycle of all extensions is shown. This lifecycle
contains two important elements the aliveness check of the Core application and
the forwarding of requests. The aliveness check fulfils requirement 2 of the first
category.

Differences between the Burp and browser extensions Although both types
of extensions have a similar purpose, they work in slightly different ways. Firstly,
the browser extensions can only forward live requests while the Burp extension can
also forward historic requests from storage. Also, the browser extension has to be

72 CHAPTER 5. DEVELOPING THE COMPURACER TOOLSET

(a) Lifecycle of the Burp extension (b) Lifecycle of the browser extensions

Figure 5.3: The figure shows the the different states and transitions within the lifecycles of the Burp
Suite and browser extensions. For the browser extensions, the color of the button for each state is
shown as well. The event-based language of the browser extensions requires an additional click-
action of the user.

written in event-based asynchronous JavaScript and the Burp extension either in
the mostly synchronous Python or the Java language. Thus, the former can only
respond to external events, and the latter can keep running in a loop and actively
check for conditions. That is why state two is unique to the browser extensions:
they require the user to activate a single check for server aliveness. Other than this
additional state, the extensions work in similar ways.

The added value of the extensions We have chosen to develop both the Burp
and browser extensions for multiple reasons. As the Chrome browser extension in
its purest form was part of the Sakurity Racer tool, this was a very reasonable basis
to start. Only later, an effort was also made to create the Burp extension, and at that
moment, the Chrome browser extension was already completed. Next to this, the ex-
tension was also ported to Firefox as this required only a few configuration changes.
However, even with the Burp extension in place, the browser extensions have not
become obsolete. They fulfil the unique purpose of supporting the testing of visual
components, like submitting a form or clicking a button, directly from the browser

5.3. IMPLEMENTATION 73

without having to look up the accompanying request in Burp (or an equivalent tool).
Also, when Burp is not used, it provides a quick way to test some functionality in the
web app for race conditions.

The primary advantage of the Burp extension is that it is already integrated into
the regular testing flow of a security tester. The tester usually first clicks through the
application to map the attack surface, and from then on only uses the Burp Suite and
other tools. At any point in performing tests with the data gathered in Burp, the HTTP
requests can also be sent to the CompuRacer Core for testing race conditions, and
this provides for a smooth testing experience.

5.3 Implementation

In this section, the implementation according to the high-level design laid out in sec-
tion 5.2 is described. Both the Core, the extensions and their sub-components will
each be discussed, including the functional, performance and security considera-
tions when applicable. This chapter only describes how the CompuRacer is imple-
mented but does not contain a manual on how to use the toolset. The manual can
be found in appendix C.

5.3.1 Core - Main class

The Core is implemented as a Python program spanning about 4000 lines and is
divided over six class-files and a separate file with some utility functions. Five of
these classes match the five functional components in the Core design, and next to
this, a class is created specifically for holding and manipulating all batch informa-
tion and responses. All six classes and their contribution to the Core is discussed
separately.

The first and foremost aspect of the Core is the main class. It is responsible for both
the startup and the shutdown sequence of the Core. Next to this, it regulates all
communication between different components during the runtime.

Startup sequence

On startup, it will first try to load the settings file state/state.json. If it is not
found, a new settings file will be created according to the preferences of the user.
Then, all stored requests and batches (from the files in the state/batches/ folder)

74 CHAPTER 5. DEVELOPING THE COMPURACER TOOLSET

will also be loaded if present. Finally, it initialises all other parts and sets up the
necessary communication mechanisms between these parts. Concretely, it loads all
commands and associating functions into the Command Processor class, initialises
the REST server and finally starts the Command Processor.

Runtime

The functions of the main program during runtime are mostly passive. It contains
all functions that are linked to the CLI commands; it will receive requests from the
REST server, will read and store files and will forward batches to be sent by the
batch sender.

Shutdown sequence

When the user has initiated the showdown sequence using the appropriate com-
mand, or by killing the program directly, the main program will first shut down the
REST server and the Command Processor. Then, any unsaved part of the state
of the program, the requests and the batches are saved to disk and the program
exits.

5.3.2 Core - REST server

The second aspect of the Core that is discussed is the RESTfull server. According to
the design, a server class is implemented in the toolset using the Flask microframe-
work Pallets Team (2010). This is a straightforward server framework that is meant
for development and experimentation purposes. Every endpoint of the API is linked
to a function in this class by using Python annotations.

Functionality

The endpoint that is used by all extensions to check for the liveliness of the server is
GET /. The endpoint to add single requests is POST /add_request and for multiple
requests POST /add_requests can be used. The tool will then extract the requests
from the JSON body and parse them. Subsequently, the requests are sent via a
thread-safe queue to the main part of the Core in order to be added to the total re-
quest list. HTML responses to parallelly send requests are also hosted by this server
and can be accessed by name using GET /responses/<string:filename>.

5.3. IMPLEMENTATION 75

Performance and security considerations

The Flask framework, which was created almost ten years ago, is neither designed
to be secure nor fast. Extensions like FlaskSecurity made by Wright (2012) try to
add security mechanisms and as shown by Jones (2017), the asynchronous Asyncio
library can be used to improve performance. However, this is not necessary for the
current application as ultimate performance is not demanded and this server is only
locally accessible to the tester to forward requests from one application, being Burp
or a browser, to the other being the Core. That is why, to our knowledge, there is
no way to intercept these requests or to access the server without already having
compromised the host itself.

Multi-threading challenges

This server runs on and blocks the thread in which it is started, and therefore has
to be started in its thread to allow for other functionality of the Core to execute
concurrently. By default, the server will log every request to the standard output
(command-line), and this interferes with the interaction of the user with the CLI.
By running it in a separate process which has its standard output, this issue can
be resolved. Unfortunately, programs that consist of multiple processes cannot be
reliably debugged in Python, and the ability to perform debugging is an essential part
of a research-grade toolset. Therefore, the decision is made to disable all logging of
the server instead. If at any point in time, server debugging should take place, the
logging can be enabled again by switching one boolean value.

5.3.3 Core - CLI

The third aspect of Core is the Command Processor. It is used to receive commands
from the user via a standard input like a terminal. As said before, the commands are
first added by the main part of the program. When it starts the Command processor,
this class takes control of all standard input and output of the program.

The class has been self-written by the authors of this research. We had decided not
to use either of the available CLI libraries for the following reasons. First, we already
had a simple self-created CLI class available from different research projects, and
after some alterations, it also seemed to fit this project perfectly. Next to this, the
libraries provide such a scale of additional functionality that it would require some

76 CHAPTER 5. DEVELOPING THE COMPURACER TOOLSET

further learning to be able to use it appropriately. In section 8.2 on the future work,
we do propose the use of dedicated CLI libraries to fulfil this function.

Command formatting

The CLI supports commands and sub-commands, followed by several arguments.
These arguments must be provided in a predefined order, but optional arguments
may be omitted. When a command has multiple optional arguments, and either
one of them could be omitted, we cannot differentiate between these cases. That
is why if the user wants to omit the second to last optional argument, he must also
omit the last optional argument. The arguments can currently be of type int, float,
boolean, string and enum. When arguments contain spaces, the arguments must
be enclosed in double quotes. The first section in the manual in appendix C con-
tains a more elaborate explanation of the formatting and usage of the supported
commands.

Basic functionality

It supports all basic commands that a user would expect from a CLI like a help com-
mand (with search options) that lists all functionality, an executed-commands history
and detailed error reporting on failed commands. Next to this, the CLI is loaded by
the main class with five additional commands regarding general behaviour, mode
changes, requests, batches and the current batch. These types of commands are
explained below:

1. General - These commands are related to the general workings of the appli-
cation. They encompass changing the startup message, the enabling of the
coloured output of the application and the saving/exiting of the application.

2. Mode - These commands are related to the mode of the application. They can
be used to change the mode to one of the three states: ’off’, ’curr’ or ’on’ as
explained before. Next to that, the parallel and sequential duplication settings
of the mode can be altered, and the user can control whether the immediate
mode prints its results.

3. Requests - These commands are related to viewing, comparing and removing
requests. They can be used to view the summary of all gathered requests,
show the details of one specific request, compare two requests line by line
and remove a request. Finally, the internal ID’s of requests by which the user
can reference them can be re-calculated when necessary. This update is also

5.3. IMPLEMENTATION 77

applied to all batches and results that reference the requests. As every new
request gets an ID that is the highest existing ID plus one, frequent removal and
addition can result in ID value fragmentation (high ID values, but few requests).
This command can undo the ID fragmentation.

4. Batches - These commands are related to creating, viewing, updating, copy-
ing, comparing importing/exporting and removing of batches. They can be
used to send a certain batch, create a new batch by name, and list a summary
of all stored batches. A certain batch can also be marked as the current batch.
Details about the configuration or of the results (if present) of a single batch
can be requested, and just like the requests, responses to the same request
within a batch can be compared line by line.

Batches can also be renamed, completely removed, and the configuration and
results copied to a new batch. Batches can also be exported a JSON file for
manual inspection or backup purposes. These files can be imported back into
the application at a later time. Finally, the grouping of results within batches
can be re-executed at command. This is useful when batches with ungrouped
results are imported or when any changes to the source code have been made
that influence the grouping behaviour.

5. Current-batch - These commands are related to changing, viewing, compar-
ing and removing the current batch. The current batch is a batch that can be
accessed using shorter (easier) commands, and only the current batch can be
edited. Just like the general commands for the batches, the user can view the
content, results and compare responses.

Contrary to the other batches, the user can now also add and remove requests
to/from the batch and update the configuration of a request that is already
added. Next to this, the commands can be used to change the sending be-
haviour of the batch. First, the user can change whether redirects are followed.
Second, whether the last-byte-sync behaviour is enabled and last, what HTTP
header fields (or the body contents) are ignored when responses are grouped.
The latter functionality is useful to exclude fields that are meant to change be-
tween responses like counters or time fields. A number of header fields like
’Date’ or the ’E-tag’ are already ignored by default.

78 CHAPTER 5. DEVELOPING THE COMPURACER TOOLSET

5.3.4 Core - Batch

The batch class of the Core is responsible for holding the information of one batch.
Next to this, it manages and groups the response data. It can hold an unlimited
number of requests and configurations, but it only stores the result of one send
action. If the batch is sent again, these results are overwritten.

For the responses, a summary is created based on all responses to the same re-
quests. This summary contains a count of the unique status codes, body length
(bytes), number of headers and the header length (bytes). For every aspect, this
data is shown in a table. As stated in the subsection above on the CLI of the Core, it
will also group responses based on equality in header fields and body content. This
is implemented as follows, for every batch that is sent the responses to the same
type of request are added to the same list. For every element in this list, it is com-
pared field by field to the representative of every existing group of similar requests.
If only the ignored fields do not match, the request is added to the group.

5.3.5 Core - Async Batch sender

This is the part of the toolset responsible for sending batches of requests. It has
to abide by both functional and performance requirements. The functional require-
ments encompass that it has to be able to send any number of requests with parallel
and sequential duplication and the requested delay. The performance requirement
entails that it tries to send parallel requests as fast as possible.

The main functionality of the component is sending the parallel requests as fast as
possible, but to the best of our knowledge, there are not many examples available on
how to approach this using the Python language. There were plenty of documented
ways to host high-performance servers, but not high-performance clients. This sit-
uation was to be expected as we can imagine only some special Python-based
password bruteforcing tools have similar performance requirements. Therefore, this
was an involved trial-and-error type of process. We can discern four stages in which
the performance of the batch sender has been improved.

1. Multi-threading - Initially, it seemed best to use the default Python HTTP li-
brary called ’Requests’ and spawn multiple worker threads that all send re-
quests in parallel. However, it turned out that using multiple threads would not
be an improvement after all because the Python documentation shows that
the Global Interpreter Lock (GIL) does not allow multiple threads to access
python objects at once (Wouters, 2017). The GIL is a mutex (MUTual EXclu-

5.3. IMPLEMENTATION 79

sive access) that prevents multiple threads from executing Python bytecode
at once and is required because the CPython memory management is not
thread-safe. It mentions that long-running I/O operations could happen out-
side the GIL, but the functions in the Requests library as a whole will still run
sequentially. Therefore, this option was abandoned.

2. Multi-processing - To avoid the GIL threading issues, the alternative was
sought in multiple Python worker processes. These processes do not share
normal variable values and therefore, can execute in parallel. A bi-directional
process-safe queue was used to pass the request to the process and return
the result. This worked, but unfortunately, this option also greatly disturbed the
Python debugging ability. Apparently, the Python debugger was not designed
to work with multiple processes, and when the debugger would encounter one
exiting process, it would think the whole program had shut down and would
exit as well. By deciding not to debug this part of the program, the developer
can avoid this.

At this point, using a network protocol analyser called Wireshark (Wireshark,
2019), the raw performance of the tool was compared to the performance of
Sakurity Racer when sending a single request in parallel. The raw perfor-
mance was measured concerning the average time difference between two
consecutive requests. For this test, the account registration request to the
OWASP WebGoat of the first example in section 1.1.2 was used. The results
are shown in figure 5.4 and figure 5.5. As clearly shown, the time-differences
between requests made by Sakurity Racer are about 100 times smaller than
the time-differences between requests made by the CompuRacer. Also, be-
cause of the much slower performance, the CompuRacer was not able to
trigger the account-creation race condition. Therefore, this option was aban-
doned, as well.

Figure 5.4: The figure shows multiple parallel requests captured with Wireshark which were made by
the Sakurity Racer tool. The time-column shows the difference in seconds at microsecond resolution
between two subsequent HTTP requests.

80 CHAPTER 5. DEVELOPING THE COMPURACER TOOLSET

Figure 5.5: The figure shows multiple parallel requests captured with Wireshark which were made by
the CompuRacer toolset when using multiple processes and the ’requests’ library for sending. The
time-column shows the difference in seconds at microsecond resolution between two subsequent
HTTP requests.

3. Asynchronous - The next option that was considered is sending the requests
using an asynchronous library called ’aiohttp’ [ref] (instead of the very bulky
’Requests’ library). Since Python 3, it supports both synchronous and asyn-
chronous (event-based) programming. This method does not execute code
purely sequentially or in parallel but uses a hybrid of the two options.

An event-loop is used to sequentially queue and process actions, but all ac-
tions that cannot be executed immediately, like network requests, are handed
over to a parallel process (from a pool of available processes). The event-loop
then continues to process the next action while the parallel process executes
the delegated action. When the delegated action is completed, the callback
with the result is added back to the event-loop to be processed sequentially.
We used a faster version of the built-in ’AsyncIO’ event-loop called ’uvloop’
[ref] which can achieve a 2 to 3 times speedup.

Figure 5.6: The figure shows the time difference in seconds at microsecond resolution between
two HTTP requests for the CompuRacer toolset when using the asynchronous ’Aiohttp’ and ’uvloop’
libraries for sending.

Using this new method, the same test, as described above, is executed again
to evaluate the improved performance. The results are shown in figure 5.6.
This is a major speedup of about 800 times, which results in a performance
that is about eight times better than that of Sakurity Racer.

5.3. IMPLEMENTATION 81

4. Last-byte-synchronisation - The last improvement to the tool was made us-
ing a method called last-byte-synchronisation. We altered the source code of
the ’aiohttp’ to include the ability to start sending some packets in parallel and
then synchronise the sending of the last byte of the body. This last byte is sent
at a specific point in time for all parallel requests. A limitation of this method is
the fact that requests without a body cannot be synchronised. As only HTTP
requests without a body but with huge headers are expected to be split over
multiple TCP/IP packets, this seems to be a minor issue.

Next to these clear performance stages, some other performance measures can
also be discerned. First, before sending, all request-objects are pre-created, and
the processing of responses is also postponed until all responses are received. Both
measures are meant to avoid any processing interference.

Next to this, when the goal is for instance to trigger a race condition between the
login and shopping based functionality, we might decide to send ten copies of two
different requests (like a login and a ’put product x in my shopping basket’) in parallel.
However, as the tool would originally first create 25 asynchronous sending tasks for
the first request and then 25 tasks for the other, the time difference between the
first copy of the first request and the first (or last) copy of the second request would
often be much higher than the optimal performance of the tool promises. In our
case, at around 25 or more duplicated requests per type and using two or more
different types, a significant delay was often observed. To solve this issue, the order
in which asynchronous sending tasks for different types of requests are created, is
now randomised and this seemed to solve the issue.

5.3.6 Burp extension

The burp extension is written in about 250 lines of Python code within a single file.
The Burp Suite natively only supports Java plugins, but as the extension Application
Programming Interface (API) indicates (Portswigger, 2018b), the Jython runtime can
also be used which converts the Python code to Java bytecode. It allows for select-
ing one or more requests from any message viewer or editor within the Burp Suite in-
terface, packages these requests in a JSON object and adds this as a body of a new
POST request. It then sends this request to REST server endpoint /add_requests
at the Core. It uses a separate thread to check whether the Core is alive by sending
a GET request to the root of the REST server. If it responds with a 200-code, the
Core is assumed to be alive. It does not allow sending requests when the Core is
not alive.

82 CHAPTER 5. DEVELOPING THE COMPURACER TOOLSET

5.3.7 Browser extensions

The browser extensions are written in about 250 lines of JavaScript code within a
single file. As indicated in the design of the extensions, it can capture requests and
forward them the CompuRacer Core. It uses the WebRequest API of the browser
to block all requests of interest, package them in the JSON body of a new POST
request and send this to REST server endpoint /add_request at the Core. Next
to this, the extension is also able to check whether the Core is alive and will only
forward requests if this is the case. It uses a GET request to the root of the REST
server, and if it responds with a 200-code, the Core is assumed to be alive.

Contrary to the Burp extension, the user cannot specify which requests to forward,
and that is why the extension has to contain some programming logic to decide what
requests are interesting. These requests are selected based on several hardcoded
rules. First, the requests have to be of the HTTP or HTTPS (secure) type. Second,
all requests with the OPTIONS, CONNECT and TRACE HTTP methods are ignored
because we have shown in section 4.2.3 that these requests are not state-changing
and therefore not interesting for race conditions. Third, all GET requests of an image,
script, CSS and font are ignored as these requests are not state-changing.

5.4 Conclusions

In this section, we have created implemented a toolset that supports the security
tester in finding and exploiting race conditions in web applications. In the next chap-
ter, we will test both the toolset and the methodology created in chapter 4 to evaluate
whether they actually fulfil the requirement of supporting the first systematic method
in testing for race conditions in web apps as set out in the introduction of the the-
sis.

Chapter 6

Evaluation of toolset and testing
methodology

In this chapter, we will evaluate both the testing toolset and the testing methodol-
ogy. For the tool, per the main question of the research, we will evaluate the extent
to which it adequately supports the tester when he is testing for race conditions in
web apps from a black-box perspective. The tool needs to contain the necessary
functionality, needs to be easily usable by the tester, and needs to perform well
enough to exploit race conditions from a black-box perspective successfully. For the
methodology, it needs to provide the tester with a complete and sufficient guideline
to perform a systematic race condition test on a web app. The method is devel-
oped with these requirements in mind, but we will execute a practical test to verify
these claims. The toolset will be evaluated first as we need a working toolset to use
and assess the testing methodology. Based on the requirements to the toolset as
defined in section 5.1, we have defined ten metrics regarding the functionality and
usability of the toolset in section 6.1 and we have identified four metrics regarding
the performance of the toolset in section 6.2.

Based on the metrics, we have gathered the necessary data to rate the toolset and
make the appropriate conclusions. In this evaluation, when applicable, the results of
the CompuRacer toolset are compared to three existing race condition testing tools.
The tools used for comparison are the Sakurity Racer, Race the web and Turbo
intruder which we introduced in section 3.2.3. As the Netclonefuzzer tool could not
be made to work successfully on macOS, we have excluded it. Next to this, for the
performance test, we used two versions of the CompuRacer. One version with last-
byte-synchronisation enabled and once with the functionality disabled (see point 4
in section 5.3.5).

83

84 CHAPTER 6. EVALUATION OF TOOLSET AND TESTING METHODOLOGY

Next, according to the methodology, the toolset is used to test seven web apps re-
garding race condition vulnerabilities. The web applications we tested fall in the three
web app categories that were also considered when creating the testing methodol-
ogy in section 4.2. The web apps were tested regarding all applicable items as
specified in figure 4.3 (page 49). Finally, the findings are discussed, and we draw
the appropriate conclusions.

6.1 Evaluation - Toolset functionality & usability

The toolset should be easy to use by a security tester and provide all the neces-
sary functionality to support a race condition test. In other words, the functionality
and usability of the toolset are essential. In order to compare the functionality and
usability of the tools, we have defined ten metrics. The metrics cover both the prepa-
ration of the tool before a tester can use it, the usage itself and how future-proof it is
estimated to be.

We can objectively rate tools according to purely functional metrics, but the usability
metrics will involve more subjective evaluations. Therefore, for every metric, not
only the scores are given but also an argument for why the tools receive a particular
score.

In this section, first, every metric is explained, and the scoring system is laid out.
Then, we will rate every tool according to the system, and explain the scores. Finally,
based on the data, conclusions are drawn.

6.1.1 Definition of metrics and scores

Below, every metric is defined, and we explain how a good and bad score can be
distinguished. These definitions and scores are summarised in table 6.1.

Relative metric weight distribution Regarding the weights of the individual met-
rics, we have decided to divide them into three groups. The first three metrics are
about the setup of the tool (group 1), the next six metrics are about the usage of the
tool (group 2), and the final metric is about the continual use of the tool (group 3).
The metrics in all groups are important, but regarding the most essential impact on
the functionality and efficiency of the tool, we can make a distinction.

6.1. EVALUATION - TOOLSET FUNCTIONALITY & USABILITY 85

The first group only once takes a specific unit of time for a tester, and the second
group takes an amount of time for every test or test case. Therefore, the time-usage
for the second group has the most substantial impact on the total adoption and us-
age time. Next to this, the second group addresses the most essential functional
aspects of the tools. That is why these six metrics are regarded as the most impor-
tant and used as a tiebreaker when two or more tools would otherwise get the same
score.

1. Instructions - the availability of a guideline on how to install and use a tool.
Having no instructions results in the minimum score and a complete manual
on how to install and use it will yield the maximal score.

2. Installing tool - the complexity and the number of steps required to install a
tool. If a tester should follow many complicated steps for the installation, it
gets the minimum score. When a tester, however, only needs a download and
a single-click installer, it gets a maximal score.

3. Configuring tool - any configuration required after installation and before we
can use the tool to test for race conditions. Similar to the installation of the tool,
a straightforward process will yield the maximal score, and a complex process
involving many steps will result in a minimum score.

4. Control options - the way the tool can be controlled by the tester to perform
race condition tests. When any alterations require source code updates, it gets
the lowest score. On the other hand, when not only a human (graphical or
command line) interface is available, but also an API is available for automatic
or remote test integration, it will receive the highest score.

5. Importing requests - the process of getting HTTP requests of interest into
the tool for further configuration and using them in a test. When only manual
and repeated copy-pasting of raw HTTP packet contents are supported, this
is very inconvenient and will yield the worst score. A much better way is the
ability to dynamically push requests via multiple kinds of sources like proxies
and browsers that were already meant for gathering HTTP requests. These
abilities result in good integration and easy usage and will result in the best
score.

6. Storing requests - the ability to not only import and use requests but also
store them conveniently for later use. If this is not supported at all, the tool
will get the lowest score. To the contrary, if both storage and well-designed
searching through these requests are supported, the highest score is awarded.

7. Storing configuration - when a tool can be set to work in different ways de-

86 CHAPTER 6. EVALUATION OF TOOLSET AND TESTING METHODOLOGY

pending on the type of race condition test, it should support storing this config-
uration to avoid repeated work. When not only the storage of settings but also
importing and exporting of settings for different tests are supported, we hand
out the maximal score. When no such storage is possible, the tool gets the
lowest score.

8. Sending requests - the most essential part of a tool is the parallel sending of
requests. In order to trigger complex race conditions, the tester often requires
multiple parallel requests and delicate timings. If any combination of requests
and timings is supported, the tool gets the highest score. If only the bare
essential functionality of sending a single request multiple times is supported,
we give the minimum score.

9. Aggregation of responses - verification of the occurrence of a race condition
is the second-most important functionality of the tool. When the tool prints all
HTTP responses to the parallel requests to the standard output, analysing this
becomes very cumbersome and therefore yields the lowest score. When ad-
vanced and possibly automatic aggregation of responses for quick verification
of success is supported, the tool gets the highest score.

10. Future proof - for most research-grade tools, acquiring and particularly using
more antiquated tools can be very challenging. An open source and actively
maintained tool with updates in the past six months will probably work most
conveniently and will be usable for a longer period in the future. Therefore,
such a tool will receive the maximal score. On the other hand, a closed source
tool that does not seem to be actively maintained hence will receive the lowest
score.

6.1. EVALUATION - TOOLSET FUNCTIONALITY & USABILITY 87

Table 6.1: According to the scoring laid out before, this table shows the concrete mapping between
metrics and scores that is used when rating the tools.

Metric Worst: - - Bad: - Good: + Best: ++

Instructions None
Very limited
instructions

Instructions
on, install,

config and run

+ elaborate
manual on how to

use the tool

Installing
tool

Complex and time-consuming:
many steps / requirements / bugs

Download, some config and start
installation

Configuring
tool

Complex and time-consuming
Quick
config

No config
required

Control
options

Via source
code changes

Via config
files

Via a GUI /
CLI

+ via and API

Importing
requests

Manual using
copy paste

Manual using
files

Dynamic via
API

+ multiple dynamic
methods

Storing
requests

No Yes
+ automatic /
searchable

Storing
configuration

No Yes + import / export

Sending
requests

One request in parallel
and no timing config

Different
requests /

timing configs

+ any request
and timing

combination

Response-
aggregation

No
Yes, simple grouping /
filtering / highlighting

+ more advanced
options

Future-proof
Closed source
& abandoned

Closed source & active / open
source & abandoned

Open source
& active

88 CHAPTER 6. EVALUATION OF TOOLSET AND TESTING METHODOLOGY

6.1.2 Rating the tools according to metrics

Based on the ten metrics and the scores defined before, every tool is rated. The
scores are shown in table 6.2. Then, for every metric, an argument is given for why
the tool received this score.

Table 6.2: The table shows the scores of every tool for the metrics defined before.

Metric CompuRacer
Turbo

Intruder
Sakurity

Racer
Race

the web

Instructions ++ + +/- +

Installing tool + ++ + +/-

Configuring tool ++ +/- ++ ++

Control options + + - - ++

Importing requests ++ + + +

Storing requests ++ ++ - - +/-

Storing configuration ++ ++ - +

Sending requests + + - +

Response-aggregation + ++ - - -

Future-proof ++ ++ + +

1. Instructions

• The CompuRacer gets the best possible score because it comes both
with a README [ref] on how to install, configuration and run the tool, and
also with a manual [ref] on how to use the tool on an included vulnerable
web application.

• The publication of the Turbo intruder also includes a README on Github
[ref], a talk on a security conference [ref] and an entry in a blog [ref] on
how it works in general. These documents do not equal a full-blown man-
ual, and therefore the score is not maximal.

• The Sakurity Racer only contains basic instructions on its Github page
[ref] and shows its usage in a security blog [ref] and therefore gets a
limited score.

• Finally, Race the web is presented in the Hackfest infinity security confer-
ence [ref] and contains an elaborate README on its Github page [ref].

6.1. EVALUATION - TOOLSET FUNCTIONALITY & USABILITY 89

This document gives the tool the second to highest score.

2. Installing tool

• The CompuRacer requires the user to download the sources from Github,
install Python 3.7 and the dependencies, and to load the browser and the
Burp extensions. These are quite some steps, but as every step itself is
easy, it scores well.

• Turbo Intruder only needs to be installed via the Extension tab of the Burp
Suite and then is ready to use. This simple method yields a maximal
score.

• Sakurity Racer requires the user to download the source from Github, in-
stall NodeJS and the dependencies, start the server and load the exten-
sion in the Chrome browser. It is a similar process as for the CompuRacer
tool and therefore, the score is the same.

• Race the web needs to be downloaded from Github, then the tester must
install Go, compile the program and install the dependencies. These
steps are the most complicated of all tools, and therefore, it gets an aver-
age score.

3. Configuring tool

• CompuRacer requires no setup after every part is installed and therefore
gets the maximal score.

• Turbo Intruder requires no setup when a simple brute force tactic exe-
cuted, but when testing for race conditions, it requires the user to get a
different execution script. As this requires some knowledge about the in-
ternal workings of the tool, this is not a trivial task. That is why it gets an
average score.

• Sakurity racer and Race the web both require absolutely no configura-
tion before requests can be added to the tool and therefore get the best
possible score as well.

4. Control options

• The CompuRacer can be fully controlled and customised using its elabo-
rate Command Line Interface (CLI) and therefore gets a good score.

• The Turbo Intruder can both be used within the GUI of the Burp Suite
and outside using a CLI. As its integration with Burp makes the advanced
control and aggregation possible, its functionality is reduced greatly to a

90 CHAPTER 6. EVALUATION OF TOOLSET AND TESTING METHODOLOGY

level equivalent to the Sakurity Racer when we use this mode. That is
why it does not get the maximal score for this metric.

• The tester can only start the Sakurity Racer and forward requests re-
ceived from the browser in parallel in a fixed way. The browser extension
does send the parallelisation value to the NodeJS server, but the tester
cannot change this value other than by updating the extension source
code. Therefore, the tool gets the lowest score.

• The behaviour of Race the web can be changed a bit more easily using a
configuration file and therefore it gets the second to the lowest value.

5. Importing requests

• The CompuRacer supports receiving requests via the Burp Suite, the
Firefox and Chrome extensions and even by adding the request-content
it to the JSON state file of the tool. Consequently, it gets the maximum
score.

• Similar to the CompuRacer, the Turbo Intruder supports adding requests
via any request-view in the Burp Suite interface. However, there are no
other methods to add requests. Thus, it does not get the maximum score.

• Sakurity Racer also has one dynamic-method of adding requests using
the browser extension and therefore gets the same score as the Turbo
Intruder.

• Race the web, on the other hand, supports two methods of adding re-
quests. Manually via a configuration file and also via the API. As it does
not support multiple dynamic methods, it only gets the second to highest
score.

6. Storing requests

• Both the CompuRacer and the Turbo Intruder support storing requests,
sorted viewing and comparing of stored requests and therefore get the
maximal score.

• For the Sakurity Racer, only the lowest score is applicable as it immedi-
ately forwards requests and does not store them in any way.

• Race the web uses configuration files for adding requests, and we can
view these files as straightforward not-searchable storage of requests.
The requests that the tester sends via the API will not be stored. There-
fore, it gets an average score.

6.1. EVALUATION - TOOLSET FUNCTIONALITY & USABILITY 91

7. Storing configuration

• These results are similar to the scores to the ‘Storing requests’ metric.
Both the CompuRacer and the Turbo Intruder support advanced configu-
ration of the tool behaviour and this behaviour can easily be imported and
exported for different tests. Thus, they receive the best score.

• The configuration of the Sakurity Racer is hardcoded in the application
but can be altered by changing certain variable values in the source code.
Therefore, it only gets the second to lowest score.

• Race the web is configurable using its configuration files, but as these
same files also contain the requests of the attack, importing and exporting
settings between tests is not trivial. Therefore, it does not get the highest
score.

8. Sending requests

• CompuRacer supports the creation of batches of requests that the tester
can send at once. The tester can also configure the tool to sent requests
with arbitrary parallel and sequential duplication, and also delay requests
from the start of the attack with millisecond precision. By altering the
asynchronous library used to send requests, it supports the option to syn-
chronise the sending of the last byte of the body of parallel requests. This
alteration improves the synchronisation of the arrival of parallel requests
at the server-side, especially when the connection to this server is slow
or unstable. Therefore, we award the tool with the maximal score.

• Turbo Intruder contains the same last-byte-sync functionality, and by using
the configuration scripts, the tester can also arbitrarily delay requests.
Finally, the request headers and body can be altered to some extent using
these scripts. As it does not support sending different requests that were
gathered by the Burp Suite in parallel, it only gets the second to highest
score.

• Sakurity Racer can only send the same request in parallel without any
delays or additional last-byte-sync and therefore gets the second to lowest
score.

• Race the web can send multiple different requests in parallel, but no tim-
ing options or last-byte-sync are available. It, therefore, gets the same
score as Turbo Intruder.

92 CHAPTER 6. EVALUATION OF TOOLSET AND TESTING METHODOLOGY

9. Aggregation of responses

• For every test, CompuRacer will calculate the response code, header and
body length statistics for all responses to quickly spot obvious anomalies.
Next to this, the tool groups all responses by header and body similarities.
The grouping-behaviour can be changed, and the tester can also use
the tool to compare two groups field-by-field. In these groups, response-
codes are highlighted using colour-codes and HTML bodies are made
available for inspection via the built-in server. As this behaviour is only
customizable in a limited way, it yields no more than the second to highest
score.

• For the Turbo Intruder, Python scripts can be used for endless options for
display and aggregation of responses of interest. Next to this, it also has
a built-in algorithm for showing only results of interest. These results can
be sorted and viewed afterwards. We can only award the highest score
to this tool because of the massive amounts of options alongside great
defaults.

• Sakurity Racer has not aggregation at all and just prints all responses to
the terminal output. Therefore, it gets the lowest score.

• Race the web has a basic method of aggregation that groups all du-
plicate responses. We found that the grouping function does not take
into account the undefined ordering of the Go dictionary used for the
HTTP headers. Therefore, it is only able to group duplicate responses
by chance. Thus, we can give no better than the second to lowest score.

10. Future proof

All tools are open source and available on GitHub and therefore obtain a good
score.

• However, only the CompuRacer and the Turbo Intruder have been up-
dated in the last six months. Actually, the developers of both of these
tools have also created them in the last six months. As both the Com-
puRacer and the Turbo Intruder are developed by employees of security
testing companies (Computest1 resp. PortSwigger) and published on their
GitHub accounts, we estimate that both will be well-maintained.

• Sakurity, a security company, created and published Sakurity Racer, but
provided the last updates only two years ago.

1The author of this research has developed CompuRacer, but it has also been audited by a senior
security tester at Computest regarding security vulnerabilities.

6.1. EVALUATION - TOOLSET FUNCTIONALITY & USABILITY 93

• For Race the web, also no significant updates seem to have been made
in the last two years.

6.1.3 Conclusions

Based on the functionality and usability scores of the tools, we can spot some
trends. For one, the CompuRacer and Turbo Intruder tools score much better than
the other two tools according to most metrics, and the Sakurity Racer gets the lowest
scores.

The reasons why a tester could prefer the Sakurity racer over the other tools are
for requiring no configuration and the ability to easily send some parallel requests
directly from the browser to a web app. As the CompuRacer has an improved version
of the same functionality, this is not a real advantage. Race the web gets moderate to
good scores and is the only tool that has advanced API integration. A tester could,
therefore, use it in automated tests, and this is an advantage worth mentioning.
As most race conditions often require some manual effort to discover, trigger and
exploit, this only seems usable for already known race conditions and therefore is
deemed to be of limited value during security tests.

The Turbo Intruder comes much closer to the CompuRacer when comparing the
scores. No real difference can be observed in the scores, even when we use the
weights of the different metrics to differentiate between them. The Turbo Intruder
seems to be the better option when a single-click installation, full integration with the
Burp Suite and advanced aggregation of responses is valued highly. CompuRacer
scores better regarding its elaborate instructions, easy configuration, the number
of different sources to get requests from and the ability to send multiple different
requests in parallel. As both tools still get a good score when the other tool out-
performs it, we cannot point to an absolute winner. Based on the strengths of tools
and the particular use case, a tester should make the final decision regarding the
preferred tool.

94 CHAPTER 6. EVALUATION OF TOOLSET AND TESTING METHODOLOGY

6.2 Evaluation - Toolset performance

The toolset should have a good and consistent request-sending performance in or-
der to provide the security tester with the highest possible chances to trigger and
exploit race conditions. To compare the performance of the tools, we have defined
four metrics and set up a practical test. The first two metrics cover the raw perfor-
mance (speed), and the other two metrics cover the real-life performance (triggering
race conditions). For the practical test, we will target the voucher app that was in-
troduced in section 3.2.3. The web app is run using four different configurations:
locally, with and without a proxy to simulate real-world latency, and also remotely on
an Amazon EC2 microserver in Paris. A script is created to support the gathering of
data for the performance metrics.

In this section, first, we define the test metrics. Then, we describe the test setup and
script. Last, we show the results, discuss them, and draw the conclusions.

6.2.1 Definition of metrics and scores

Below, we will elaborate on what the metrics consist of, why they are important to
evaluate performance, and how to evaluate them on a tool.

1. Raw performance

Here, we look at the speed at which a tool can deliver parallel requests to the
application. This data is valuable because the parallel requests have to arrive
at the application within the race window in order to cause a race condition
to occur. Therefore, a robust tool should consistently deliver parallel requests
with a time difference that is as short as possible.

As tools might not construct TCP packets and HTTP requests in the same way,
this could result in different handling of these packets between the client and
the target application. That is why two metrics are defined that both measure
the time difference between requests at a distinct measuring place:

1.1. Client - The time between packets as measured when they arrive at the
network interface that is used to send the packets to the target application.

1.2. Application - The time between packets when the web application pro-
cesses them.

Our experience shows that an acceptable time difference for staying within the
race window varies between applications. In a complex and busy application

6.2. EVALUATION - TOOLSET PERFORMANCE 95

where the request involves external database access, the value is much higher
(order of 100’s of milliseconds) than for a simple and almost idle application
that only accesses some internal storage (order of 1 millisecond or less). Re-
gardless, a lower time difference is likely to yield better results. Therefore, for
this metric, a good score would be given to a tool that delivers a significant por-
tion of its parallel requests to the web application logic within a short amount
of time and a low variety.

2. Real life performance

Here, we look at the actual number of race conditions that a tool can trig-
ger at the application. This aspect, naturally, is essential to a race condition
testing tool, and it should give consistent and good results. As too quickly
sending requests can also result in Denial of Service (DoS) - related errors at
the server-side, we should also look into this aspect. That is why two metrics
have been defined that measure the voucher usage ratio and the number of
success codes:

2.1. Voucher usage ratio - This is the number of vouchers that are used
compared to the total number of successful requests. More specifically,
this is the number of successful requests divided by the number of used
vouchers. If this value is one, no race conditions occurred, and every
voucher is just redeemed once. If this value is two, every voucher is
redeemed twice on average due to race conditions.

2.2. Number of success codes - The is the total number of success codes
that are returned by the application. As we will always send the same
number of requests, this value directly indicates how many errors oc-
curred at the server side.

This metric is evaluated based on the number of race conditions the tool
causes to occur at the web application compared to the total number of parallel
requests: the voucher usage ratio. As requests that trigger unexpected error
states of the application are not desirable (and could be part of an attack) but
are also not directly related to the ability to cause race conditions, we mea-
sure these error-causing requests separately and will exclude them from the
calculation of the ratio.

We expect that there is a strong correlation between the scores of the tools re-
garding this metric and the raw performance metrics. However, we still include
this metric, because the expected correlation is not proven or fully understood
and therefore, it is an adequate verification method in itself. We award an ex-
cellent score when a tool has a high voucher usage ratio with a low variability

96 CHAPTER 6. EVALUATION OF TOOLSET AND TESTING METHODOLOGY

while causing as little errors on the server side as possible.

Notes For the first metric, the target web application must support logging of the
time when a request is handled by the application logic handles. For the second
metric, it should be possible to decide from responses how many race conditions
occurred at the server. For both metrics, the target web app should not only be
run at the local host as this is not a very realistic situation. Additional tests should
be executed remotely or by using a proxy that causes a realistic amount of latency
between the client and the server.

6.2.2 Performance test setup

In order to rate the tools according to the metrics, a test setup is required to acquire
the necessary amount of data. First, we will elaborate on how the tools and the
target web app is set up. Then, we explain the proxy that we use between the client
and the server, and we show how the test automation script works. The complete
test setup is illustrated in figure 6.1.

Figure 6.1: The figure shows the complete test network setup using five tools and four environments
(targets). It also indicates the two places where the time-difference measurements are computed.

6.2. EVALUATION - TOOLSET PERFORMANCE 97

Setup of tools and target web app

Both the four tools and the target web app will be run locally on a MacBook Pro from
2013 (macOS High Sierra). CompuRacer will be tested twice for every set setup.
Once with the last-byte-synchronisation enabled (CompuRacer+, CR+ or CR_lbs)
and once with this function disabled (CompuRacer or CR). This difference allows us
to test the effectiveness of this particular function as well and results in five tools in
total. In the results, we abbreviate Turbo Intruder to TI, Race the web to RTW and
Sakurity Racer to SR.

As only the CompuRacer and RTW support the sending different requests in parallel,
we only tested the parallel sending of the same request. This request is first added
to the tool under test and then is sent 25 times in parallel. We record the time-
differences between requests at the client and the web server inside the application.
We repeat this process 15 times per tool. Between tests, we restart the application
and reset its database to avoid any interference. In the next paragraphs, we discuss
the process to add and send requests with the RTW, SR and TI tools.

Race the web For this tool, we have created a TOML (Tom’s Obvious, Minimal
Language) configuration file for all setups. The file contains the parallel duplication
amount and the request-content itself. We start the tool with this file as the only
argument, and then it sends the parallel requests.

Sakurity Racer For this tool, there is no configuration file. The parallel duplication
amount is hardcoded into the sending application. For every test, the Chrome exten-
sion has to be used to intercept the request of interest and forward it to the sending
application. This application then immediately sends the requests in parallel to the
target web app.

Turbo Intruder For this tool, we should first load it with a script that optimises the
sending for triggering race conditions. In this script, the parallel duplication amount
is also indicated. Then, the requests of interest should be intercepted using the Burp
Suite proxy. From the proxy history, we send the request to the TI extension. The
extension can then send this request at the press of a button.

Target functionality in web app We test the tools on the self-developed vulnera-
ble voucher app. The most interesting redeem functionality is targeted: redeeming

98 CHAPTER 6. EVALUATION OF TOOLSET AND TESTING METHODOLOGY

a multi-use coupon (code: COUPON3) multiple times in the ’insecure’ setting. This
coupon can be redeemed 100 times. The ’insecure’ setting contains a TOCTOU bug,
but the race window is tiny as there is almost no logic between check-transaction
whether a voucher is usable and act-transaction that uses the voucher. As this
coupon will be redeemed 25 times, when no race condition occurred, this would
result in 75 leftover usages. When more than 75 usages are left, and no errors
occurred, we know that a race condition in the voucher app has taken place.

Note about test interference We keep an eye on the CPU and RAM usage of the
MacBook during the three local tests. This check is necessary because, as already
mentioned before, a race condition is exceedingly dependant on the exact timing
of requests. Slow performance of the testing system will influence both the tools
and the test web app in unexpected ways, and we will, therefore, monitor it. When
the CPU usage rises above 50% on average, the particular test is postponed or
re-executed.

Setup of proxy and remote server

As mentioned in the metric notes above, a test that only consists of a local setup
with a server and client on one system or one local network is not very realistic. In a
real-life setup with the server being in another city, country or continent, latency and
packet loss become significant factors that we also have to include in the test.

That is why, after the test is executed once with a local server; both a configuration
using a random-delay-proxy called ToxiProxy (version 2.1.4) developed by Shopify
(2019) is set up, and also a configuration using an Amazon EC2 microserver in-
stance in Paris. Note that each test is executed from the west of the Netherlands
and all relative latencies are also calculated from this location. More concretely, us-
ing the remote server and the proxy three additional tests are added which adds up
to 4 test environments in total. In figure 6.1, the test network setup is illustrated and
below, every environment is described in more details:

1. Local server - A server on the same local network is simulated: a delay of 1
ms or less and jitter at microsecond-level is to be expected.

2. Remote server - An Ubuntu microserver in Paris is used: a delay of about
20 ms and jitter of at most 5 ms is to be expected for every packet up- and
downstream as Reinheimer and Roberts (2019a) indicate. This results in a
latency of 15 to 25 ms.

6.2. EVALUATION - TOOLSET PERFORMANCE 99

3. Proxy normal - A server in Los Angeles is simulated: a delay of 250 ms and jit-
ter of at most 50 ms is added to every upstream request. So every request will
have a latency of 200 to 300 ms as Reinheimer and Roberts (2019b) indicate.

4. Proxy slow - A horrible environment is simulated: a delay of 1500 ms and jitter
of at most 500 ms. So every request will have a latency of 1000 to 2000 ms 2.

As exploiting race conditions is not expected to depend on downstream latency
(server -> client), this latency is not included for the proxy setups. The following
commands were used to start Toxyproxi, create the two different proxy setups to the
testing web app (at 127.0.0.1:5005) and set the ’toxics’ (latency and jitter) of these
proxy setups:

$> toxiproxy - server &
$> toxiproxy -cli create delay_normal -l 127.0.0.1:5006

↪→ -u 127.0.0.1:5005
$> toxiproxy -cli create delay_high -l 127.0.0.1:5007 -u

↪→ 127.0.0.1:5005
$> toxiproxy -cli toxic add delay_normal -t latency -a

↪→ latency =250 -a jitter =50 -u
$> toxiproxy -cli toxic add delay_high -t latency -a

↪→ latency =1500 -a jitter =500 -u

Setup of test automation script

As shown in figure 6.1, the test as a whole encompasses using five different tools to
send 25 requests in parallel via four different (proxy) setups, and the complete test
is repeated 15 times. This results in 20 different setups repeated 15 times to result
in 300 individual tests. For every test, the time differences between requests have
to be gathered from two different locations and also the number of used vouchers,
and error responses have to be saved. Next to this, the logging, database and
application have to be reset between tests. As it would require significant effort to
gather this data by hand, most aspects of this process have been automated using
a Python script.

The source code of the script can be found on a GitHub repository of the au-
thor3.

2Under normal circumstances, these characteristics are not found between any two servers on
earth, but an awful network setup is still likely to yield these results.

3Link to the repository: https://github.com/RobvEmous/WebAppRaceConditionTesters

https://github.com/RobvEmous/WebAppRaceConditionTesters

100 CHAPTER 6. EVALUATION OF TOOLSET AND TESTING METHODOLOGY

The script contains four stages per test and repeats this 15 times until all results
are gathered. Then, it creates a summary file with all time-differences, statistics
and redemption results. The script should be re-run for all tools and different proxy
configurations. The different stages are described below. The output of the tool for
one illustrative test is shown in figure 6.2

Figure 6.2: The console output for running the test script once with illustrative data. All input is
coloured green and all output from the Wireshark recorder and converter is coloured red.

Configuration stage The user first indicates the name of the tool and the proxy
configuration that will be tested. For the proxy configuration, ’f’ (fast, no proxy), ’r’
(remote), ’n’ (normal proxy) and ’s’ (slow proxy) can be used. The local request
recorder uses this information to optionally filter any requests from the proxy to the
web app. Only the time-differences of requests from the tool to the proxy are mea-
sured. Then, the script will first create the necessary folders for result storage.

Preparatory stage After the setup, several commands are executed on the server
of the voucher app via SSH. These commands empty the log files of the web server
and the application, restart the application and reset the database. Then, the script
waits for an ENTER-press. During this time, the user should manually prepare the
tool for sending parallel requests via the current proxy configuration.

Execution stage Then, he presses ENTER, and the script will start a Wireshark
recorder to save the request differences at the client for 8 seconds. When the record-
ing is started, it will indicate this fact. Only after this indication, the user can safely
start the parallel sending of requests. All requests send before this moment or after
8 seconds will not be recorded.

6.2. EVALUATION - TOOLSET PERFORMANCE 101

Evaluation stage After 8 seconds, the script will stop the recorder, save the re-
sults and again access the server of the voucher app via SSH to read the log files.
It will extract the arrival-timestamps of the 25 requests at the web server and the
application. After this, it will ask the user how much success codes were returned
and how much vouchers were redeemed. This data is stored, and the tool returns
to the preparatory stage for the second test.

6.2.3 Results

According to the test setup laid out before, the test is executed, and the results are
gathered. According to the metrics as laid out before, we are primarily interested in
the expected value (mean or median) and the variance of the performance regarding
the two metrics as compared between the five tools.

Presentation of results for both metrics First, in order to get a general idea of
the answers to the metrics, histograms were created of all results. For metric 1, the
time-difference between requests at the client and the application are plotted. For
these differences, smaller is better. The distribution of these time-differences is as-
sumed to be log-normal as most differences will be tiny: in the order of milliseconds
or microseconds, but several outliers were also found of up to multiple seconds in
duration. That is why we have transformed this data by taking the base-10 loga-
rithm of all data points. The log-normality assumption is not validated because it is
only used for a more comfortable visual comparison of the results. For metric 2, the
success codes and ratios are plotted on a histogram with regular bin-sizes.

In the histograms, a number of additional statistics are listed. They indicate the
expected value using the mean and median, and the variance using the standard
deviation of the mean, and the first and third quartile (Q1 and Q3) of the data. Unfor-
tunately, these statistics can only give us a hint as to which tool performs better, but
proper statistical tests are required to make any firm claims about the performance.
We will explain these tests below. Note that afterwards, as encouraged by any good
resource on statistics, we verified whether the histograms, means, medians, vari-
ance, etc. matched the conclusions indicated by the output of the statistical tests.
No anomalies were spotted, and that is why these individual comparisons will not be
discussed.

Note that that the results for all five tools are plotted in histograms, but as this re-
sulted in page-size figures, only the overview-histograms are shown here and the
full figures are moved to the appendices. In the remainder of this section, we will

102 CHAPTER 6. EVALUATION OF TOOLSET AND TESTING METHODOLOGY

first show the overview-histograms for all setups of all test metrics, and secondly,
discuss the executed statistical tests and their results. Lastly, the results are sum-
marised.

Additional statistics for both metrics As stated above, several statistical tests
were conducted on the data to compare the results of all tools and draw appropriate
conclusions. As every test has specific requirements with regards to the data, and
the point in the process it is used, this is not a simple process. The appropriate
process that is followed by us in the statistical analysis contains four sets of tests and
is illustrated in figure 6.3. We explain each step below. For all tests, the significance
value is set at a = 0.05, as this is a commonly used value.

Figure 6.3: The figure shows the process of using statistical tests to compare the results of the tools.

6.2. EVALUATION - TOOLSET PERFORMANCE 103

1. Test for normality - As most tests assume the normality of the mean and me-
dian of the data, we first test this quality. Based on the Central Limit Theorem
(CLT), we can already assume that these values are normally distributed when
more than about 30 samples are used per group (tool). For the time-difference
measurements for metric 1, this requirement easily holds as we collected 360
measurements per tool (15 tests of 24 time-differences). However, for the
voucher redeem results for metric 2, we have only collected 15 samples per
tool. That is why we have to use a specific test for the normality of the data in
this case.

As Kar and Ramalingam (2013) point out, 30 samples is not a magic number
that works in all cases. However, for our test, we either fail or greatly surpass
this minimal requirement. That is why this value, often cited in works on this
subject, is still used and deemed sufficiently valid.

We use the Shapiro-Wilk test, which is specifically designed for estimating the
distribution of small sample sizes of N < 50 (Shapiro and Wilk, 1965). The
Kolmogorov-Smirnov Test (or KS test) could also be used for this purpose as
according to (Halley and Inchausti, 2002, p. 521), this test "measures the max-
imum departure of the data from a theoretical cumulative distribution function"
and this can be used for an evaluation of the ’goodness of fit’ of the normality
of the results (Ball, 1960). This version of the KS-test is very similar to the Lil-
liefors test (Lilliefors, 1967). However, it is less focused on small sample sizes
and, therefore, the Shapiro-Wilk test seems to be the better option in our case.

2. Test for equality of means of all groups - Now, we can perform a test that
estimates whether the means of-of the groups are the same (hypothesis 0),
or at least one group-mean is different (hypothesis 1). If the outcome of the
normality test is positive (h0), we use the One-Way ANOVA test (Kim, 2014)
and otherwise, we use the non-parametric Kruskal-Wallis test (Breslow, 1970).
Although the One-Way ANOVA is quite robust to some deviations to the nor-
mality of the data, the latter test does not require this assumption at all and
therefore seems to be a better fit data. The One-Way ANOVA test also re-
quires the variances of the groups to be equal, but this requirement is relaxed
when the group-sizes are roughly equal. This is the case for our tests.

If this test returns positive, no group-mean is said to be statistically different
from the others, and we are done. Otherwise, we continue with the next steps
to find out which groups in specific deviate from the rest.

3. Test for homogeneity of variances In the case of normally distributed data,
we need to know whether the variances of the different groups are equal (ho-

104 CHAPTER 6. EVALUATION OF TOOLSET AND TESTING METHODOLOGY

mogeneous) to be able to select the appropriate next test. We use Levene’s
test for this end, which tries to confirm the hypothesis that all variances are
equal.

4. Post hoc test for equality of means between groups We now know that at
least one-group mean is different from the others, but we do not know what
groups(s) are different. That is why the fourth set of tests is required.

• The Turnkey HSD test requires normally distributed data and homoge-
neous variances between groups (Tukey et al., 1949).

• The Games-Howell test requires normally distributed data, allows for dif-
ferences in variance (Games et al., 1981), but requires at least 15 sam-
ples (Shingala and Rajyaguru, 2015) to make accurate predictions. Note
that the latter requirement is always satisfied with our dataset.

• The non-parametric Dunn-Bonferroni test does not have any requirements
regarding the distribution of the data (Dunn, 1961).

Although the last-mentioned test could hypothetically be used for all data, the
relative statistical strength of these tests varies greatly (Ruxton and Beauchamp,
2008). That is why we will always use the strongest applicable test in each
case (they are listed from strongest to weakest).

Based on these tests, we can see that figure 6.3 concludes with two primary out-
comes for a metric: 1) all groups (tools) have the same mean, or 2) at least one
group has a different mean. Within the secondary outcome, we will pursue to find
out what groups differ from the others, make a ranking of the means (lowest to high-
est) and make appropriate conclusions.

Next, we will show and discuss the histograms and the statistical tests for each of
the four (sub) metrics separately. The raw results to all tests that we performed and
the complete results of the statistical analysis can be found on the earlier mentioned
GitHub repository of the author4.

Metric 1 - Test 1 - local time-difference

Here, the results of metric one, test one are shown. In this case, the time-differences
are measured between the requests at the client. This measurement is done before
any proxy can interfere, and that is why we expect that this will result in very similar
data for all three proxy configurations. However, we will still show the results of all

4Link to the repository: https://github.com/RobvEmous/WebAppRaceConditionTesters

https://github.com/RobvEmous/WebAppRaceConditionTesters

6.2. EVALUATION - TOOLSET PERFORMANCE 105

four configurations. The combined histograms for all tests are shown in figure 6.4. A
full display of the individual histograms and statistics can be found in the appendices
in section D.1 (page 179). We can make several observations:

(a) Overview with local server (b) Overview with remote server

(c) Overview with normal proxy (d) Overview with slow proxy

Figure 6.4: The figure shows the overview histograms of the local time-differences between re-
quests of all tools for all four configurations. The median of the complete datasets is calculated and
indicated in base-10. Please note that the x- and y-scale of the figures are not necessarily equal.

• Firstly, it is clear that the results of all setups are very similar except for the one
with the remote server in figure 6.4b.

• Secondly, for the three setups with similar results, the results between the tools
themselves vary greatly (visually), while this difference is almost completely
gone in figure 6.4b.

• Thirdly, the mean and variance of TI and RTW, and CR and CR+ seem to be
similar to each other in all setups.

• Finally, regarding the CPU usage of the client system, this value was observed
to be much lower during the Remote server test than the other tests, this is not

106 CHAPTER 6. EVALUATION OF TOOLSET AND TESTING METHODOLOGY

a surprise as for these tests, not only the toolset ran on the client, but also the
server itself.

Next, we will discuss the results of the individual tests more in-depth, and finally, the
conclusions are drawn.

1. Test for normality - For every tool and setup, we have performed 15 tests in
which we gathered 24 time-differences resulting in 360 data points. Based on
the CLT, we can assume that the mean of this data is normally distributed for
all setups and tools. That is why no statistical tests are required (see table 6.3,
row 2).

2. Test for equality of means of all groups - As all data is normally distributed,
we can use the One-Way ANOVA test to find out whether there is a statistical
difference between means of the results of the tools. In table 6.3, row 3, the
results of this test are shown. For all setups, the test results show statistically
significant differences.

3. Test for homogeneity of variances - As the One-Way ANOVA test showed
significant differences between the results of all groups in all setups, we per-
formed Levene’s test for the homogeneity of variances. In table 6.3, row 4, the
results of this test are shown. It shows statistically significant differences in the
variances for all setups.

4. Post hoc test for equality of means between groups - As Levene’s test re-
sulted in different variances between the groups for all setups, we used the
Games-Howell post hoc test to group the results based on statistically signif-
icant differences between their means. In table 6.3, row 5, the results of this
test are shown.

6.2. EVALUATION - TOOLSET PERFORMANCE 107

Table 6.3: The table shows the performance test results for the local time-differences. The degrees
of freedom for all tests are included in the first row. The results to the normality, equal means and
equal variances tests are formatted as follows: ’[H0 confirmed]: [Test name] = [F/statistic], [p-value]’5.
In the last row, we indicate the post hoc test used, list the groups and associated p-values. We sorted
the groups (top to bottom) and the tools (left to right) in ascending order based on their mean values.

Local server Remote server Normal proxy Slow proxy

Df 4, 1759 4, 1794 4, 1795 4, 1795

Normal Yes Yes Yes Yes

Equal
means

No: A = 148.628,
0.000

No: A = 107.811,
0.000

No: A = 231.286,
0.000

No: A = 230.365,
0.000

Equal
variances

No: L = 93.851,
0.000

No: L = 11.556,
0.000

No: L = 121.294,
0.000

No: L = 176.929,
0.000

Post hoc
grouping

G - 3 groups: G - 3 groups: G - 4 groups: G - 4 groups:
(CR+, CR) 0.999 (CR, CR+, RTW) 0.764 (CR, CR+) 1.000 (CR+) 1.000
(TI, RTW) 0.720 (SR) 1.000 (TI) 1.000 (CR) 1.000
(SR) 1.000 (TI) 1.000 (RTW) 1.000 (TI) 1.000

(SR) 1.000 (RTW, SR) 0.986

Conclusions and discussion Based on the results as discussed above, we can
draw the following conclusions regarding the local time-difference of the tools.

• Group means - Based on the results, we confirm that the means of the groups
for all setups are not equal. Also, the mean of the performance of both CR
and CR+ statistically significantly higher than the performance of the other
tools except in the Remote server setup. In that case, RTW has the same
mean. Next to this, the means of CR and CR+ are the same except in the Slow
proxy setup. This outcome was to be expected as the only difference between
these tools is the moment the last byte is sent to the server. That means that
regarding metric 1.1, we can conclude that both CR and CR+ score similar or
better than all other tools.

• Local server interference - As already indicated at the beginning of the sec-
tion based on figure 6.4, there is a big difference between the results of the
Remote server setup and the other setups for all tools except for the TI. This
difference cannot be traced back to any difference in the test setup itself except
for the location of the target server. In the first test, both the tool and the target

5The test names are abbreviated as follows. Normality test: S = Shapiro-Wilk; Equal means
tests: A = One-Way ANOVA, K = Kruskal-Wallis; Equal variances test: L = Levene; Post hoc tests:
T = Tukey HSD post hoc, G = Games-Howell, D = Dunn-Bonferroni (never used).

108 CHAPTER 6. EVALUATION OF TOOLSET AND TESTING METHODOLOGY

server are run on the same system and in the second test, the server is run
on a remote server. Next to this, we observed a higher CPU usage during the
Local server test. Therefore, we conclude that a locally run server interferes
with the performance of the tools in such a way that the tools perform less and
the time-differences increase accordingly. Apparently, this interference does
not affect the tools equally. Therefore, the results of the Remote server are
expected to be more reliable.

Metric 1 - Test 2 - Application time-difference

Here, the results of metric one, test two are shown. In this case, the time-differences
are measured between the requests at the application. This measurement is done
after the interference of latencies and jitter on the connection and any delay in the
web server. That is why we expect that this will result in time-differences between
requests that are much higher than for metric 1.1. The combined histograms for all
test setups are shown in figure 6.5. A full display of the individual histograms and
statistics can be found in the appendices in section D.2 (page 182). We can make
several observations:

• Firstly, just like for the local time-differences, it is clear that the results of all
setups are similar except for the one with the remote server in figure 6.4b.

• Secondly, for all tools in the overview histograms, the results are visually very
similar to each other (high overlaps). As the scale is logarithmic, this does not
mean that the results actually the same for all tools. The statistical tests will
verify this.

• Thirdly, the mean and median of the different setups greatly differs with the
Remote server being the lowest and, as expected, the Slow proxy being the
highest.

• Finally, the variance is similar for all tests except for the Remote server test,
which reports a variance (in the mean value) that is between two and three
times lower.

Next, we will discuss the results of the individual tests more in-depth, and finally, the
conclusions are drawn.

1. Test for normality - Just like for the local time-differences, we gathered 360
data points per group (tool). Based on the CLT, we can assume that the mean
of this data is normally distributed for all setups and tools. That is why no
statistical tests are required (see table 6.4, row 2).

6.2. EVALUATION - TOOLSET PERFORMANCE 109

(a) Overview with local server (b) Overview with remote server

(c) Overview with normal proxy (d) Overview with slow proxy

Figure 6.5: The figure shows the overview histograms of the application time-differences between
requests of all tools for all four configurations. The median of the complete datasets is calculated and
indicated in base-10. Please note that the x- and y-scale of the figures are not necessarily equal.

2. Test for equality of means of all groups - As all data is normally distributed,
we can use the One-Way ANOVA test to find out whether there is a statistical
difference between means of the results of the tools. In table 6.4, row 3, the
results of this test are shown. For the Local server and Normal proxy setups,
it shows statistically significant differences between the means of the groups.
This is not the case for the other setups and, therefore, we assume no differ-
ences exist between the means of the groups.

3. Test for homogeneity of variances - For the Local server and Normal proxy
setups, the One-Way ANOVA test showed significant differences between the
results of the groups. That is why we performed Levene’s test for the homo-
geneity of variances for the results of these setups. In table 6.4, row 4, the
results of this test are shown.

110 CHAPTER 6. EVALUATION OF TOOLSET AND TESTING METHODOLOGY

4. Post hoc test for equality of means between groups - As Levene’s test
resulted in different variances between the groups for these setups, we used
the Games-Howell post hoc test to group the results based on statistically
significant differences between their means. In table 6.4, row 5, the results of
this test are shown.

Table 6.4: The table shows the performance test results for the app time-differences. The format-
ting of the table and the meaning of the contents is the same as in table 6.3.

Local server Remote
server

Normal proxy Slow proxy

Df 4, 1755 4, 1787 4, 1795 4, 1795

Normal Yes Yes Yes Yes

Equal
means

No: A = 16.645,
0.000

Yes: A = 0.641,
0.633

No: A = 2.647,
0.032

Yes: A = 0.522,
0.720

Equal
variances

No: L = 2.668,
0.031

N/A Yes: L = 0.117,
0.976

N/A

Post hoc
grouping

G - 2 groups: N/A T - 2 groups: N/A
(CR, CR+, RTW) 0.898 (CR+, CR, RTW, SR) 0.317
(SR, TI) 0.480 (CR, RTW, SR, TI) 0.133

Conclusions and discussion Based on the results as discussed above, we can
draw the following conclusions regarding the application time-difference of the tools.

• Group means - Based on the results, there is no statistically significant differ-
ence between the group means in the Remote server and Slow proxy setups.
In these cases, all tools perform equivalently. For the Local server and Normal
proxy setups, two groups can be formed in which for both setups, CR, CR+
and RTW are in the group with the lowest mean values. That means that re-
garding metric 1.2, and similar to our answer to metric 1.1, we can conclude
that both CR and CR+ score identical or better than all other tools.

Also, we estimated that the time-difference at the application is correlated with
the ability to exploit race conditions. We will verify this claim by comparing
these results to the results of metric 2.1 and 2.2.

• Local server interference - Just like for the local time-differences, there is a
big difference in mean and variance between the results of the Remote server
setup and the other setups. Based on the delay between client and server, the
Remote server setup should perform anywhere in between the performance
of the Local server and Normal proxy, but this is not the case. We estimate

6.2. EVALUATION - TOOLSET PERFORMANCE 111

that is, again, caused by client-server interference when both systems are run
on the same system.

Metric 2 - Test 1 - Voucher usage ratio

Here, the results of metric two, test one are shown. In this case, we measured the
voucher usage ratio: the total number of success codes divided by the number of
vouchers used. A low number of vouchers used while the same number of success
codes are returned indicates that more race conditions are triggered. Therefore, a
higher value is better. The combined histograms for all test setups are shown in
figure 6.6. A full display of the individual histograms and statistics can be found in
the appendices in section D.3 (page 184). We can make several observations:

(a) Overview with local server (b) Overview with remote server

(c) Overview with normal proxy (d) Overview with slow proxy

Figure 6.6: The figure shows the overview histograms of the voucher usage ratio of all tools for
all four configurations. The median of the complete datasets is calculated and indicated in base-10.
Please note that the x- and y-scale of the figures are not necessarily equal.

112 CHAPTER 6. EVALUATION OF TOOLSET AND TESTING METHODOLOGY

• Firstly, the figures show a big difference between different setups. Except for
the Remote server setup, the ratio seems to scale evenly with the latency and
jitter of the setups. In the best setup, the median ratio is two, while for the worst
setup, it is one. In the first case, every voucher was redeemed twice while in
the second case, the vouchers were redeemed only once (no race conditions).

• Secondly, it seems like there are quite some differences between the perfor-
mance of the tools. In the Normal proxy and Slow proxy setups, this difference
seems rather small, but for the other two setups, the difference seems to be
significant. In these setups, CR, CR+ and TI seem to perform better than RTW
and SR. As the number of samples per tool is quite small at 15 we are not sure
whether these observed differences are actually significant.

Next, we will discuss the results of the individual tests more in-depth, and finally, the
conclusions are drawn.

1. Test for normality - As we gathered only 15 data points per group (tool). The
CLT does not apply, and we need to perform the Shapiro-Wilk test to verify
whether the results are normally distributed. The results of this test are shown
in table 6.5, row 2). Based on this, we can conclude that only the results to the
Local server setup are normally distributed.

2. Test for equality of means of all groups - For the Local server setup, we
can use the One-Way ANOVA test to find out whether there is a statistical
difference between means of the results of the tools. For the other setups,
we have to use the non-parametric Kruskal-Wallis test. In table 6.5, row 3,
the results of this test are shown. For all setups, it shows that there are no
statistically significant differences between the means of the groups.

This means that no other tests need to be performed, and we can conclude
that for this test and for all setups, the groups have an equal voucher redeem
ratio.

6.2. EVALUATION - TOOLSET PERFORMANCE 113

Table 6.5: The table shows the performance test results for the voucher redeem ratio. The format-
ting of the table and the meaning of the contents is the same as in table 6.3.

Local server Remote server Normal proxy Slow proxy

Df 4, 70 4, 70 4, 70 4, 70

Normal Yes: S ≥ 0.890,
0.068

No: S ≥ 0.868,
0.032

No: S ≥ 0.475,
0.000

No: S ≥ 0.588,
0.000

Equal
means

Yes: K = N/A,
0.281

Yes: K = N/A,
0.116

Yes: K = N/A,
0.078

Yes: K = N/A,
0.840

Equal
variances

N/A N/A N/A N/A

Post-hoc
grouping

N/A N/A N/A N/A

Conclusions and discussion Based on the results as discussed above, we can
draw the following conclusions regarding the voucher redeem ratio of the tools.

• Group means - Based on the results, there is no statistically significant dif-
ference between the group means for any setup. This means that regarding
the voucher redeem ratio, no tool seems to perform better than the other tools
concerning metric 2.1.

• Correlation between metric 1 and 2 - As the local and app time-differences
(metrics 1.1 and 1.2) did show significant differences between the tools for
most setups, it seems like the correlation between HTTP request time-differences
and the race condition exploitation rate is not as strong as expected. We es-
timate that this is primarily due to other not-measured factors that also play a
role in this process.

For instance, we did not compare variation in the 24 measured time-differences
within a single attack between tools. When the time-difference is low on av-
erage for both tools but varies more between requests for one tool, the slow
requests might not trigger a race condition at all. The error rate, the busy-
ness of the server or the implementation of the TCP connection might also be
factors that influence the results. More research is required to validate this.

Metric 2 - Test 2 - Number of success codes

Here, the results of metric two, test two are shown. In this case, we measured only
the number of success codes returned by the application. As 25 requests are sent,
at most 25 success codes can be returned in which higher is better. This element is

114 CHAPTER 6. EVALUATION OF TOOLSET AND TESTING METHODOLOGY

a part of the already measured voucher redeem ratio. The reason we also include
the separate measurement of this factor is to distinguish between a low ratio due to
fewer race conditions or a low ratio due to lots of server-side errors. Both factors
are negative, but as the relation between the errors and the race conditions is not
known, this measurement could provide valuable additional insights.

The combined histograms for all test setups are shown in figure 6.7. A full display of
the individual histograms and statistics can be found in the appendices in section D.4
(page 187). We can make a number of observations:

(a) Overview with local server (b) Overview with remote server

(c) Overview with normal proxy (d) Overview with slow proxy

Figure 6.7: The figure shows the overview histograms of the number of success codes obtained by
all tools for all four configurations. The median of the complete datasets is calculated and indicated
in base-10. Please note that the x- and y-scale of the figures are not necessarily equal.

• Firstly, it seems like the average of the number of success codes is inversely
related to the stability of the connection (in the different setups). Almost no
errors were returned in the Slow proxy setup and about half the requests re-
turned an error for the Local server setup. As we have seen in metric 1.2, this

6.2. EVALUATION - TOOLSET PERFORMANCE 115

stability greatly influences the time between requests at the server. When the
time-difference is low, the server experiences a greater peak-load, and that
could be the reason for more errors. Alternatively, the race conditions them-
selves that occurred in the application could also be responsible for the errors.

• Secondly, for the Remote server setup, the variance in success codes seems
to be less than for the other setups. This behaviour is in line with the results to
the other metrics where the Remote server setup also stood out with different
and often more table results.

• Finally, the differences between tools for different setups seems to be marginal.
Only for the Normal proxy setup, the CR, TI and RTW seem to have a larger
average than the other tools. Further tests will have to confirm whether this
difference is statistically significant.

Next, we will discuss the results of the individual tests more in-depth, and finally, the
conclusions are drawn.

1. Test for normality - Just like for metric 2.1, we gathered only 15 data points
per group (tool). Therefore, the CLT does not apply, and we need to perform
the Shapiro-Wilk test to verify whether the results are normally distributed.
The results of this test are shown in table 6.6, row 2). Based on this, we can
conclude that only the results to the Local server, and Normal proxy setups
are normally distributed.

2. Test for equality of means of all groups - For the Local server and Normal
proxy setups, we can use the One-Way ANOVA test to find out whether there is
a statistical difference between means of the results of the tools. For the other
setups, we have to use the non-parametric Kruskal-Wallis test. In table 6.6,
row 3, the results of this test are shown. Only for the Normal proxy setup, it
shows that there is a statistically significant difference between the means of
the groups.

This means that only for this setup, we will perform further tests regarding
the individual group means. For the other setups, we can conclude that the
number of success codes is equal.

116 CHAPTER 6. EVALUATION OF TOOLSET AND TESTING METHODOLOGY

3. Test for homogeneity of variances - For the Normal proxy setup, the One-
Way ANOVA test showed significant differences between the results of the
groups. That is why we performed Levene’s test for the homogeneity of vari-
ances for the results of this setup. In table 6.6, row 4, the results of this test are
shown. Based on this, the variances of the groups are assumed to be equal.

4. Post hoc test for equality of means between groups - As Levene’s test
resulted in equal variances between the groups for this setup, we used the
Tukey HSD post hoc test to group the results based on statistically significant
differences between their means. In table 6.6, row 5, the results of this test are
shown.

Table 6.6: The table shows the performance test results for the number of success codes. The
formatting of the table and the meaning of the contents is the same as in table 6.3.

Local server Remote server Normal proxy Slow proxy

Df 4, 70 4, 70 4, 70 4, 70

Normal Yes: S ≥ 0.890,
0.068

No: S ≥ 0.637,
0.000

No: S ≥ 0.475,
0.213

Yes: S ≥ 0.588,
0.001

Equal
means

Yes: A = 0.465,
0.761

Yes: K = N/A,
0.793

Yes: A = 4.126,
0.005

Yes: K = N/A,
0.634

Equal
variances

N/A N/A Yes: L = 1.982,
0.107

N/A

Post hoc
grouping

N/A N/A T - 2 groups: N/A
(SR, CR+, TI, RTW) 0.115
(TI, RTW, CR) 0.063

Conclusions and discussion Based on the results as discussed above, we can
draw the following conclusions regarding the number of success codes of the tools.

• Group means - Based on the results, there is no statistically significant dif-
ference between the group means for any setup except for the Normal proxy
setup. In this setup, we have shown that two groupings of tools can be made
of which the difference in means is statistically significant. As higher is better
in for metric 2.1, the last group consisting of TI, RTW and CR has the best
results. Interestingly, the two groups overlap as TI and RTW are part of both
groups. For SR and CR+, however, they only belong to the worst performing
group.

• Relation between metric 2.1 and 2.2 - As we stated in the discussion above
about the overview histograms in figure 6.7, this metric is interesting as it could
point to reasons why no statistically significant differences in voucher redeem

6.2. EVALUATION - TOOLSET PERFORMANCE 117

ratio (metric 2.1) were observed earlier. If the difference in the number of
success codes for the Normal proxy setup would have been smaller, the dif-
ferences in the voucher redeem ratio, might have become significant. As the
difference in voucher redeem ratio between the tools during the Normal proxy
setup was almost statistically significant at a value of 0.078 (see table 6.5,
row 3), this is not a far-fetched assumption. Further research is required to
validate this.

6.2.4 Conclusions

In this section, the performance of the CompuRacer toolset has been compared with
the other toolsets based on four (sub)metrics. Based on the results, we ran statistic
tests to discover per metric whether any statistically significant differences could be
found between the tools.

• Firstly, regarding metric 1.1 (local time-differences) and 1.2 (app time-differences),
this resulted in the conclusion that the CompuRacer toolset, both with last-
byte-sync enabled (CR+) and disabled (CR), always forms better than or equal
to the other tools.

• Secondly, regarding metric 2.1 (voucher redeem ratio), no statistically signifi-
cant differences were found between the mean-performance of the tools. This
is a remarkable and unexpected result as the TI, and CR+ with last-byte-sync
were expected to perform better in high-latency and jitter situations. Further
research would have to look into this result to verify whether the outcome is
actually consistent in other situations, or is an anomaly based on other factors
we did not take into account here.

• Finally, regarding metric 2.2 (success codes), only for the Normal proxy setup,
statistically significant differences were found. In this case, we got two different
groupings of tools of which CR belongs to the group with the highest mean and
CR+ to the group with the lowest mean. For this metric, higher is better, so CR+
does not seem to perform that well. We guess that the last-byte-sync function
of CR+, which should reduce the time difference between the HTTP requests
at the server also causes more errors responses. Further research would have
to look into why the TI, which also has last-byte-sync, does not have this issue
as well.

Based on the answers to our four metrics, we like to answer the question we pos-
tulated at the beginning of the performance evaluation: Whether the CompuRacer
(and CR+) toolset has a good and consistent request-sending performance or not.

118 CHAPTER 6. EVALUATION OF TOOLSET AND TESTING METHODOLOGY

Our answer is as follows. Our toolset performs better than or equal to the perfor-
mance of the other toolsets (as desired), and the last-byte-sync addition of the CR+
toolset does not seem to have significantly improved its performance.

6.3 Evaluation - Testing methodology

In this section, the methodology and CompuRacer toolset are combined and are
both applied to the security testing of the web apps. This practical test targets the
effectiveness and completeness of the methodology and the toolset in practice. Af-
terwards, we will evaluate this concerning the ease of use of the method and toolset
and concerning the vulnerabilities found.

Regarding the target web apps, WebGoat and JuiceShop and also to several web
apps within the categories: blogs, wikis and e-commerce (see section 4.2) are
tested. For every category, one or more applications have been tested according
to the methodology and using the toolset.

Note: Unfixed exploitable web apps censored For two e-commerce platforms,
the testing resulted in the discovery of an exploitable race condition with significant
financial impact. This race condition makes it possible to use any gift card and
discount voucher more times than allowed in these web apps. For both security
vulnerabilities, the developers of the platforms were informed using a responsible
disclosure report. These reports are included in appendix E.

Unfortunately, the security and development teams of both platforms were not able
to fix these issues before the submission date of this research. That is why these
software products and companies will not be mentioned by name in the thesis, and
any information about the issues that could reasonably be traced back to the specific
software platform is omitted. When the information is allowed to be disclosed, an
uncensored version of the responsible disclosure reports in the appendices is added
as an addendum on the official institutional page of the thesis6.

6.3.1 Tested web apps

In this subsection, the tested web apps are listed. To speed up the setup of the
web application before testing, we decided that only platforms that are available as

6This page can be found at: https://fmt.ewi.utwente.nl/education/master/322/

https://fmt.ewi.utwente.nl/education/master/322/

6.3. EVALUATION - TESTING METHODOLOGY 119

a Docker image are included.

Docker is a very light-weight containerisation system similar to virtual machine im-
ages: only a download and startup is required to run the web app. The critical
difference is that these containers only contain specific libraries and installed soft-
ware, but share a kernel and operating system. This allows for using much less
storage compared to virtual machine images.

For every web app, we give a short introduction, indicate why it was chosen, which
sources and versions were used, and how it was set up.

1. Testing apps: WebGoat (WeGo) - The OWASP Webgoat, already introduced
in example 1 of section 1.1.2, is a deliberately insecure web app written using
Java Spring MVC. The web app has a login functionality and contains a large
number of web security-related challenges that can be solved to score points7.
These points are indicated in a global leaderboard.

• Why chosen - It was chosen based on the fact that it is open source,
multi-process, easy to set up, contains interesting functionality like ac-
counts and leader boards and is not meant to contain race conditions.
This makes it a perfect candidate for quickly testing a web app for race
conditions.

• Version and source - 8.0.0.M21 released on the 18th of January 20198.
Both the built-in HSQLDB, an in-memory relational database, and Post-
greSQL version 11 is used.

• Setup - It was run on a Tomcat server using the default configuration that
can be found on the linked Github page.

2. Testing apps: JuiceShop (JuSh) - The OWASP Juice shop is a web appli-
cation with an equivalent goal as the Webgoat: provide a learning experience
to security testers. However, this application contains vulnerabilities from start
to finish and does not contain them in clearly recognisable challenges. It is
configured as an e-commerce application in which all kinds of juice can be
bought. Again, no specific race condition challenges were found. The applica-
tion is written in NodeJS using the Express framework, an Angular front-end,
and an SQLite database.

• Why chosen - It was chosen based on the fact that just like the Web-
Goat, it is open source, multi-process, easy to set up, contains interesting
functionality like accounts and the e-commerce buying process and is not

7Unfortunately, as expected, no race condition-related challenges were found.
8Downloaded from: https://github.com/WebGoat/WebGoat/releases/tag/v8.0.0.M21

https://github.com/WebGoat/WebGoat/releases/tag/v8.0.0.M21

120 CHAPTER 6. EVALUATION OF TOOLSET AND TESTING METHODOLOGY

meant to contain race conditions. Next to this, as indicated on its GitHub
page, it is based on a very modern set of technologies: "Probably the
most modern and sophisticated insecure web application". Therefore, it
is a good candidate for testing a new web app for race conditions.

• Version and source - 7.5.1 released on the 24th of September 20189.

• Setup - It was run on an NGINX server using the default configuration
that can be found on the linked GitHub page.

3. Blog: Puput CMS (Pupu) - This rather new CMS is built on the popular Wag-
tail CMS, which is build using the Python Django web framework. It runs on a
MySQL database. The system helps the user in easily creating complex and
nested blogging pages with rich media content.

• Why chosen - Firstly, because the design architecture is completely dif-
ferent from Java and NodeJS for the former two web apps and that made
it an attractive target. Next to this, the many software layers with over-
lapping management and admin interfaces could pose interesting race
condition issues. Finally, the blogging functionality of creating, updating
and deleting blogs and media and posting comments all seemed to be
possible race condition targets.

• Version and source - 0.5 released on the 2nd of September 201610.

• Setup - As it was run using a Docker container, no setup was required. It
runs on an Apache server.

4. Wiki: MediaWiki (MeWi) - This wiki CMS is based on PHP and commonly
runs on a MySQL database. It is a rather mature platform that supports most
open source wikis, including the famous Wikipedia.

• Why chosen - It is chosen because it is a Wiki platform that is very popu-
lar and mature. There are over 100,000 active websites that actively use
the platform, according to BuiltWith (2019a). Next to this, and just like
the blogging web app, it supports the creation of complex web content.
Contrary to Puput, it also supports accounts and the creation of content
by guests. All of this could contain interesting race conditions.

• Version and source - 1.31.1 released on the 20th of September 201811.

9Downloaded from: https://github.com/bkimminich/juice-shop/releases/tag/v7.5.1
10Downloaded from: https://github.com/APSL/docker-puput/
11Downloaded from: https://hub.docker.com/_/mediawiki

https://github.com/bkimminich/juice-shop/releases/tag/v7.5.1
https://github.com/APSL/docker-puput/
https://hub.docker.com/_/mediawiki

6.3. EVALUATION - TESTING METHODOLOGY 121

• Setup - As it was run using a Docker container, no setup was required
other than creating and linking a MySQL database. This process is ex-
plained on the webpage of the Docker hub link.

5. E-commerce: osCommerce (osCo) - This is a webshop platform written in
PHP that is not very mature and its look and feel are a bit outdated.

• Why chosen - The platform is chosen as a more easy target (because of
its immaturity) that still has over 100,000 active sites that make use of it
according to BuiltWith (2019b). Next to this, it contains account and shop
functionality like products, shopping carts, verification emails and trans-
actions which could contain interesting race conditions. We tried to add
voucher redemption functionality to the platform, but as this also required
manually updating the shopping-card source files, it was considered un-
feasible given the available time.

• Version and source - 2.3.4.1 released on the 18th August 201712.

• Setup - As the web app source did not come with its own Docker con-
tainer, we created a Docker container ourselves. The content of the
Dockerfile, as shown in listing 2, can be used to re-create and run this
container. The default content of the shop was used.

1 FROM greyltc/lamp
2 MAINTAINER Rob van Emous r.j.vanemous@student.utwente.nl
3 RUN pacman -S git --noconfirm
4

5 COPY oscommerce-2.3.4.1/catalog/ /srv/html/
6

7 RUN chmod 777 /srv/html/includes/configure.php
8 RUN chmod 777 /srv/html/admin/includes/configure.php
9

10 EXPOSE 80
11 #

Listing 2: The listing shows the contents of the Dockerfile for setting up the osCommerce web app
in Docker.

6. E-commerce: Platform A & B (Pl-A & Pl-B) - These are the e-commerce
webshops which are censored. The webshops are both build in PHP, use a
MariaDB or MySQL database and are very popular.

12Downloaded from: https://github.com/osCommerce/oscommerce2/releases/tag/v2.3.4.1

https://github.com/osCommerce/oscommerce2/releases/tag/v2.3.4.1

122 CHAPTER 6. EVALUATION OF TOOLSET AND TESTING METHODOLOGY

• Why chosen - They are chosen because these platforms are preva-
lent and mature with over 50,00013 websites that actively use it. Next
to this, and just like osCommerce, all account and shopping related be-
haviour like vouchers, transactions, verification emails, and all kinds of
buy-limitations pose interesting targets for race condition testing.

• Version and source - For both platforms, the last or second-to-last ver-
sions are used.

• Setup - Both platforms were available as easy to setup Docker contain-
ers, and the GitHub pages provided enough information to set up the
environment and testing data.

6.3.2 Test results

In this subsection, the results of testing the web apps are shown. For every web app,
the testing methodology that we created in chapter 4 is used. Regarding the issues
that we tested for, we used the checklist as shown in figure 4.3 as a guideline. In
table 6.7, we indicate the findings per web app. The names of the tested web apps
are listed in abbreviated form. For every item in this guide, we indicate the testing
result using the following codes:

• Flag: N/A - In this case, we did not test the item for the web app either be-
cause the whole category (like ’shopping’) is missing or because the specific
functionality is not present. For every webshop, we explain why items with this
flag could not be tested.

• Flag: PASS - In this case, we tested the item for the web app, and it was not
found to contain any race conditions. The test was at least performed twice
using 10 parallel requests per test and resulted in no anomalous behaviour.
This is not a guarantee that the issue is not present, but it is certainly a reliable
indicator that an attacker cannot feasibly exploit this item from a black-box
perspective.

• Flag: FAIL - In this case, we tested the item for the web app, and it was found
to contain one or more race conditions with a significant security impact. For
every webshop, we explain the process of finding the vulnerability of the failed
items and what kind of impact is expected. As the tests are executed using a
synthetic test setup, we cannot guarantee that this issue can also be exploited

13Very approximate as more exact numbers would result in easy identification of the platforms.

6.3. EVALUATION - TESTING METHODOLOGY 123

in a production environment. Therefore, the issue should be separately verified
for any real web app.

• Flag: IND - In this case, we tested the item for the web app and some issues
related to race conditions were found. These issues were not severe enough
to warrant a complete fail, but also not minor enough to ignore them. For every
webshop, we explain the process of finding the issues of the indeterminate
items and what kind of impact is expected.

Table 6.7: The table lists all race condition security test items that were tested in the seven web
apps.

Index Name WeGo JuSh Pupu MeWi osCo Pl-A Pl-B

1 1.1 Log in PASS IND N/A PASS N/A N/A N/A
2 1.2 Password reset N/A N/A N/A N/A PASS PASS PASS
3 1.3 Update settings PASS N/A N/A N/A N/A FAIL FAIL
4 1.4.1 Multiple creation FAIL IND N/A PASS IND FAIL PASS
5 1.4.2 Creation and use PASS PASS N/A N/A N/A N/A N/A
6 1.5.1 Multiple deletion N/A N/A N/A N/A N/A N/A N/A
7 1.5.2 Delete and create N/A N/A N/A N/A N/A N/A N/A
8 1.5.3 Delete and use N/A N/A N/A N/A N/A N/A N/A
9 1.6.1 Change roles N/A N/A N/A N/A N/A N/A N/A

10 2.1 Likes/votes N/A N/A N/A N/A N/A N/A N/A
11 2.2 Comments N/A N/A PASS N/A N/A N/A PASS
12 2.3.1 Multiple creation N/A N/A IND PASS N/A N/A N/A
13 2.3.2 Updates/moves N/A N/A PASS PASS N/A N/A N/A
14 2.4.1 Multiple deletion N/A N/A FAIL N/A N/A N/A N/A
15 2.4.2 Delete and

update/move
N/A N/A FAIL N/A N/A N/A N/A

16 3.1 Reviews N/A N/A N/A N/A N/A N/A N/A
17 3.2.1 Limited items N/A PASS N/A N/A PASS PASS FAIL
18 3.2.2 Out of order N/A PASS N/A N/A FAIL PASS FAIL
19 3.3.1 Use in same order N/A PASS N/A N/A N/A FAIL PASS
20 3.3.2 Use in different

orders/accounts
N/A PASS N/A N/A N/A FAIL FAIL

21 3.4.1 Multiple item
creation

N/A N/A N/A N/A PASS PASS N/A

22 4.1 1. Additional race
conditions

FAIL N/A N/A N/A N/A PASS PASS

We give a more in-depth explanation of skipped items, minor issues and severe
issues below. For every issue, we try to connect it to one of the two race condition
definitions that we created in section 4.1 and we state the expected security impact
of every item. For the first application, we decided to add a white-box examination
of the issues that were found to gain more insight into why these issues are present

124 CHAPTER 6. EVALUATION OF TOOLSET AND TESTING METHODOLOGY

in the web app. That is why, in these cases, we can list the expected root cases of
the issues at the code-level of the software.

1. E-learning: WebGoat (WeGo)

• FAIL 4: Multiple creation - By creating an account in parallel (as a
guest), multiple accounts will be created with the same username. This
username is supposed to be unique. When using the built-in HSQLDB,
the application is vulnerable to this issue. However, when the database
is swapped with a PostgreSQL database, the issue disappears. We es-
timate that the default synchronisation and isolation rules are different
between these databases. This is not a far fetched conclusion as the
HSQLDB is only an in-memory database meant for testing purposes. The
consequence for the duplicate user account is that it cannot solve any
challenges. Next to this, for all users, the general scoreboard is no longer
accessible. The vulnerability is worked out in more detail, in example 1 of
section 1.1.2.

• FAIL 22: Additional race conditions - A user can submit different so-
lutions to security challenges in parallel, and this will only be counted as
one try (or as fewer tries). In our testing setup with a locally run server,
we were repeatedly able to successfully submit 100 solutions while the
counter was only incremented by two or three. As these counters are
used in the general scoreboard to differentiate between user scores, this
race condition makes it possible for users to cheat.

At the code-level, as shown in listing 3, we have depicted the method that
handles the submission of challenge answers. The method trackProgress
is not synchronised and can, therefore, be accessed in parallel. Here we
can see that the root issue is a RUW race condition (see definitions in sec-
tion 4.1). The ’Read’ happens at line 2 or 4, the ’Update’ at line 7 or 9 and
the ’Write’ at line 11. The race window is as large as the time between the
read and the write actions. The update actions happen one layer deeper
in the methods assignmentSolved and assignmentFailed shown in list-
ing 4. The incrementAttempts() calls (lines 3 and 9) post-increment the
counter variable: numberOfAttempts++;. When two or more answers ar-
rive at roughly the same time, all of the handling threads could read the
same UserTracker object, increment the counter by one and overwrite
the data of the other threads. The result is an incrementation of only one
(or a small amount).

6.3. EVALUATION - TESTING METHODOLOGY 125

• N/A - As WebGoat is an e-learning application for security tester test-
ing, some types of functionality are missing, and these test items were
therefore not applicable. More concretely, there is no password reset or
admin role functionality, no deletion of accounts, no content or shopping
functionality.

1 protected AttackResult trackProgress(AttackResult attackResult) {
2 UserTracker userTracker =

userTrackerRepository.findByUser(webSession.getUserName());↪→

3 if (userTracker == null) {
4 userTracker = new UserTracker(webSession.getUserName());
5 }
6 if (attackResult.assignmentSolved()) {
7 userTracker.assignmentSolved(webSession.getCurrentLesson(),

this.getClass().getSimpleName());↪→

8 } else {
9 userTracker.assignmentFailed(webSession.getCurrentLesson());

10 }
11 userTrackerRepository.save(userTracker);
12 return attackResult;
13 }

Listing 3: The listing shows the a method in the class AssignmentMethod.java that contains the
root cause of a race condition in the WebGoat challenge answer submission.

1 public void assignmentSolved(AbstractLesson lesson, String
assignmentName) {↪→

2 LessonTracker lessonTracker = getLessonTracker(lesson);
3 lessonTracker.incrementAttempts();
4 lessonTracker.assignmentSolved(assignmentName);
5 }
6

7 public void assignmentFailed(AbstractLesson lesson) {
8 LessonTracker lessonTracker = getLessonTracker(lesson);
9 lessonTracker.incrementAttempts();

10 }

Listing 4: The listing shows two methods in the class UserTracker.java that handle updating the
user tracker state when an assignment answer is submitted.

126 CHAPTER 6. EVALUATION OF TOOLSET AND TESTING METHODOLOGY

2. E-commerce: JuiceShop (JuSh)

• IND 1: Log in - By logging in to the same account in parallel (as a guest),
the application returns an HTTP internal server error-code (500). The
server returns the following errors:

– SequelizeTimeoutError: SQLITE_BUSY: database is locked

– Error: commit has been called on this transaction(..), you
can no longer use it

According to the first error, the parallel traffic of the test has caused a
timeout in the database queries. This is to be expected and is no real
issue. For the second error, a database connection seems to be used
after the SQL transaction is committed. This is illegal behaviour, which
is probably due to accidental connection re-use between different parallel
execution threads. We guess that the root issue is a race condition be-
tween the usage and the renewal of a database connection object. We
are not sure whether an attack with significant negative impact could be
constructed from this issue, and that is why we did not fail this item.

• IND 4: Multiple creation - By creating multiple accounts in parallel with
the same username (as a guest), the application returns the same HTTP
internal server error-code (500) as in the issue above. The created ac-
count did function normally, just like any other account, and no other func-
tionality seems to be affected. That is why we did not fail this item as well.

• N/A - As JuiceShop is both an e-learning (like WebGoat) and e-commerce
application meant for security tester training, some types of functionality
are missing, and these test items were therefore not applicable. More
concretely, there is no password reset or admin role functionality, no dele-
tion of accounts, no content or shopping-item creation functionality. Next
to this, we could not test whether a multiple use-voucher could be used
more than allowed because this type of voucher was not available to us.
As testing the unlimited-use voucher did not show any signs of race con-
ditions, we do not expect this to be an issue, but we are not sure.

3. Blog: Puput CMS (Pupu)

• IND 12: Multiple creation - By creating a new blog in parallel (as a
user), multiple entries will be created that are reachable via the same
URL (same slug). This field is supposed to be unique, but a TOCTOU /
RCP race condition circumvents this rule. Subsequently requesting the
newly created blog(s) results in an HTTP 500 error-code with the follow-

6.3. EVALUATION - TESTING METHODOLOGY 127

ing text (when debugging is enabled): get() returned more than one
Page, it returned 2!. As this only impacts, the new blog of the cur-
rent user, the integrity or availability of the application as a whole is not
affected. This issue does seem to point to deeper problems with re-
gards to the thread-safety of content creation code, and that is why the
indeterminate-flag is used.

• FAIL 14: Multiple deletion - By deleting a blog in parallel (as a user),
the blog will only be partially removed due to a RUW-type race condition.
After deletion, at least the ’path’ value of this blog (which is expected
to be unique) remains in the database, and this results in the following
issues. Firstly, no new sibling pages14 can be created as the automatically
generated ’path’ value will collide with the remainder of the deleted page.

Secondly, this also renders the existing sibling pages inaccessible. The
only solution is to delete (and re-create) the parent page and all siblings.
As sibling pages could be owned by other users, this is a significant im-
pact. In the case that the parent-page is the root of the web app, the con-
sequences are even more severe as this page cannot be re-created from
the user or admin interface. Only a complete re-install of the database
solves this issue, and that is a serious availability issue.

• FAIL 15: Delete and update/move - By moving and deleting a blog in
parallel (as a user), the blog will only be partially moved and deleted due
to a RUW-type race condition. This issue seems to have the same impact
as deleting a page in parallel. Further testing is required to verify the
exact difference between the impact of item fourteen and fifteen.

• N/A - As Puput is only a simple blog CMS, there is no account creation,
deletion, password reset or admin role functionality. Also, there is no
shopping functionality. Finally, regarding the content, no votes or likes
can be awarded.

4. Wiki: MediaWiki (MeWi)

• PASS - No race condition vulnerabilities were found.

• N/A - As Mediawiki has no shopping purpose, all shopping-related items
cannot be tested. Next to this, there is no account deletion, password
reset or admin role functionality. Regarding the content, no votes or likes
can be awarded.

14Two pages are called siblings when only the part after the last slash in the URLs is different.

128 CHAPTER 6. EVALUATION OF TOOLSET AND TESTING METHODOLOGY

5. E-commerce: osCommerce (osCo)

• IND 4: Multiple creation - By creating multiple accounts in parallel with
the same username (as a guest), a TOCTOU / RCP race condition cir-
cumvents the unique-email limitation, and multiple accounts are created.
This does not result in any errors within the application, and only one ac-
count (with the lowest ID: first created) is accessible until its email address
is changed. As this is a circumvention of a rule results in unexpected du-
plicate database entries but does not result in a direct security impact, we
have flagged this issue as indeterminate.

• FAIL 18: Out of order - By adding multiple items to the shopping cart
in parallel, it was possible to add more items than were actually in-stock.
When the in-stock limit is not rigidly employed by the shop owner, the text
’Items might not be available’ is shown with every order. In this case, it
is not a security issue. If the limit is employed, this race condition is still
present en could result in a negative (security) impact of availability and
packaging issues regarding these products.

• N/A - There is no account settings, deletion, admin role functionality
or content. Regarding the content, no votes or likes can be awarded,
and no vouchers were supported. Vouchers could be added by manually
installing plugins for both the vouchers and an update to the shopping
cart, but this option was abandoned when it turned out to be a very time-
consuming process.

6. E-commerce: Platform A (censored) (Pl-A)

• FAIL 3: Update settings - By changing the email address of two ac-
counts from two different email addresses to the same email address (in
parallel), the uniqueness requirement for the email address is violated.
This is a TOCTOU / RCP race condition. A possible attack could be ex-
ecuted by using social engineering to make someone change their email
to a certain value while the attacker does the same on his account that
was created at a later moment (higher user ID). If successful, the issue
results in the attacker getting access to the account of the victim without
knowing their password, and this would be a confidentiality breach. By
using two local accounts, we were able to perform this attack. However,
this attack would be very complex and hard to perform in real life as the
race window seems to be only about 100-200 ms (in our local setup), but
it is still possible.

6.3. EVALUATION - TESTING METHODOLOGY 129

• FAIL 4: Multiple creation - By creating multiple accounts in parallel with
the same username (as a guest), a TOCTOU / RCP race condition cir-
cumvents the unique-email limitation, and multiple accounts are created.
Hypothetically, the same attack could be devised for this race condition
as the one discussed above for ’Update settings’ which would again re-
sult in a confidentiality breach. However, in this case, no sensitive data
is yet put into the victim account. The attacker would have to devise a
way to maintain access to the account while the victim adds his sensitive
information.

• FAIL 19: Use in same order - By sending the same order in parallel,
limited-use vouchers can be used more times than allowed. This is a
TOCTOU / RCP race condition with significant financial (integrity) impact.
Next to this, as the remainder of partially used gift cards gets emailed to
the user in the form of a new voucher, we received a new voucher for
every parallel redemption of the original voucher. Unfortunately, only the
first one of these vouchers could be used to repeat the attack.

• FAIL 20: Use in different orders/accounts - By sending an order with
the same limited-use voucher from multiple accounts in parallel, this voucher
can be used more times than allowed. The issue has the same conse-
quence as for item nineteen.

• N/A - In Platform A, there is no account settings, deletion, admin role
functionality, or content. Regarding the content, no votes or likes can be
awarded.

7. E-commerce: Platform B (censored) (Pl-B)

• FAIL 3: Update settings - By changing the email address of two ac-
counts from two different email addresses to the same email address (in
parallel), the uniqueness requirement for the email address is violated.
This is a TOCTOU / RCP race condition. An attack similar to the attack
for the item 3 in Platform A could be devised here as well to exploit this
race condition for informational gain. Interestingly, the platform seems to
have been defended against the ’Multiple creation’ race condition (item
4), but this defence is not extended to this part of the functionality. No
confidentiality issues were found.

• FAIL 17: Limited items - By using parallel product add-requests (as a
user or guest), we can add more units of one product to the shopping
cart than is allowed for one user. This is a TOCTOU / RCP race con-
dition. The impact is that the attacker could use this advantage to buy

130 CHAPTER 6. EVALUATION OF TOOLSET AND TESTING METHODOLOGY

additional products for resale. This also negatively affects the availability
of the products for other legitimate users.

• FAIL 18: Out of order - By using parallel product add-requests (as a
user or guest), we can add more units of one product to the shopping cart
that are available. This is a TOCTOU / RCP race condition. The impact
is that any automated packaging system could end up in an unexpected
state where an order cannot be packaged successfully. Other than that,
the attacker is not likely to be able to use this issue into any financial gain.

• FAIL 20: Use in different orders/accounts - By sending an order with
the same limited-use voucher from multiple accounts in parallel, this voucher
can be used more times than allowed. Contrary to Platform A, this plat-
form does not support partial-use vouchers, and therefore, this exploita-
tion only once results in financial gain. Also, we were not able to redeem
vouchers more times than allowed by sending parallel orders within one
user account (item 19).

• N/A - In Platform B, there is no account settings, deletion, admin role
functionality, or content. Regarding the content, no votes or likes can be
awarded.

6.3.3 Conclusions

The evaluation does not include any formal metrics but should estimate the effec-
tiveness and completeness of the method and toolset from a practical perspective.
That is why, below, we will discuss our own experience and results after using the
method and toolset:

1. Regarding the methodology - This method provided the necessary guidance
to know for each type of web app we focused on where to look for race con-
ditions, how to select requests, send them in parallel and verify the results.
Next to this, it provided an easy way to group and present the issues found
regarding race conditions in web apps as can be seen above.

Unfortunately, for several aspects of the tested webshops, a single test had
to be added or removed from the total test. This shows that the method still
requires the tester to look into the specific functions of a particular web app for
each test, and that adds time-consuming complexity to a test. However, as the
current situation is a lack of any methodology for testing web apps regarding
race conditions, this can still be considered a significant improvement.

6.3. EVALUATION - TESTING METHODOLOGY 131

2. Regarding the toolset - This was of great help both during the discovery
phase of a test, but also during the exploitation and verification of a suspected
issue. The ease at which requests could be added from Burp or the browser
while testing was great. Also, the ability to send multiple different requests in
parallel was used more than once. Next to this, the raw speed of the toolset
made it possible only to use a few parallel requests to exploit issues consis-
tently. Finally, the way the tool shows the results was of great help. The sum-
mary tables were always considered first and often helped in the initial predic-
tion whether a race was triggered or not. After this, using the advanced group-
ing and comparing behaviour alongside the parsing and viewing of results, we
made sure that the validation of the prediction could reliably be confirmed or
denied.

3. Regarding the vulnerabilities found - The ability to find issues is an essential
aspect of the toolset and methodology. In all tested web apps except for Me-
diaWiki, some interesting exploitable race condition vulnerabilities have been
found. For all of these web apps except for JuiceShop, exploiting these vul-
nerabilities could result in a significant security impact. Only for E-commerce
platforms A and B, these race conditions pose a high-risk security vulnerability
with a significant financial impact.

3.1. WebGoat - Exploiting items 4 and 22 could result in cheating and disturb-
ing the stability of the platform as a whole.

3.2. JuiceShop - Exploiting items 1 and 4 could result in server-side errors,
but any significant impact is not expected.

3.3. Puput CMS - Exploiting item 12 only has an impact on the current (ma-
licious) user and therefore, is not deemed dangerous. Items 14 and 15,
on the other hand, could result in the destruction of the running platform
as a whole, but these issues can only be exploited from an admin- or
user-perspective.

3.4. MediaWiki - No issues.

3.5. osCommerce - Exploiting item 4 could result in instability of the applica-
tion, but any significant impact is not expected. However, item 18 could
impact the availability of the application and result in packaging issues
regarding ordered products.

3.6. Platform A - Exploiting items 3 and 4 could lead to a serious confidential-
ity breach for existing users, but as exploitation requires social engineer-
ing and very delicate timing, this is not a very likely scenario. Items 19

132 CHAPTER 6. EVALUATION OF TOOLSET AND TESTING METHODOLOGY

and 20, however, are not difficult to exploit and could result in a significant
financial impact.

3.7. Platform B - Exploiting item 3 could lead to a serious confidentiality
breach for existing users, but like for item 3 in Platform A exploitation
seems unfeasible for all but the most high-value accounts (like celebri-
ties or site-admins). Item 17 could result in resale competition and im-
pact product availability and thereby, customer satisfaction. Item 18 could
impact the availability of the application and result in packaging issues
regarding ordered products. Item 20 is not difficult to exploit and could
result in a significant financial impact.

Taking into account the limited experience of the author with security testing
in practice, this is a very positive result. Based on these results and the fact
that systematic security testing for these issues is currently not performed in
practice, we estimate that a professional security tester that would employ our
method and toolset would be able to find numerous security issues in existing
web apps.

In the next chapter, we reiterate the discoveries and conclusions made in this chap-
ter next to the findings in chapters 4 and 5, and use them to answer to main research
questions of the thesis.

Chapter 7

Conclusions

In the exploratory phase of the research in chapters 1, 2 and 3, we have shown
that race conditions are a prevalent issue among a variety of web app platforms.
However, systematic security testing for these race conditions is also shown not to
occur from a black-box perspective, and existing toolsets are not mature enough to
efficiently support the tester in this area. Similar to the approach to testing other
security issues, systematic testing for the existence of race conditions requires a
methodology of where to search for the issue, and how to exploit it.

That is why the central aspect of this research revolved around the question: how
can we perform systematic black-box testing for exploitable race conditions in web
apps? We have set out to answer this broad main question by finding the answers
to three sub-questions: 1) at what places in web app functionality do race conditions
occur, 2) how can we trigger them from a black-box perspective and 3) how can we
create a tool to support this testing process?

We found the answers to the first two questions by developing an appropriate test-
ing methodology in chapter 4. As a part of this method, we provided a detailed
mapping between web app functionality and potentially exploitable race conditions
in section 4.2.2. This answers our first question. Also, a strategy is created that
explains how HTTP requests should be selected and sent in ways to maximise the
chances of triggering race conditions in sections 4.2.3 up to 4.2.5. This answers our
second question. We can answer the third question after having created a toolset
for testing race conditions from a black-box perspective (see chapter 5). The toolset
is designed based on the requirements to it that flowed from the creation of the
methodology and by the limitations found after executing a preliminary test on the
existing tools in section 3.2.4.

133

134 CHAPTER 7. CONCLUSIONS

Any new academic proposals for a methodology or application should also try to
compare it with existing work to validate its added value. That is why we performed
an extensive evaluation of both the effectiveness of the toolset compared to other
tools and the practical usage of the methodology and toolset in chapter 6.

Based on section 6.1, we can conclude that both the CompuRacer and the Turbo
Intruder provide, by far, the best functionality to support a race condition test. The
results in section 6.2 show us that the performance of the CompuRacer (and CR+) is
better than or equal to the performance of the other toolsets. It can remotely cause
race conditions even with high latency and jitter on the connection between the tool
and the target web app. This is a very positive result. The results in section 6.3 indi-
cate that both the methodology and the toolset perform well in practice and provide a
systematic overview of race condition vulnerabilities per web app. The practical test
further proved its effectiveness because it led to finding two race condition related
security issues in two well-used e-commerce platforms.

Based on these achievements, we can conclude that we have successfully taken
the initial step towards systematic black-box testing for exploitable race conditions in
web apps. We now know how to discover and exploit race conditions in a systematic
way from a black-box perspective, and this answers our main research question.
At the same time, at every step in this process we became more aware we only
scratched the surface of what can be known about black-box testing for race con-
ditions in web apps and that much more research is needed in this area. That is
why we have also dedicated a significant portion of our time to formulate concrete
starting points for future work in chapter 8.

We envision that race conditions, due to their probabilistic nature, might never be
fully tamed, but at the same time, we have discovered in this research that, given
enough dedication, much improvement is possible in this area. Systematic testing
for race conditions and fixing the found issues could have a direct impact on software
quality, and that has been our primary goal. We hope that other researchers will
respond to our call and further develop the methodology and toolset until they have
achieved a level of maturity that can successfully penetrate the broader academic
and business world.

Chapter 8

Future work

In this chapter, we will iterate over all parts of the research that could be improved
upon in later research. The contents are broken down into the improvements to each
main chapter of the thesis document: the systematic testing method in section 8.1,
the toolset in section 8.2, and the evaluation 8.1. For the toolset, the possible im-
provements are split into scientific research challenges and engineering improve-
ments.

8.1 Methodology improvements

The methodology, as described in chapter 4, currently contains all aspects of inter-
est to perform a sufficient systematic test for race conditions in web apps. However,
as this method, to our best knowledge, is the first method devised in academic
literature, we regard it as still being in its infancy. Based on the limitations we en-
countered during the creation and evaluation of this method, we have defined the
following concrete improvements.

Fundamental web app types The first improvement we like to state is the estab-
lishment of a more complete basis of web app types for the checklist of the method-
ology. For our methodology, we only sampled from the functionality usually found in
wikis, blogs and e-commerce webshops to create the list of possible vulnerabilities.
However, in this section, we already stated that it would be advantageous to exam-
ine the functionality of even more web app types like platforms for chats, forums,
e-learning, games, and private clouds.
These additional types are expected to yield more options for race conditions to
manifest themselves when the proper parallel requests are sent to the application.

135

136 CHAPTER 8. FUTURE WORK

For instance, all rights-related race conditions that exist or existed at the file system
level of an operating system could also be present in a cloud platform [ref to related
work]. Also, it might be possible to cheat in online games and e-learning platforms
by exploiting race conditions in the scoring system. Last, forums or chat systems
may also be vulnerable to race conditions regarding the sending of messages and
attachments. These findings could then be added to the checklist.

Integration with existing methods The second improvement to the methodology
can be found in better integration with existing methods for security testing. Cur-
rently, the process is sufficient in itself, but in practice, it will probably be executed as
a part of a complete vulnerability assessment or penetration test (see section 2.3).
As it requires information about the functionality of the web app, it cannot happen
before the data gathering or exploration phase of a vulnerability assessment. Also,
as the found race condition vulnerabilities (like duplicate account names) often need
to be combined with other vulnerabilities for successful exploitation, it should also
happen at a specific moment during a penetration test.

More research is needed to find out at what moment during the complete test, dif-
ferent aspects of the test for race conditions can best be added. Also, it is uncertain
what information can be exchanged between this test and other tests for efficiency
reasons. We suggest that a solution should be sought in combining the tests in secu-
rity areas like authentication, identity management, input validation, error handling
and cryptography with the specific potential race condition vulnerabilities in these
areas for the most efficient combination. This assumption is still to be validated by
future work.

8.2 Toolset improvements

The toolset, as described in chapter 5 currently fulfils all requirements to be of effi-
cient support to the methodology. However, based on our experience with the toolset
and the elaborate evaluation of the toolset that we executed in chapter 6, several im-
provements to the toolset were discovered and are discussed below.

8.2.1 Scientific research challenges

This topic is about scientific challenges regarding the toolset that are not yet solved
in this research or in other literature, and require further investigation.

8.2. TOOLSET IMPROVEMENTS 137

Geographical race conditions In the current methodology, we (implicitly) only
concern ourselves with the different ways one or more clients can send parallel
requests to one specific server to exploit race condition vulnerabilities. As stated
in section 2.2, web apps often use multiple synchronised web servers in parallel to
host their service with improved performance or reliability.

An interesting research question in this direction is: ’To what extent do different
synchronised back-ends to a web app increase the number of race conditions and
the race window of different parts of the application?’ In other words, what hap-
pens when we send requests in parallel to different or even geographically spaced
servers? If the mutual synchronisation between servers is lacking, it is expected that
new kinds of exploitable race conditions can be found. This test setup can be seen
in figure 8.1.

Figure 8.1: Load balancing a web app via
synchronising instances in every country.
This could result in additional race condi-
tions or an increased race window.

Other application-level protocols In this
research, only race conditions regarding the
application-level protocols HTTP and HTTPS
over transport-level protocol TCP have been
considered. However, as indicated in sec-
tion 2.2, other application-level protocols like
WebSockets (WS) or Secure WebSockets
(WSS) are also used in web applications.
Compared to HTTP, this protocol is rather new
as it became mainstream in browsers between
2011 and 2013. It is used in real-time com-
munication data streaming in videos, games or
chats applications.

Just like most other guidelines regarding secu-
rity testing mentioned in chapter 1, we have not
found any research that connects this technol-
ogy with potential race condition vulnerabilities.
More specifically, both Fette and Melnikov (2011) and Koch (2013) (already men-
tioned in section 1.2) look into security testing of the WebSocket protocol, but fail to
mention race conditions. That is why further research is required to find out to what
extent race conditions can also be found and exploited in WebSockets. It is expected
that requests for the switch between HTTP and WSS using this protocol.

138 CHAPTER 8. FUTURE WORK

Other transport-level protocols Next to WebSockets for real-time communica-
tion, protocols like Web Real-Time Communication (WebRTC) over User Datagram
Protocol (UDP) streams also seem to be a useful alternative as Fiedler (2017)
shows. This author made a simple protocol implementation called Netcode.io. This
functionality is not yet built into browsers, but it can already be tried out via a plugin
for Chrome and Firefox made by Rhodes and Reinstein (2017). UDP as the under-
lying layer is much faster than TCP and when a web app like an online game makes
use of this, exploiting possible race conditions in this part of web app functionality is
expected to be easier. Further research is required to verify this claim.

Improved parallelisation As indicated in section 5.3.5 on the implementation of
the toolset, four sequential steps were taken to increase the performance of the
toolset. To our best knowledge, there is no potential improvement to the perfor-
mance without redesigning the asynchronous HTTP libraries that the CompuRacer
toolset uses. Still, as the evaluation in section 6.2 shows, the performance of all
tools is severely lacking when there are significant latency and jitter in the used
connection. This was the case for the ’Normal’ and ’Slow’ proxy tests.

Therefore, more research is required to find out what kind of techniques can be
employed to ensure that even when using a bad connection, the requests arrive
at the server with the lowest possible time-difference. Solutions might be found in a
redesign of the entire IP/TCP stack, just like the developers of the Turbo Intruder per-
formed so that every part is tuned for synchronised delivery of HTTP requests. Also,
the usage of multiple network cards might allow for improved parallelisation.

8.2.2 Engineering improvements

This topic is about potential engineering improvements to the toolset. These so-
lutions are not necessarily novel in an of themselves, but they would primarily be
engineering challenges that make the toolset more useful in practice.

Geographic DNS resolver In line with the future work proposed in section 8.2.1,
the toolset should also support sending requests to different physical servers that
host the same web app. We have already implemented a simple version of this func-
tionality, and this can be found in the sources on the CompuRacer toolset GitHub
in the source file geo_dns_resolver.py. The script used dozen’s of DNS servers
from all over the world to find all (most) IP addresses that the domain of the web
app resolves to. Then, it uses a public API to find out the physical location of all

8.2. TOOLSET IMPROVEMENTS 139

servers. Based on the expected latency between these servers, the tester can, for
instance, pick a very remote server pair for an attack to maximise the synchronisa-
tion time and thereby also maximise the race window. Executing the latter example
from the CLI of the toolset is not yet supported and is still to be implemented in the
future.

Figure 8.2: The figure shows a Wireshark capture of the TCP and HTTP requests while directly con-
necting to a Facebook server in Toronto (Canada) from the west of the Netherlands. The connection
gets redirected to a local Facebook server.

Initial testing with our current implementation showed that this process is not as easy
as expected because web apps often only allow specific source IP addresses to ac-
cess certain physical servers (Geo-fencing). In figure 8.2 the Wireshark capture is
shown of trying to connect to a Facebook server in Toronto (Canada) from the West
of the Netherlands. As expected, first, a TCP handshake is performed, and then,
the client issues an HTTP GET request for the Facebook web app. However, the
server responds with a status code Removed Permanently (302) that contains the
general www.facebook.com domain. This then causes the client to perform a local
DNS lookup of this domain. The local DNS server responds with the IP address of a
local Facebook server, and the client finally connects to this server instead. A poten-
tial solution to the geo-fencing could be to access these different servers via proxy
servers in these countries. Further research is required to verify this claim.

Usage of CLI libraries Currently, the toolset uses a self-written Command Line
Interface (CLI) which proved to be the best option given the limited time available.
However, the functionality is somewhat limited, and future work should include the
adoption of dedicated and advanced libraries to replace this functionality. This
should make the addition of additional advanced functionality like command com-
pletion, output redirection and pipes possible. More importantly, the maintenance of
this part of the toolset would then be moved to the party, which saves time for the
maintainer of the CompuRacer toolset.

140 CHAPTER 8. FUTURE WORK

For instance, CDM2 by the Python-CMD2 Team (2019), or the even more advanced
Cement library by Data Folk Labs (2018), could be used for creating advanced CLIs.
PyInquirer made by CITGuru (2018) could be used alongside either of these libraries
or the self-written CLI specifically for asking (multiple choice) questions to the user.
Unfortunately, this library does not work in the modified terminal of the PyCharm
Integrated Development Environment (IDE). As this is a very popular IDE for Python
developers as (Reitz and Schlusser, 2016, p. 29) indicate, and this tool is still in
the development stage, compatibility with this environment was considered very im-
portant. That is why we do not suggest the use of this library. Future work should
investigate further whether these or other CLI or question-asking libraries might pro-
vide a valuable addition to the toolset.

Testing assistance Currently, the toolset can only be used to test for race condi-
tions in a manual way. There is no assistance regarding the selection of requests of
interest, the creation of batches, and the interpretation of results.

• The selection of requests of interest is already naively done by the browser
plugins as described in section 5.3.7 and these checks could also be built into
the CompuRacer Core and extended upon.

• The automatic creation of batches requires the concept of web app types
(blogs, wikis, e-commerce, etc.), functionality (login, shopping, content cre-
ation, etc.), and the associated vulnerabilities as described in section 4.2.2 to
be included into the toolset.

• Finally, based on the evaluation methods described in section 4.2.5, we think
that the interpretation of results can be supported by allowing the tester to pro-
vide either the expected number of certain HTTP response codes or to select
a test-request with an expected result that can be used to validate whether a
race condition occurred automatically.

Further work is required to build the various assistance options into the toolset.

Generating reports Next to automating the detection and exploitation process, it
would be useful to be able to export the issues that are found. This would help in the
integration with the current testing process and the ease of use. When a particular
batch of requests has resulted in a race condition at the target website, it should be
possible to generate a report of this. For this to work, target websites and scopes
should be added to the tool, and the tester should be able to indicate what kind of
race condition has occurred.

8.3. EVALUATION IMPROVEMENTS 141

Integration with existing methods The toolset now runs separately from the ex-
tensions in the Burp Suite and the browser. Via the extension, it can use the history
of requests from Burp or the browser, but cannot be controlled via these extensions
or send any results back. This would be a valuable addition to the toolset as it would
integrate even better in existing manual and automated testing methods.

The benefit to manual testing is that instead of having to use a separate tool, se-
curity testers only have to get used to a new extension in, for instance, Burp. This
extension would contain the same functionality as the CompuRacer Core CLI now
does. It can also make use of the GUI elements that Burp makes available to ex-
tensions. For automated testing, it could include sending some requests via the
CompuRacer Core to the target web app. Then, get back the results to validate
certain race conditions are not present in the web app.

To make this possible, the CompuRacer Core logic should be fully controllable via
an API. Then, all extensions would be able to both control the Core and show results
to the user. As it would then be fully controllable via both the API and the CLI, the
developer has to think through how different concurrent commands will be managed.
As the sending logic works best when it has as much CPU power and bandwidth as
possible, this part cannot easily be made concurrently accessible. A solution would
be to buffer the sending of batches and execute them sequentially.

The Core could also be fully moved in the Burp extension, for instance. The down-
side to this is that it loses its independence. When you just want to test a single
HTTP request and forward it using a browser extension, it would be better not to re-
quire Burp. Also, when another in-flow method of requests would be added like the
ZAP proxy (OWASP, 2018), the Postman API tester (Postman Inc., 2019), or another
toolset, the ability to independently run the CompuRacer Core is essential.

More work needs to be done to validate the need for this integration and subse-
quently upgrade the toolset accordingly.

8.3 Evaluation improvements

The evaluation, as described in chapter 6 currently fulfils the purpose of evaluating
the effectiveness of the methodology and toolset, but several improvements to this
evaluation can still be discerned. In this final section of the future work, we propose
extensions to our affords to evaluate the methodology and the toolset. For sec-
tion 6.1 on functionality & usability evaluation, no improvements were discovered.
For the other two sections, the improvements are discussed separately.

142 CHAPTER 8. FUTURE WORK

8.3.1 Performance evaluation

In this section, improvements to the performance evaluation in section 6.2 are dis-
cussed.

Number of target web apps In the performance evaluation, four setups were
tested for all tools on a single web app. As this web app was specifically built by us
to contain race conditions, this is not an entirely realistic target. In future work, it is
recommended to execute the performance evaluation on multiple types of web apps
where certain vulnerabilities within different functionality are targeted. It is expected
that including these web apps will result in different results regarding the second
test of the first metric (time-differences at the application), and both tests of the sec-
ond metric (exploitation success and number of errors). This would result both in a
better-grounded conclusion regarding the performance of the tools and would also
yield valuable insights regarding the behaviour of different web apps when a race
condition test is performed.

More remote targets Next to this, the results showed that having both the client
and the server on the same system can influence the results compared to using a
remote server. It would have been better to not only include one distant target but
to host multiple target web apps at different geographical locations on the earth.
This would both remove the influence factor in the results and also result in more
insights regarding the relationship between geographic distance and the extent to
which requests can be made to arrive within the race window.

A testing platform hosting web apps types Based on our experience, we think it
would be highly valuable future work to create an independent platform that focuses
on providing packaged versions of all kinds of web apps (grouped by type or func-
tionality) which are configured and ready to use for research and testing purposes.
The most obvious method would be to package these setups using collections of
Docker containers or virtual machines (VMs). It would be best when a community of
researchers and testers would also be able to add packaged web apps themselves.
In this case, researchers could also point to these packages within their research for
greatly improved reproducibility and extensibility of their results.

This suggestion is not closely related to our research topic itself but is a practical
issue we continuously ran into while testing out toolset and methodology. It turned
out that it is a rather involved process to set up a web app from scratch to test it. As

8.3. EVALUATION IMPROVEMENTS 143

we have shown, this process involves finding a recent Docker image of the platform,
installing and configuring the platform, linking a compatible database and filling the
database with appropriate testing data. As specifics of this process are often com-
pletely different between individual platforms, for us, this process took several days
for some web apps. Every single researcher or tester has to go through these steps
themselves, introducing a massive amount of duplicate work in the field of computer
science. The creation of a platform, as described above, would reduce this work to
a single community effort. We have not looked at the drawbacks regarding secu-
rity and the process of keeping packages up-to-date, but we still deem this as an
exciting research direction.

8.3.2 Practical evaluation

In this section, improvements to the practical evaluation of the methodology and
toolset in section 6.3 are discussed.

Increase number of web apps tested For the practical evaluation of the method-
ology and toolset, we have currently tested only seven distinct web applications. In
future work, we would recommend the researcher to both add more web apps of
the current types (wikis, blogs and e-commerce), and also to add more types of
web apps in line with the extension proposed in the first paragraph of section 8.1.
This addition would both create a more elaborate evaluation of the methodology and
toolset, but it would also have the potential to result in more found vulnerabilities. In
two of the seven applications we tested, a severe vulnerability was found, and there-
fore, we estimate that a more extensive test would likely result in several additional
interesting findings.

Remote exploitation and the race window Next to the extension in the number
of tested web apps as proposed above, future work should also include a test of
remotely hosted applications. As already indicated in section 8.3.1 above, distant
targets might be harder to exploit and therefore provide a test environment that is
more comparable to an actual web app security test.

144 CHAPTER 8. FUTURE WORK

Bibliography

R. Abbott, J. Chin, J. Donnelley, W. Konigsford, S. Tokubo, and D. Webb, “Security
Analysis and Enhancements of Computer Operating Systems,” National Bureau
of standards Washington, D.C., Technical report, 1976.

S. Acharya and V. Pandya, “Bridge between Black Box and White Box–Gray Box
Testing Technique,” International Journal of Electronics and Computer Science
Engineering, vol. 2, no. 1, pp. 175–185, 2012.

C. Adamsen, A. Møller, R. Karim, M. Sridharan, F. Tip, and K. Sen, “Repairing Event
Race Errors by Controlling Nondeterminism,” IEEE/ACM 39th International Con-
ference on Software Engineering (ICSE), 2017.

C. Adamsen, A. Møller, and F. Tip, “Practical initialization race detection for
JavaScript web applications,” Proceedings of the ACM on Programming Lan-
guages, vol. 1, pp. 1–22, 2017.

C. Adamsen, A. Møller, S. Alimadadi, and F. Tip, “Practical AJAX Race Detection for
JavaScript Web Applications,” in The ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ES-
EC/FSE). ACM, 2018.

P. Ammann and J. Offutt, Introduction to Software Testing. Cambridge University
Press, 2016.

G. B. and V. V. (2018) How to Choose a Technology Stack for Web
Application Development. [Online]. Available: https://rubygarage.org/blog/
technology-stack-for-web-development

W. W. R. Ball, “Other Questions on Probability,” Mathematical Recreations and Es-
says, vol. 45, 1960.

B. Beizer, Software Testing Techniques. Dreamtech Press, 2003.

M. Billes, A. Møller, and M. Pradel, “Systematic black-box analysis of collaborative
web applications,” ACM SIGPLAN Notices, vol. 52, pp. 171–184, 2017.

145

https://rubygarage.org/blog/technology-stack-for-web-development
https://rubygarage.org/blog/technology-stack-for-web-development

146 BIBLIOGRAPHY

N. Breslow, “A generalized Kruskal-Wallis test for comparing K samples subject to
unequal patterns of censorship,” Biometrika, vol. 57, no. 3, pp. 579–594, 1970.

BuiltWith. (2019) Mediawiki usage statistics. [Online]. Available: https://trends.
builtwith.com/shop/MediaWiki

——. (2019) oscommerce usage statistics. [Online]. Available: https://trends.
builtwith.com/shop/osCommerce

J. Cable. (2017) Exploiting and Protecting Against Race Conditions. [Online].
Available: https://lightningsecurity.io/blog/race-conditions/

M. Carbou. (2019) Reverse Ajax, Part 1: Introduction to Comet. [Online]. Available:
https://www.ibm.com/developerworks/web/library/wa-reverseajax1/index.html

Certified Secure. (2018) Certified Secure Checklists. [Online]. Available: https:
//www.certifiedsecure.com/checklists/

S. Chen. (2011) Session Puzzling and Session Race Con-
ditions. [Online]. Available: http://sectooladdict.blogspot.com/2011/09/
session-puzzling-and-session-race.html

CITGuru. (2018) PyInquirer: A Python module for common interactive command
line user interfaces. [Online]. Available: https://github.com/CITGuru/PyInquirer

C. Collberg. (2014) Examining "Reproducibility in Computer Science". [Online].
Available: http://cs.brown.edu/~sk/Memos/Examining-Reproducibility/

Computest. (2019) IT Security, Performance and Test automation. [Online].
Available: https://www.computest.nl/en/

Data Folk Labs. (2018) Cement: Application framework for python. [Online].
Available: https://github.com/datafolklabs/cement

DB-Engines. (2018) DB-Engines Ranking. [Online]. Available: https://db-engines.
com/en/ranking

D. Dean and A. J. Hu, “Fixing Races for Fun and Profit: How to Use access (2).” in
USENIX Security Symposium, 2004, pp. 195–206.

Defuse Security. (2011) Practical Race Condition Vulnerabilities in Web Applica-
tions. [Online]. Available: https://defuse.ca/race-conditions-in-web-applications.
htm

N. Dragoni, I. Lanese, S. T. Larsen, M. Mazzara, R. Mustafin, and L. Safina, “Mi-
croservices: How To Make Your Application Scale,” in International Andrei Ershov

https://trends.builtwith.com/shop/MediaWiki
https://trends.builtwith.com/shop/MediaWiki
https://trends.builtwith.com/shop/osCommerce
https://trends.builtwith.com/shop/osCommerce
https://lightningsecurity.io/blog/race-conditions/
https://www.ibm.com/developerworks/web/library/wa-reverseajax1/index.html
https://www.certifiedsecure.com/checklists/
https://www.certifiedsecure.com/checklists/
http://sectooladdict.blogspot.com/2011/09/session-puzzling-and-session-race.html
http://sectooladdict.blogspot.com/2011/09/session-puzzling-and-session-race.html
https://github.com/CITGuru/PyInquirer
http://cs.brown.edu/~sk/Memos/Examining-Reproducibility/
https://www.computest.nl/en/
https://github.com/datafolklabs/cement
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://defuse.ca/race-conditions-in-web-applications.htm
https://defuse.ca/race-conditions-in-web-applications.htm

BIBLIOGRAPHY 147

Memorial Conference on Perspectives of System Informatics. Springer, 2017,
pp. 95–104.

O. J. Dunn, “Multiple Comparisons Among Means,” Journal of the American statisti-
cal association, vol. 56, no. 293, pp. 52–64, 1961.

S. Faulkner, A. Eicholz, T. Leithead, A. Danilo, and S. Moon, “HTML 5.2,” W3C.
Retrieved January, vol. 17, p. 2018, 2017.

I. Fette and A. Melnikov, “The WebSocket Protocol - 6455,” Internet Engineering
Task Force, RFC, 2011.

G. Fiedler. (2017) Why can’t I send UDP packets from a browser? A solution for
enabling UDP in the web. [Online]. Available: https://gafferongames.com/post/
why_cant_i_send_udp_packets_from_a_browser/

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee, “Hypertext Transfer Protocol - HTTP/1.1 - 2616,” Internet Engineering Task
Force, RFC, 1999.

C. Flanagan and S. Freund, “FastTrack: Efficient and Precise Dynamic Race Detec-
tion,” ACM SIGPLAN Notices, vol. 44, p. 121, 2009.

C. Flanagan and S. N. Freund, “The ROADRUNNER Dynamic Analysis Framework
for Concurrent Programs,” in Proceedings of the 9th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering. ACM, 2010,
pp. 1–8.

J. Franjković. (2016) Race conditions on the web. [Online]. Available: https:
//www.josipfranjkovic.com/blog/race-conditions-on-web

P. A. Games, H. Keselman, and J. C. Rogan, “Simultaneous pairwise multiple com-
parison procedures for means when sample sizes are unequal.” Psychological
Bulletin, vol. 90, no. 3, p. 594, 1981.

P. Godefroid, P. de Halleux, A. V. Nori, S. K. Rajamani, W. Schulte, N. Tillmann,
and M. Y. Levin, “Automating Software Testing Using Program Analysis,” IEEE
software, vol. 25, no. 5, pp. 30–37, 2008.

J. N. Goel and B. Mehtre, “Vulnerability Assessment & Penetration Testing as a
Cyber Defence Technology,” Procedia Computer Science, vol. 57, pp. 710–715,
2015.

Google. (2018) Protractor end to end testing for Angular. [Online]. Available:
https://www.protractortest.org

https://gafferongames.com/post/why_cant_i_send_udp_packets_from_a_browser/
https://gafferongames.com/post/why_cant_i_send_udp_packets_from_a_browser/
https://www.josipfranjkovic.com/blog/race-conditions-on-web
https://www.josipfranjkovic.com/blog/race-conditions-on-web
https://www.protractortest.org

148 BIBLIOGRAPHY

J. Halley and P. Inchausti, “Lognormality in ecological time series,” Oikos, vol. 99,
no. 3, pp. 518–530, 2002.

W. Hetzel, “The Complete Guide to Software Testing,” QED Information Sciences,
1984.

A. Hnatiw. (2016) Race The Web (RTW). [Online]. Available: https://github.com/
insp3ctre/race-the-web

S. Hong, Y. Park, and K. Moonzoo, “Detecting concurrency errors in client-side java
script web applications,” in 2014 IEEE Seventh International Conference on Soft-
ware Testing, Verification and Validation (ICST). IEEE, 2014, pp. 61–70.

W. E. Howden, “Reliability of the Path Analysis Testing Strategy,” IEEE Transactions
on Software Engineering, no. 3, pp. 208–215, 1976.

J. Ide, R. Bodik, and D. Kimelman, “Concurrency Concerns in Rich Internet Applica-
tions,” 2009.

M. Jadon. (2018) Race Condition Bug In Web App: A
Use Case. [Online]. Available: https://medium.com/@ciph3r7r0ll/
race-condition-bug-in-web-app-a-use-case-21fd4df71f0e

M. Jans. (2016) netCloneFuzzer. [Online]. Available: https://github.com/snapo/
netCloneFuzzer

C. Jensen, A. Møller, V. Raychev, D. Dimitrov, and M. Vechev, “Stateless model
checking of event-driven applications,” ACM SIGPLAN Notices, vol. 50, no. 10,
pp. 57–73, 2015.

P. Jones. (2017) 3x faster than flask – hacker noon. [Online]. Available:
https://hackernoon.com/3x-faster-than-flask-8e89bfbe8e4f

S. S. Kar and A. Ramalingam, “Is 30 the magic number? issues in sample size
estimation,” National Journal of Community Medicine, vol. 4, no. 1, pp. 175–179,
2013.

J. Kettle. (2019) Turbo Intruder: Embracing the billion-request
attack | Blog. [Online]. Available: https://portswigger.net/blog/
turbo-intruder-embracing-the-billion-request-attack

H.-Y. Kim, “Analysis of variance (ANOVA) comparing means of more than two
groups,” Restorative dentistry & endodontics, vol. 39, no. 1, pp. 74–77, 2014.

R. Koch, “On WebSockets in penetration testing,” Master’s thesis, Vienna University
of Technology, 2013.

https://github.com/insp3ctre/race-the-web
https://github.com/insp3ctre/race-the-web
https://medium.com/@ciph3r7r0ll/race-condition-bug-in-web-app-a-use-case-21fd4df71f0e
https://medium.com/@ciph3r7r0ll/race-condition-bug-in-web-app-a-use-case-21fd4df71f0e
https://github.com/snapo/netCloneFuzzer
https://github.com/snapo/netCloneFuzzer
https://hackernoon.com/3x-faster-than-flask-8e89bfbe8e4f
https://portswigger.net/blog/turbo-intruder-embracing-the-billion-request-attack
https://portswigger.net/blog/turbo-intruder-embracing-the-billion-request-attack

BIBLIOGRAPHY 149

H. Kuosmanen et al., “Security Testing of WebSockets,” Master’s thesis, JAMK Uni-
versity of Applied Sciences, 2016.

N. Kurapati, V. S. C. Manyam, and K. Petersen, “Agile Software Development Prac-
tice Adoption Survey,” in International Conference on Agile Software Development.
Springer, 2012, pp. 16–30.

H. W. Lilliefors, “On the Kolmogorov-Smirnov Test for Normality with Mean and Vari-
ance Unknown,” Journal of the American statistical Association, vol. 62, no. 318,
pp. 399–402, 1967.

Y. Lozinsky. (2017) 6 Web Development Stacks To Try In 2017. [Online]. Available:
https://webinerds.com/6-web-development-stacks-try-2017/

B. Martin, M. Brown, A. Paller, D. Kirby, and S. Christey, “2011 CWE/SANS top 25
most dangerous software errors,” Common Weakness Enumeration, vol. 7515,
2011.

G. McGraw, Software Security: Building Security In. Addison-Wesley Professional,
2006, vol. 1.

D. Merkel, “Docker: Lightweight Linux Containers for Consistent Development and
Deployment,” Linux Journal, vol. 2014, no. 239, p. 2, 2014.

M. Meucci, E. Keary, and D. Cuthbert, “OWASP Testing Guide v3,” OWASP Foun-
dation, Testing guide, 2008.

G. Milener, J. Roth, C. Malhotra, and C. Guyer. (2018) Understanding isolation
levels - sql server | microsoft docs. [Online]. Available: https://docs.microsoft.com/
en-us/sql/connect/jdbc/understanding-isolation-levels?view=sql-server-2017

Mitmproxy. (2018) A free and open source interactive HTTPS proxy. [Online].
Available: https://mitmproxy.org/

MITRE Corporation. (2019) CWE-362: Concurrent Execution using Shared
Resource with Improper Synchronization (’Race Condition’). [Online]. Available:
https://cwe.mitre.org/data/definitions/362.html

——. (2011) On the Cusp: Other Weaknesses to Consider. [Online]. Available:
https://cwe.mitre.org/top25/archive/2011/2011_onthecusp.html

J. Moilanen, M. Jeskanen et al., “Non-functional testing: security and performance
testing,” 2015.

T. Moore, “The Economics of Cybersecurity: Principles and Policy options,” Inter-
national Journal of Critical Infrastructure Protection, vol. 3, no. 3-4, pp. 103–117,
2010.

https://webinerds.com/6-web-development-stacks-try-2017/
https://docs.microsoft.com/en-us/sql/connect/jdbc/understanding-isolation-levels?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/connect/jdbc/understanding-isolation-levels?view=sql-server-2017
https://mitmproxy.org/
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/top25/archive/2011/2011_onthecusp.html

150 BIBLIOGRAPHY

A. Muller, M. Meucci, E. Keary, and D. Cuthbert, “OWASP testing guide 4.0.” OWASP
Foundation, Testing guide, 2013.

E. Mutlu, S. Tasiran, and B. Livshits, “I know it when I see it: Observable races in
JavaScript applications,” in Proceedings of the Workshop on Dynamic Languages
and Applications. ACM, 2014, pp. 1–7.

——, “Detecting JavaScript races that matter,” in Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering. ACM, 2015, pp. 381–392.

S. Northcutt. (2007) Security Laboratory: Methods of Attack Series -
Race Conditions. [Online]. Available: https://www.sans.edu/cyber-research/
security-laboratory/article/race-cndtns

OWASP. (2018) OWASP Zed Attack Proxy Project. [Online]. Available: https:
//www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project#tab=Main

OWASP community, “OWASP Top 10 - 2017: The Ten Most Critical Web Application
Security Risks,” OWASP, Tech. Rep., 2017.

M. T. Özsu and P. Valduriez, Principles of Distributed Database Systems. Springer
Science & Business Media, 2011.

R. Paleari, D. Marrone, D. Bruschi, and M. Monga, “On Race Vulnerabilities in Web
Applications,” Lecture Notes in Computer Science, pp. 126,142, 2008.

Pallets Team. (2010) Flask - A Python Microframework. [Online]. Available:
http://flask.pocoo.org/

S. Pandey. (2016) Testing Race Conditions in Web Applica-
tions. [Online]. Available: https://securingtomorrow.mcafee.com/business/
testing-race-conditions-web-applications/

B. Petrov, M. Vechev, M. Sridharan, and J. Dolby, “Race Detection for Web Applica-
tions,” ACM SIGPLAN Notices, vol. 47, pp. 251,262, 2012.

M. Pohja, “Server Push with Instant Messaging,” in Proceedings of the 2009 ACM
symposium on Applied Computing. ACM, 2009, pp. 653–658.

Portswigger. (2018) Burp Suite Editions. [Online]. Available: https://portswigger.net/
burp

——. (2018) Extensibility. [Online]. Available: https://portswigger.net/burp/extender/

Postman Inc. (2019) Postman API Development Environment. [Online]. Available:
https://www.getpostman.com/

https://www.sans.edu/cyber-research/security-laboratory/article/race-cndtns
https://www.sans.edu/cyber-research/security-laboratory/article/race-cndtns
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project#tab=Main
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project#tab=Main
http://flask.pocoo.org/
https://securingtomorrow.mcafee.com/business/testing-race-conditions-web-applications/
https://securingtomorrow.mcafee.com/business/testing-race-conditions-web-applications/
https://portswigger.net/burp
https://portswigger.net/burp
https://portswigger.net/burp/extender/
https://www.getpostman.com/

BIBLIOGRAPHY 151

Pylons Project. (2019) Welcome to the Pylons Project. [Online]. Available:
https://pylonsproject.org/

Python-CMD2 Team. (2019) CMD2 - quickly build feature-rich and user-
friendly interactive command line applications in Python. [Online]. Available:
https://github.com/python-cmd2/cmd2

P. Reinheimer and W. Roberts. (2019) WonderNetwork - Ping time between
Amsterdam and Los Angeles. [Online]. Available: https://wondernetwork.com/
pings/Amsterdam/Los+Angeles

——. (2019) WonderNetwork - Ping time between Amsterdam and Paris. [Online].
Available: https://wondernetwork.com/pings/Amsterdam/Paris

K. Reitz and T. Schlusser, The Hitchhiker’s Guide to Python: Best Practices for
Development. " O’Reilly Media, Inc.", 2016.

J. Rhodes and M. Reinstein. (2017) Browser extensions for netcode.io. [Online].
Available: https://github.com/RedpointGames/netcode.io-browser

A. Riancho. (2019) Race-condition-exploit: Tool to help with the exploitation of web
application race conditions. [Online]. Available: https://github.com/andresriancho/
race-condition-exploit

G. D. Ruxton and G. Beauchamp, “Time for some a priori thinking about post hoc
testing,” Behavioral ecology, vol. 19, no. 3, pp. 690–693, 2008.

Sakurity. (2017) Sakurity Racer. [Online]. Available: https://github.com/sakurity/
racer

Security Compass. (2016) Moving Beyond The OWASP Top 10, Part
1: Race Conditions. [Online]. Available: https://blog.securitycompass.com/
moving-beyond-the-owasp-top-10-part-1-race-conditions-912dccbb7c14

K. Sen, D. Marinov, and G. Agha, “CUTE: A Concolic Unit Testing Engine for C,”
in ACM SIGSOFT Software Engineering Notes, vol. 30, no. 5. ACM, 2005, pp.
263–272.

S. S. Shapiro and M. B. Wilk, “An Analysis of Variance Test for Normality (Complete
Samples),” Biometrika, vol. 52, no. 3/4, pp. 591–611, 1965.

M. C. Shingala and A. Rajyaguru, “Comparison of Post Hoc Tests for Unequal Vari-
ance,” International Journal of New Technologies in Science and Engineering,
vol. 2, no. 5, pp. 22–33, 2015.

Shopify. (2019) Shopify/toxiproxy: A TCP proxy to simulate network and

https://pylonsproject.org/
https://github.com/python-cmd2/cmd2
https://wondernetwork.com/pings/Amsterdam/Los+Angeles
https://wondernetwork.com/pings/Amsterdam/Los+Angeles
https://wondernetwork.com/pings/Amsterdam/Paris
https://github.com/RedpointGames/netcode.io-browser
https://github.com/andresriancho/race-condition-exploit
https://github.com/andresriancho/race-condition-exploit
https://github.com/sakurity/racer
https://github.com/sakurity/racer
https://blog.securitycompass.com/moving-beyond-the-owasp-top-10-part-1-race-conditions-912dccbb7c14
https://blog.securitycompass.com/moving-beyond-the-owasp-top-10-part-1-race-conditions-912dccbb7c14

152 BIBLIOGRAPHY

system conditions for chaos and resiliency testing. [Online]. Available:
https://github.com/Shopify/toxiproxy/releases

R. Smith, R. Harrison, S. Wood, D. Sussman, A. Fedorov, S. Murphy et al., Profes-
sional Active Server Pages 2.0. Wrox Press Ltd., 1998.

Stack overflow. (2018) Developer Survey Results. [Online]. Available: https:
//insights.stackoverflow.com/survey/2018/#technology

P. Sturgeon. (2016) PUT vs PATCH vs JSON-PATCH. [Online]. Available:
https://philsturgeon.uk/api/2016/05/03/put-vs-patch-vs-json-patch/

D. Stuttard and M. Pinto, The Web Application Hacker’s Handbook: Finding and
Exploiting Security Flaws. John Wiley & Sons, 2011.

A. S. Tanenbaum and M. Van Steen, Distributed systems: Principles and Paradigms.
Prentice-Hall, 2007.

Techrepublic. (2019) The CIA Triad. [Online]. Available: https://www.techrepublic.
com/blog/it-security/the-cia-triad/

J. W. Tukey et al., “Comparing Individual Means in the Analysis of Variance,” Bio-
metrics, vol. 5, no. 2, pp. 99–114, 1949.

J. Vanian. (2019) Meteor wants to be the warp drive for build-
ing real-time apps. [Online]. Available: https://gigaom.com/2014/12/27/
meteor-wants-to-be-the-warp-drive-for-building-real-time-apps/

G. Vial, “Different Databases for Different Strokes,” IEEE Software, vol. 35, no. 2, pp.
80–85, 2018.

J. Wang, “Characterizing and taming non-deterministic bugs in Javascript applica-
tions,” in Automated Software Engineering (ASE), 2017 32nd IEEE/ACM Interna-
tional Conference on, 2017, pp. 1006–1009.

J. Wang, W. Dou, Y. Gao, C. Gao, F. Qin, K. Yin, and J. Wei, “A comprehensive study
on real world concurrency bugs in Node.js,” in roceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering. IEEE/ACM, 2017,
pp. 520–531.

W. Wang, Y. Zheng, P. Liu, L. Xu, X. Zhang, and P. Eugster, “ARROW: automated
repair of races on client-side web pages,” Proceedings of the 25th International
Symposium on Software Testing and Analysis - ISSTA 2016, 2016.

J. Wilcox, C. Flanagan, and S. Freund, “VerifiedFT: A Verified, High-Performance
Precise Dynamic Race Detector,” in Proceedings of the 23rd ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, 2018, pp. 354–367.

https://github.com/Shopify/toxiproxy/releases
https://insights.stackoverflow.com/survey/2018/#technology
https://insights.stackoverflow.com/survey/2018/#technology
https://philsturgeon.uk/api/2016/05/03/put-vs-patch-vs-json-patch/
https://www.techrepublic.com/blog/it-security/the-cia-triad/
https://www.techrepublic.com/blog/it-security/the-cia-triad/
https://gigaom.com/2014/12/27/meteor-wants-to-be-the-warp-drive-for-building-real-time-apps/
https://gigaom.com/2014/12/27/meteor-wants-to-be-the-warp-drive-for-building-real-time-apps/

BIBLIOGRAPHY 153

Wireshark. (2019) About Wireshark. [Online]. Available: https://www.wireshark.org/

T. Wouters. (2017) Globalinterpreterlock - python wiki. [Online]. Available:
https://wiki.python.org/moin/GlobalInterpreterLock

E. Woychowsky, AJAX: Creating web pages with asynchronous JavaScript and XML.
Prentice Hall, 2007.

M. Wright. (2012) Flask-Security 3.0.0 documentation. [Online]. Available:
https://pythonhosted.org/Flask-Security/

L. Zhang and C. Wang, “RClassify: Classifying Race Conditions in Web Applica-
tions via Deterministic Replay,” 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE), 2017.

Y. Zheng and X. Zhang, “Static Detection of Resource Contention Problems in
Server-Side Scripts,” in Proceedings of the 34th International Conference on Soft-
ware Engineering. IEEE Press, 2012, pp. 584–594.

Y. Zheng, T. Bao, and X. Zhang, “Statically locating web application bugs caused by
asynchronous calls,” in Proceedings of the 20th international conference on World
wide web. ACM Press, 2011, pp. 805–814.

https://www.wireshark.org/
https://wiki.python.org/moin/GlobalInterpreterLock
https://pythonhosted.org/Flask-Security/

154 BIBLIOGRAPHY

Appendices

155

Appendix A

Race condition testing tools
sources

In this appendix, we have listed the links to the source code for all race conditions
testing tools that we have considered in this research in table A.1. These tools
are first listed in chapter 3. Obtaining the links to these sources often proved to
be rather difficult due to obscure references in related works or dead links. That is
why we have included these links in the document for efficient reproducibility of the
results.

Table A.1: The table shows the links to the sources of all considered race condition testing tools.

Year Name Sources

2013
EventRacer

https://github.com/eth-sri/EventRacer
https://github.com/eth-sri/webkit
(dependancy: altered version of WebKit)

2015 R4 https://github.com/eth-sri/R4

2016
netCloneFuzzer https://github.com/snapo/netCloneFuzzer/tree/

master/NetCloneFuzzer
Race the web https://github.com/insp3ctre/race-the-web

2017

EventRace-
Commander

https://github.com/cs-au-dk/
EventRaceCommander

InitRacer https://github.com/cs-au-dk/initracer
RClassify On request, we received the sources directly from the

first author. It is not publicly available.
SakurityRacer https://github.com/sakurity/racer

2018
AJAXRacer https://github.com/cs-au-dk/ajaxracer
TurboIntruder https://github.com/PortSwigger/turbo-intruder

157

https://github.com/eth-sri/EventRacer
https://github.com/eth-sri/webkit
https://github.com/eth-sri/R4
https://github.com/snapo/netCloneFuzzer/tree/master/NetCloneFuzzer
https://github.com/snapo/netCloneFuzzer/tree/master/NetCloneFuzzer
https://github.com/insp3ctre/race-the-web
https://github.com/cs-au-dk/EventRaceCommander
https://github.com/cs-au-dk/EventRaceCommander
https://github.com/cs-au-dk/initracer
https://github.com/sakurity/racer
https://github.com/cs-au-dk/ajaxracer
https://github.com/PortSwigger/turbo-intruder

158 APPENDIX A. RACE CONDITION TESTING TOOLS SOURCES

Appendix B

CompuRacer toolset – README

The README shows how to install, setup and run the CompuRacer toolset.

Recommended software versions

The toolset has been tested with Python 3.7, Firefox v. 65, Chrome v. 72, Burp Suite
Professional v1.7.37, Vagrant 2.1.5 and Git 2.21.0. It is run on a MacBook Pro (late
2013) running macOS High Sierra. Every single tool is expected to be compatible
with Linux and Windows as well, but this is not tested. The plugin is also likely to
work in Burp Suite CE.

Installation

• Clone the repository:
$ git clone https://github.com/rvemous/CompuRacer

• Install CompuRacer Core dependencies

– Go to the CompuRacer_Core/ folder.

– Run: $ pip install -r requirements.txt

• Install CompuRacer Firefox extension
Firefox does not support adding extensions permanently if they are not signed
by Mozilla. You can add it temporarily (until the next restart), using the following
method:

– In Firefox, go to: Settings > Add–ons.

159

160 APPENDIX B. COMPURACER TOOLSET – README

– Click the gear icon and select: Debug Add–ons.

– Go the CompuRacer_Extensions/Browser/Firefox/ folder
and select: manifest.json.

• Install CompuRacer Chrome extension
Note that due to recent changes in Chrome (after version 71), this extension
will no longer send most of the headers to the CompuRacer. Therefore, in any
authenticated session, it no longer works. You can add the extension using the
following method:

– In Chrome, go to: Settings > More Tools > Extensions.

– Click: Load unpacked.

– Select the CompuRacer_Extensions/Browser/Chrome/ folder.

• Install CompuRacer Burp Suite extension

– In the Burp Suite, go to: Extender > Add.

– Select Python as the extension type.

– Go to the CompuRacer_Extensions/Burp/ folder and select:
compu_racer_extension_burp.py.

– Click next and after loading the extension, close the window.

• Install test web app for voucher redemption

– In a terminal, go to the TestWebAppVouchers/app/ folder.

– Run the following command: vagrant up.

Configuration

The Firefox, Chrome, Burp Suite extensions and test web app do not need any
configuration and are ready to use. The Computest Core will create the necessary
folders and settings-files on the first startup. Make sure it has full read/write access
rights in this folder.

161

Running

The Firefox, Chrome, Burp Suite extensions and test web app are already started
after the install. The CompuRacer Core can be started by running the following
command within the CompuRacer_Core folder:
$ python3 main.py

Troubleshooting

All extensions can be reloaded (or reinstalled) if they stop working for any reason.
All platforms support some form of (live) debugging of extensions.

162 APPENDIX B. COMPURACER TOOLSET – README

Appendix C

CompuRacer toolset – Manual

The manual contains a guide on how to use the toolset for exploiting race conditions.
It covers using the extensions to add requests to the Core, the composing of batches
of requests in different modes, sending the batches and interpreting the results.
Throughout this process, some powerful built-in view and compare tools are also
used to support the process. The manual assumes both the toolset and the test
web app have been installed successfully according to the README.1

Command formatting In the manual, every command is shown on a new line
and can be used in the Command Line Interface (CLI) of the CompuRacer Core.
As already mentioned before, the terminal of a MacBook Pro running macOS High
Sierra is used. It is configured to look similar to the JetBrains PyCharm terminal
using the ’Homebrew’ theme with the colour of Text and Bold Text set to white. If
a command argument of a string-like type contains a space, for instance when it is
a name, the argument must be enclosed in double quotes (""). When an argument
is a boolean, the true and false values can be abbreviated to ’t’ and ’f’. Commands
used in this manual are formatted as follows:

racer> command (abbreviation) <required argument > [optional
↪→ argument]

In this manual, we will not explain every part of the functionality exhaustively. In-
stead, the manual will go through most functionality just like a tester would when
he is using the tool. For this to be exactly reproducible, we take the included web

1As already indicated in the README enclosed with the toolset, the Chrome extension cannot
send some headers anymore, and this breaks most security testing activities. That is why we will
only use Firefox in this manual.

163

164 APPENDIX C. COMPURACER TOOLSET – MANUAL

app for voucher redeeming as a concrete example for all detection and exploitation
related functionality. Some commands have different behaviours defined when op-
tional arguments are provided or omitted. The help command can be used to view
the details of commands and their behaviour or to search for a command:

racer> help [search term]

C.1 How to add HTTP requests of interest to the tool?

In this section, we will show how to add HTTP requests to the tool from the exten-
sions, or by manually adding a batch to the tool by creating a JSON file. Last, we will
explain how to use the Core action modes that help make the testing process more
efficient. To view stored requests, the tester can use the first command below. If the
tester wants to remove one or more requests (all ids between the first and second
id) from the complete list, use the second command below:

racer> reqs
racer> rm reqs [first request id] [last request id]

C.1.1 Send it from the browser using the Firefox extension

One option for adding requests to the Core is by using the Firefox extension. When
the Firefox extension is loaded, it will show a grey circle as its icon as long as it is
not connected to the CompuRacer Core. You can click the icon to try to reconnect.
When it shows a white circle, the connection is made successfully. If we click it
again, it will show a red circle for three seconds. During this time, any request of
interest that is sent to the domain of the current tab is forwarded to the CompuRacer
Core. When the tester hovers over the button, the extension state is also listed in a
tool-tip.

Example We want to add the POST request of redeeming COUPON1 in the very
insecure way to the CompuRacer Core. In figure C.1, you can see the web app just
after activating the extension (see red circle).

After this, we click the Redeem single button. This sends the request to the Compu-
Racer Core. When it is received successfully, we will get output similar to the cyan

C.1. HOW TO ADD HTTP REQUESTS OF INTEREST TO THE TOOL? 165

Figure C.1: The figure shows the activated Firefox extension in the test web app just before redeem-
ing a voucher.

text in figure C.2 that shows the summary of the request. Then, in the same figure,
the command req 0 is executed, which shows the details of the request with id ’0’.

Figure C.2: The figure shows the output of the CompuRacer core when a new request is added.

C.1.2 Send it from the Burp Suite using the Burp extension

The second option for adding requests is by using the Burp extension. We first
need to configure the Burp proxy to capture all requests as we often do not want the
original request to arrive at the target server. When the request of interest is sent, it
will first appear in the Proxy tab, and then we can forward it to the CompuRacer Core
using a button in the context menu. This button will be greyed-out when it is busy
sending requests or when the Core not available. This is indicated clearly.

166 APPENDIX C. COMPURACER TOOLSET – MANUAL

Example We want to add the same POST request as earlier to the CompuRacer
Core, but now using the Burp extension. We set the proxy in capturing mode and
in the web app, we click the button to redeem the voucher. After this, it pops up at
the proxy tab. By selecting it, we can then click the button in the context menu to
forward it to the CompuRacer Core as figure C.3 shows. The tester can also select
multiple requests from any part of the Burp Suite interface and send these via the
extension to the Core.

Figure C.3: The figure shows the Burp Suite after capturing a request. From the context menu,we
can decide to forward it.

Figure C.4: The figure
shows the output of
the CompuRacer core
when comparing the
requests from Firefox
(id=0) and Burp (id=1).
Only the ’Connection’ and
’Content-Length’ headers
differ between them.

After this, we then receive the request in the CompuRacer
Core. We expected to receive a duplicate request, and this
should be rejected, but it was not the case, and we got a
message equivalent to the one in figure C.2. When two re-
quests appear to be the same, but the tester does not want
to check the details line-by-line, the built-in compare function
can be used. It compares every header field and the body of
two requests and displays the changes. As you can see in
figure C.4, we executed the command comp reqs 0 1 and
got a precise indication of the differences.

The command works as follows. When a header is present
in both requests, but the values differ based on a string-
comparison, it is added to the ’normal’ differences. When
instead, a custom compare function is used on header val-
ues, and this fails, it is added to the ’custom’ differences.
Finally, when the header is missing altogether from one of
the requests, it is added to the ’missing’ differences. Appar-

C.2. HOW TO COMPOSE A BATCH OF HTTP REQUESTS? 167

ently, the Burp Suite adds a Content-Length header with a
value of zero to all POST requests even when they do not have a body. Also, it
changes the Connection header value from ’keep-alive’ to ’close’.

Finally, to show what would happen when a duplicate request would arrive, we send
the request again from Burp to the Core. The resulting message is shown in fig-
ure C.5.

Figure C.5: The figure shows the output of the CompuRacer core when a duplicate request is added.

C.1.3 Add it manually using the correct JSON format

The third option is to add a request manually. This is not officially supported, but still
possible. As it alters the state.json JSON file, the CompuRacer Core should not
be running when adding a request in this way. In this file, the current settings of the
Core are stored alongside the complete list of requests. When we would like to add
a request, the request headers and content should be added to the dictionary-value
of the requests key with a request key that is unique.

Example For this final example, we want to add almost the same HTTP request
as in the examples earlier. The only changes are in the following HTTP headers:
Connection will have the value close instead of keep-alive, and Accept-Language
is changed from English to Dutch. It will get id ’1’ as ’0’ is already taken by the
request added earlier. All of this can be done by adding the following entry to this
JSON file, as shown in listing 5.

C.2 How to compose a batch of HTTP requests?

In this section, we will show how to add stored HTTP requests to a batch. A batch
is a collection of requests that are sent with several individually defined settings.
The request can be sent after a specific delay (in ms) from the start of sending the
batch, and it can be sent multiple times in parallel and in sequence. This provides
for almost unlimited options to prepare combinations of requests to trigger race con-
ditions.

168 APPENDIX C. COMPURACER TOOLSET – MANUAL

1 "1": {
2 "body": "",
3 "headers": {
4 "Accept": "application/json, text/javascript, */*; q=0.01",
5 "Accept-Encoding": "gzip, deflate",
6 "Accept-Language": "nl-NL,nl;q=0.5",
7 "Connection": "close",
8 "Content-Length": "0",
9 "Host": "127.0.0.1:5000",

10 "Referer": "http://127.0.0.1:5000/",
11 "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.13;

rv:65.0) Gecko/20100101 Firefox/65.0",↪→

12 "X-Requested-With": "XMLHttpRequest"
13 },
14 "method": "POST",
15 "timestamp": "2019-03-21 18:01:43.019910",
16 "url": "http://127.0.0.1:5000/redeem/very_insecure/COUPON1",
17 "id": "1"
18 },

Listing 5: Adding a request manually to the CompuRacer Core state file: ’state.json’

Batches can be created from the CLI, and be filled with requests manually or au-
tomatically based on newly added requests. Batches that have been exported can
also be imported back into the tool. Finally, batches can be added manually using
JSON files similar to how requests were added. The tester can list all stored batches
using the first command below. The second command can be used to remove one
or more batches (all ids between the first and second id) from the complete list of
batches. The third command is used to remove a request from the current batch by
id and delay:

racer> batches (bss)
racer> rm batches (bss) [first batch id] [last batch id]
racer> rm [request id] [delay]

C.2.1 Creating it manually and adding requests

The first option is to add a batch and its requests via the CLI. We create a batch
with the name voucher_redeem_single_very_insecure using the following com-
mand:

voucher_redeem_single_very_insecure

C.2. HOW TO COMPOSE A BATCH OF HTTP REQUESTS? 169

racer> add batch (bss) <batch name >

This does not only create a batch, but it also makes it our ’current batch’. This is
the one specific batch that is selected to be edited, viewed and sent easily. Access
to other batches requires more effort (longer command, and requires you to provide
the batch id) and these batches cannot be edited. The current batch is marked in
the listing of all batches. The current batch can be changed using the first command
below. The new batch does not hold any requests yet. We can add the two requests
from the previous section with ids ’0’ and ’1’, no delay, 5x parallel and no sequential
duplication using the second command. Finally, the contents of the current batch
can be shown using the third command:

racer> set curr <batch id >
racer>

add <request id > [delay] [num parallel] [num sequential]
racer> cont

Figure C.6 shows the whole process of creating a batch, adding requests to the
batch and listing the contents.

Figure C.6: The figure shows creating a new batch via the CLI, adding two requests and showing
the contents.

170 APPENDIX C. COMPURACER TOOLSET – MANUAL

C.2.2 Creating a batch using the automated modes

The CompuRacer Core can be set to three different action modes that control whether
to create batches automatically when a request is added to the Core via the REST
server. The tester can set the mode using the first command below and change the
mode settings using the second command:

racer> mode [on/curr/off]
racer> set mode [num parallel] [num sequential]

Next, we will explain in detail how every mode influences the behaviour of the Core
after adding requests.

• On – In this mode, all requests that are received within a 3-second interval
together will be added to a special batch with the name ’Imm’. The mode
uses its own sequential and parallel duplication settings to add the requests.
Then, the batch is sent automatically. If the batch already exists, its contents
and results are overwritten. Note that this batch can only be viewed to avoid
interference and race conditions, but not be altered or sent by the user himself.
If more control is required or the user wants to preserve the contents, it must
be copied to a new user-controlled batch. It is useful to test forwarded requests
without requiring any user interaction quickly.

• Curr – In this mode, all requests that are received are added to the current
batch. It uses the same sequential, and parallel duplication settings as the ’on’
mode does. In contrast to the ’on’ mode, will not send the batch automatically.
As the normal flow of activities always includes creating a batch and adding
stored requests, this mode removes the second step and makes the process
more user-friendly.

• Off – In this mode, no additional action will be taken when a request is re-
ceived.

Note: although duplicate requests will not be added to the total request list, they will
trigger the mode actions with the current request as an argument.

C.2.3 Add it manually using the correct JSON format

In the state/batches/ folder, all batches of the Core are stored in their own JSON
file. These batches are only loaded at startup, so after adding a batch using this
method, the CompuRacer Core must be restarted for it to take effect.

C.2. HOW TO COMPOSE A BATCH OF HTTP REQUESTS? 171

Example Let us say we want to add a batch called ’get_voucher_page’ that only
contains the GET request for the main voucher page. This GET request has id ’1’.
Finally, it should be sent after a delay of 100ms for five times in parallel and two
times sequentially. This can be done by adding a JSON file with contents, as shown
in listing 6. The other keys in the batch JSON file are used for the batch-specific
settings:

• allow_redirects - if this value is true, when the batch is sent, it will follow
redirect (302) HTTP responses.

• custom_comparing - this would contain a dictionary of HTTP headers that
should be ignored or be compared differently when making result groups. Re-
sult groups are explained later.

• results - this would contain the results when the batch has been sent.

1 {
2 "name": "get_voucher_page",
3 "items": [
4 {
5 "key": ["1", 100],
6 "value": [5, 2]
7 }
8],
9 "allow_redirects": false,

10 "custom_comparing": null,
11 "results": null
12 }

Listing 6: JSON file of a CompuRacer batch: ’get_voucher_page.json’

C.2.4 Import an exported batch

The final option to get batches into the Core is to import already exported batches.
Just like all other storage, these are JSON files as well. By default, they are stored
in the CompuRacer_Core/exp_files/ folder. Contrary to the files that are used to
store the internal batches, exported batches contain an extra key requests which
contains the contents of all requests that are referenced in the batch contents or
the results. The requests in the contents and the results might be different when
requests are added to a batch after it has been sent. Adding the requests makes

172 APPENDIX C. COMPURACER TOOLSET – MANUAL

it possible to import and use a batch just like it was meant to be, even when the
matching requests have been changed or removed from the Core in the meantime.
Only unique requests are imported back again. As requests contain a unique id,
when a request is imported, it gets a new id that is the highest request id plus one.
The tester can export one or more batches (all ids between the first and second id)
using the following command:

racer> exp batches (bss) [first batch id] [last batch id]

Importing a batch requires a slightly different approach. As exported batches can
be stored all over the system, it does not require any arguments, but it opens a file-
picker dialog to the default storage location. The tester can select one or more valid
exported-batch files and import them back. The tester can import a batch using the
following command:

racer> imp batches (bss)

Example As we have not exported a batch before, we should first do this. We
export the only batch that is currently in storage voucher_redeem_single_very_
insecure with id ’0’. Then, we remove the batch and one of its two requests from the
Core itself and then import the exported batch again. It is shown that it only imports
one of the requests again. This request gets the id ’5’ as the highest request id used
to be ’4’. The process can be seen in figure C.7. The import file-picker dialog is not
shown.

C.3 How to send a batch and interpret the results?

In this section, we will show how to send the batches of requests and how to view
and evaluate the results. Sending a batch is rather straightforward. There are two
ways to do it. We can send a self-created batch, or we can allow the immediate
mode to send the automatically created batch. The effects on the target web app
should be the same. By using the following command, we can send a batch:

voucher_redeem_single_very_insecure
voucher_redeem_single_very_insecure

C.3. HOW TO SEND A BATCH AND INTERPRET THE RESULTS? 173

Figure C.7: The figure shows exporting the ’voucher_redeem_single_very_insecure’ batch, remov-
ing the batch and one of its requests and importing it again.

racer> go [batch id]

After sending the batch, we get several responses back. The CompuRacer Core
does not just print all these results as it will often be very much and not very informa-
tive. As a tester, we want to be able to quickly spot and investigate anomalies in the
responses that indicate a race condition was triggered in the target web app. In or-
der to make this possible, the results of different request are separated. Next to this,
for every request, the results that are shown can be divided into three categories:
overview tables, a summary of the grouped responses, and the groups themselves.
We can view the results of the current batch using the following command:

racer> res [show overview tables] [show grouped responses]

C.3.1 Overview tables

Every overview table checks just one characteristic of the responses and counts ev-
ery different value. Currently, the following four characteristics are checked: the sta-

174 APPENDIX C. COMPURACER TOOLSET – MANUAL

tus codes, body lengths (bytes), numbers of header and the header lengths (bytes).
If the table has just one row, all responses are the same regarding the metric. Oth-
erwise, it might be interesting to investigate it further.

For instance, if the status code is 403 (forbidden) for 18 packets and 302 (redirect)
for two packets, then we know that something was allowed for two times. If that
something is a function that should only be used once, we might have found a race
condition.

C.3.2 Grouped responses

All responses are grouped based on the headers and the body. Some time and
tag headers that are likely to change between responses, but are not informative,
are ignored. First, it is shown how much groups we have. If this is more than one
group (everything is the same) and less than the total number of parallel requests
(everything is different), some responses are equal and might be interesting. Next
to this, the fields that always match between responses, the fields that never match
and the ignored fields are listed.

The always- and never-matched fields are especially interesting when we want to be
more/less strict about some differences to create more/fewer groups. The grouping
behaviour can be changed for the current batch by ignoring more or fewer fields in
the grouping process. This can be altered at runtime. For instance, when we get too
many groups, we might want to add a never-matched field to the ignore list. This can
be done using the first command below. Viewing the ignored fields for the current
batch can be done using the second command. Finally, resetting the ignored fields
to the default is one using the third command:

racer> add ignore (ign) [field name (case sensitive)]
racer> get ignore (ign)
racer> res ignore (ign)

For every change to the ignored fields, the groups will be re-created automatically.
When something seems off regarding the grouping after a crash, or randomly, the
tester can run the following command to re-create the groups for all batches. For
many batches, this could take some time:

racer> regroup batches (regr bss)

C.3. HOW TO SEND A BATCH AND INTERPRET THE RESULTS? 175

Example of sending a batch

As an example, we will send the batch created earlier called voucher_redeem_
single_very_insecure to the server of the test app. The batch is supposed to
trigger the following TOCTOU race condition and redeem more vouchers than avail-
able.

The race would work as follows. When a user tries to redeem a voucher using the
’very insecure’ method, it uses two transactions instead of one and also sleeps for
3 seconds between the two transactions. One transaction to check whether the
voucher can still be used and one transaction to reduce the available amount by
one. In this case, we use a ’single’ voucher that can be used only once. When
the two transactions are executed in parallel with two other transactions, they might
both read a voucher-availability of 1 and reduce this to 0, while this should not be
possible. The test app will send the left-over amount back to the client, so a race
condition should be easy to spot. If we get more than one success response with an
amount of 1, a race condition has occurred.

It is probable that all five parallel requests of the batch will succeed to redeem the
single-use voucher as we have a huge race window of 3 seconds. Therefore, for
this example, we first change the parallel duplication of the request in the batch to
10 requests using the command below:

racer> update (upd) [request id] [delay] [num parallel]
↪→ [num sequential]

Now, we send the batch. The required commands and the results of sending the
batch are shown in figure C.8. If we would want to view these results again, we
use the command as shown before, where both boolean arguments are set to
’true’:

racer> res t t

In figure C.8, it shows that the tool has sent the ten requests and 20 seconds later
(indicated by the send and end time), the results are back. These 20 seconds are
not coincidental. This is the timeout that is used by default. Two responses were not
back in time to meet this requirement and have been ignored in the results.

The results show three groups. One with six success responses (200), one not-
found response (404) and two internal server errors (500). From this, we can con-
clude that we were successful in triggering the voucher-redeem race: the single-use

voucher_redeem_single_very_insecure
voucher_redeem_single_very_insecure

176 APPENDIX C. COMPURACER TOOLSET – MANUAL

voucher was redeemed six times.

C.3. HOW TO SEND A BATCH AND INTERPRET THE RESULTS? 177

Figure C.8: The figure shows sending of the ’voucher_redeem_single_very_insecure’ batch, and
getting the results.

178 APPENDIX C. COMPURACER TOOLSET – MANUAL

If there were many equivalent result-groups, it would have been advantageous to
automatically compare the contents just like we compared two requests figure C.4.
Comparing two result groups can be done using the following command:

racer> comp [result id 1] [result id 2]

Figure C.9 shows the results of comparing the first group ’0’ of success responses
with the second group ’1’ of a not-found response. It highlights the response code
difference, the difference in body content, send and receive times (omitted) and
finally indicates that that the Cache-Control header is missing from the second result
group.

Figure C.9: The figure shows the comparison of the first two result groups after sending the
’voucher_redeem_single_very_insecure’ batch.

Appendix D

Toolset performance result
histograms

In this appendix, the histograms of the results in section 6.2 are listed. These
histograms are rather large, and therefore, we have decided only include only the
coloured summary histograms in the referenced section and moved the composite
figures to this appendix.

D.1 Metric 1 - Test 1 - Local time-difference

For all figures in this section, the y-axis shows the percentage of requests and the
x-axis the time-difference using a log10 scale. A lower time-difference is likely to
result in more race conditions, so lower is better. The calculation of the mean (and
standard deviation between brackets), median, the first and third percentile of the
data is shown as well (in regular base 10).

179

180 APPENDIX D. TOOLSET PERFORMANCE RESULT HISTOGRAMS

Figure D.1: The figure shows the histograms of the local time-differences between requests of all
tools when a local server is used.

Figure D.2: The figure shows the histograms of the local time-differences between requests of all
tools when the remote server is used.

D.1. METRIC 1 - TEST 1 - LOCAL TIME-DIFFERENCE 181

Figure D.3: The figure shows the histograms of the local time-differences between requests of all
tools when a normal proxy is used.

Figure D.4: The figure shows the histograms of the local time-differences between requests of all
tools when the slow proxy is used.

182 APPENDIX D. TOOLSET PERFORMANCE RESULT HISTOGRAMS

D.2 Metric 1 - Test 2 - Application time-difference

For all figures in this section, the y-axis shows the percentage of requests and the
x-axis the time-difference using a log10 scale. A lower time-difference is likely to
result in more race conditions, so lower is better. The calculation of the mean (and
standard deviation between brackets), median, the first and third percentile of the
data is shown as well (in regular base 10).

Figure D.5: The figure shows the histograms of the application time-differences between requests
of all tools when a local server is used.

D.2. METRIC 1 - TEST 2 - APPLICATION TIME-DIFFERENCE 183

Figure D.6: The figure shows the histograms of the application time-differences between requests
of all tools when the remote server is used.

Figure D.7: The figure shows the histograms of the application time-differences between requests
of all tools when the normal proxy is used.

184 APPENDIX D. TOOLSET PERFORMANCE RESULT HISTOGRAMS

Figure D.8: The figure shows the histograms of the application time-differences between requests
of all tools when the slow proxy is used.

D.3 Metric 2 - Test 1 - Voucher usage ratio

For all figures in this section, the y-axis shows the percentage of the 15 tests and the
x-axis shows the total number of success codes divided by the number of vouchers
used. A low number of vouchers used while the same number of success codes are
returned indicates that more race conditions are triggered. Therefore, a higher value
is better. The calculation of the mean (and standard deviation between brackets),
median, the first and third percentile of the data is shown as well (in regular base
10).

D.3. METRIC 2 - TEST 1 - VOUCHER USAGE RATIO 185

Figure D.9: The figure shows the histograms of the voucher usage ratio of all tools when the local
server is used.

Figure D.10: The figure shows the histograms of the voucher usage ratio of all tools when the
remote server is used.

186 APPENDIX D. TOOLSET PERFORMANCE RESULT HISTOGRAMS

Figure D.11: The figure shows the histograms of the voucher usage ratio of all tools when the
normal proxy server is used.

Figure D.12: The figure shows the histograms of the voucher usage ratio of all tools when the slow
proxy is used.

D.4. METRIC 2 - TEST 2 - NUMBER OF SUCCESS CODES 187

D.4 Metric 2 - Test 2 - Number of success codes

For all figures in this section, the y-axis shows the percentage of the 15 tests and the
x-axis shows the total number of success codes that were returned. A high number
of success codes indicates that more race conditions could have occurred (as suc-
cessful voucher redemption returns a success-code). A higher value also indicates
that the attack was more stealthy as fewer errors occurred at the server. Therefore,
a higher value is better. The calculation of the mean (and standard deviation be-
tween brackets), median, the first and third percentile of the data is shown as well
(in regular base 10).

Figure D.13: The figure shows the histograms of the number of success codes of all tools when
the local server is used.

188 APPENDIX D. TOOLSET PERFORMANCE RESULT HISTOGRAMS

Figure D.14: The figure shows the histograms of the number of success codes of all tools when
the remote server is used.

Figure D.15: The figure shows the histograms of the number of success codes of all tools when
the normal proxy is used.

D.4. METRIC 2 - TEST 2 - NUMBER OF SUCCESS CODES 189

Figure D.16: The figure shows the histograms of the number of success codes of all tools when
the slow proxy is used.

190 APPENDIX D. TOOLSET PERFORMANCE RESULT HISTOGRAMS

Appendix E

Responsible disclosure reports

In this appendix, the responsible disclosure reports regarding a race condition in the
voucher redemption of two e-commerce webshop platforms: (A) and

(B) are included. The first report (A) was sent to the security team of
the affected e-commerce platform and the second report (B) was submitted to the
responsible disclosure page on HackerOne of the company behind the platform1.
Both reports were made in the name of Computest, the commissioner of the thesis.
For both reports, at least the following parts were included: a summary, estimation
of impact, setup regarding sources and versions used, guide on how to reproduce,
estimation of the root issue and possible solutions.

Note about censored content As the issues were not solved before the publica-
tion date of the thesis, the details about the affected companies, software platforms
and specific files in which the issues occur have been censored. For this reason,
we were also not yet able to link to a published report on HackerOne. When the
information is allowed to be disclosed, an uncensored version of this chapter will be
added as an addendum on the official institutional page of the thesis2.

Dear security team at (A), March 6th, 2019

As agreed upon, we have not encrypted this message.

Summary During research conducted for a Masters Thesis, we encountered an
issue with the built-in cart rules of the . Due to a race condition in

1This is where the link to the published HackerOne report will be.
2This page can be found at: https://fmt.ewi.utwente.nl/education/master/322/

191

https://fmt.ewi.utwente.nl/education/master/322/

192 APPENDIX E. RESPONSIBLE DISCLOSURE REPORTS

the check whether a cart rule (discount percentage, or amount) has already been
used, we can redeem them more times than allowed. This results in multiple
successful orders that all use the same single-use cart rule, which should not be
possible.

Impact Any user can buy and use his gift cards and discount codes multiple
times at every webshop that uses the CMS. Although the issue is
rather obscure and exploitation not completely stealthy, with a possibly big finan-
cial impact and limited mitigation options, the risk of exploitation is still deemed
rather large.

Setup We used a fresh install of version on a Docker container down-
loaded from [1]. We did not change any default setting and used the sample shop
contents when placing an order.

How to reproduce

1. Create a new cart rule (percentage or amount) from the
back-office which can only be used once in total:

2. Add the new cart rule to a single shopping cart with at least one item to
apply the discount. Go through the order process pages up to the last page
and select ’Pay by bank wire’*.

3. Press the ’Order with obligation to pay’ button and capture the HTTP POST
request that places the order before it arrives at the server-side.

4. Then, duplicate the request ten times (for instance) and send the requests
at once to the server.

By using a self-developed tool, we were able to perform the last two steps. For
a quick reproduction, we recommend using the simple open-source tool called
Sakurity Racer [2].

Source of the issue The source of the issue is a Time Of Check - Time Of
Use (TOCTOU) bug that occurs between the check: "Can I use this discount?"
and actually applying the discount to the order and reducing the available number
of discounts. Currently, this is not an atomic (uninterruptible) action, and when

193

the server runs at least two processes to serve the clients, this results in race
conditions.

It seems that both when adding a cart rule to a cart [3], and when submitting an
order [4], using the function in .php, it is checked whether
the voucher can actually be used. Among other things, it checks whether the left-
over usage amount is larger than zero and that this user has not used the rule
more often than allowed [5]. After this check, at a final stage in the order process
and for every used voucher, its discount is applied, and the available amount is
reduced by one [6].

Possible solutions We have to make sure that the check and application is
one atomic (uninterruptible) action. A solution would be to use a ’SELECT FOR
UPDATE’ SQL statement when checking the availability of a cart rule. This locks
the selected part of the database until the update (decrementing the available
amount) is carried out.

Further steps For any questions regarding the disclosure, please do not
hesitate to contact us. We maintain a 90-day disclosure deadline policy after
which we will make the security report public. Next to this, we would like to be
kept posted about the progress of verifying and solving this issue.

Best regards, Computest

* We are not sure whether other payment modules like credit cards or PayPal also show
the issue.
[1]:
[2]: https://github.com/sakurity/racer
[3]: at line 257 in function in controllers/ .php
[4]: at line 300 in function in classes/ .php
[5]: around line 639 and 658 in .php
[6]: at line 1172 in function in classes/ .php

https://github.com/sakurity/racer

194 APPENDIX E. RESPONSIBLE DISCLOSURE REPORTS

Dear security team at (B), March 12th, 2019

Summary An issue was found in the voucher functionality of the
. Due to a race condition in checking whether a

voucher has already been used, we were able to redeem a voucher more times
than allowed consistently. This results in multiple successful orders that all use
the same single-use voucher, which should not be possible.

Impact The security impact is a financial and possibly reputational loss for a
Wordpress webshop that runs on the plugin. The attacker only
needs to buy one gift card or voucher and create multiple accounts. Then, he is
able to use the voucher once for every account.

Setup We used a fresh install of version of and version
of on a Docker container setup downloaded from the dockerhub [1].
It uses an Apache 2 web server and a MariaDB database. We then updated the

plugin to the latest version , installed the theme
and used the sample shop contents from [2]. The server is ran
and tested locally on a laptop (1).

Discovery process In an older version of , we were able
to exploit this issue within a single user account by submitting an order with an
attached voucher multiple times in parallel. This allowed for using a single voucher
up to 10 times or more. In the newest version , submitting multiple orders in
parallel was no longer possible. However, when we create multiple accounts and
use the same single-use voucher in placing an order with all accounts, we could
still use the voucher multiple times.

How to reproduce

1. Either buy a gift card or as an admin of the web app, create a single-use
voucher in the back-office:

• Go to:

• Fill in a coupon code, select any discount type and an amount > 0.

195

• Finally, in "Usage limits", fill in "Usage limit per coupon" = 1 and "Usage
limit per user" = 1.

2. Go to the target webshop and create two accounts (2). Using two different
browsers or the incognito mode of a browser, log in to both accounts.

3. For both accounts, add at least one product to the shopping cart, go to
the checkout, add the newly created single-use voucher and fill in the order
details.

4. Click ’Place order’ for both accounts and capture the two HTTP POST re-
quests that the browser sends to place the order on the server.

5. Send the two POST requests in parallel to the server.

6. Go to in the back-office to verify the single-use
voucher has been used two times.

By using a self-developed tool, we were able to perform the last two steps. This
tool is not yet ready to be open-sourced. For a quick reproduction, we recommend
using the simple open-source tool called Sakurity Racer [3].

Source of the issue The source of the issue is probably a Time Of Check - Time
Of Use (TOCTOU) bug that occurs between the check: "Can I use this discount?"
and actually applying the discount to the order and reducing the number of avail-
able discounts. Currently, this is not an atomic (uninterruptible) action, and when
the server runs at least two processes to serve the clients, this results in race
conditions. The same issue also makes it possible to order more items than in
stock (when backorders are disallowed) using two orders from different accounts
with the cumulative number of items that is more than the stock quantity. This
shows that there is a general atomicity issue in processing orders.

Possible solutions We have to make sure that the check and application of a
voucher is one atomic (uninterruptible) action. A solution would be to use a ’SE-
LECT FOR UPDATE’ SQL statement when checking the availability of a voucher.
This locks the selected part of the database until the update (decrementing the
available amount) is carried out.

Related minor issue Another race condition is found in the change email func-
tionality of the accounts. When creating accounts, we cannot use an email ad-
dress of an existing account. Even when two accounts are created in parallel,

196 APPENDIX E. RESPONSIBLE DISCLOSURE REPORTS

this fails. However, when two existing accounts (with different email addresses)
change their email address to the same new value in parallel. This works. It
causes the second account in the database (by ID/creation date) to no longer be
accessible. Only the first account can now be used to log in until he changes his
email address again. Although this issue cannot be exploited, it is still a bug.
(1) We are aware that getting requests to arrive in parallel at a locally running web server is easier
than when the web server is, for instance, on another continent. In that case, the unpredictable
latency is massive. However, as most web apps are currently run on large hosting providers like
Azure or AWS, any attacker could just rent a small machine in the same hosting location and at-
tack from there reducing the latency significantly.
(2): If the webshop only allows for creating accounts when placing an order, skip this step and
create the two accounts when placing the orders.
[1]:
[2]:
[3]: https://github.com/sakurity/racer

197

	List of Figures
	List of Tables
	List of Listings
	List of Acronyms
	Introduction
	Problem description & motivation
	Importance of secure web apps
	Danger of race conditions explained
	Difficulties in testing for race conditions
	Overview of current web app testing methods
	Classical race conditions tests for single-tier applications

	Research questions and methodology
	Contributions
	Commissioner
	Structure of the work

	Background
	Race conditions
	Web applications
	Structure
	Communication
	Technologies

	Software testing
	Essential software testing dimensions
	Security testing
	Location of race condition testing

	State of the art
	Client-side race conditions
	Detection of server-side race conditions
	Published work
	Articles and blogs
	Open source tools
	Testing the open source tools

	Creating a systematic method for web app testing
	Definition of a race condition
	Development of methodology
	Map website functionality
	Functionality to race conditions
	Select HTTP requests
	Send HTTP requests
	Evaluate attack

	Conclusions

	Developing the CompuRacer toolset
	Requirements
	Gathering of HTTP requests
	Composing and sending of HTTP requests
	Handling of HTTP responses

	Design
	Core
	Extensions

	Implementation
	Core - Main class
	Core - REST server
	Core - CLI
	Core - Batch
	Core - Async Batch sender
	Burp extension
	Browser extensions

	Conclusions

	Evaluation of toolset and testing methodology
	Evaluation - Toolset functionality & usability
	Definition of metrics and scores
	Rating the tools according to metrics
	Conclusions

	Evaluation - Toolset performance
	Definition of metrics and scores
	Performance test setup
	Results
	Conclusions

	Evaluation - Testing methodology
	Tested web apps
	Test results
	Conclusions

	Conclusions
	Future work
	Methodology improvements
	Toolset improvements
	Scientific research challenges
	Engineering improvements

	Evaluation improvements
	Performance evaluation
	Practical evaluation

	References
	Appendices
	Race condition testing tools sources
	CompuRacer toolset – README
	CompuRacer toolset – Manual
	How to add HTTP requests of interest to the tool?
	Send it from the browser using the Firefox extension
	Send it from the Burp Suite using the Burp extension
	Add it manually using the correct JSON format

	How to compose a batch of HTTP requests?
	Creating it manually and adding requests
	Creating a batch using the automated modes
	Add it manually using the correct JSON format
	Import an exported batch

	How to send a batch and interpret the results?
	Overview tables
	Grouped responses

	Toolset performance result histograms
	Metric 1 - Test 1 - Local time-difference
	Metric 1 - Test 2 - Application time-difference
	Metric 2 - Test 1 - Voucher usage ratio
	Metric 2 - Test 2 - Number of success codes

	Responsible disclosure reports

