
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Extending Support for
Axiomatic Data Types

in VerCors

Ömer Faruk Oğuzhan Şakar
Student Number: 1560158

o.f.o.sakar@student.utwente.nl

Master’s Thesis
April 2020

Supervisors:
prof. dr. M. Huisman

dr. R. E. Monti
Exam Committee:

prof. dr. M. Huisman
dr. M. B. Van Riemsdijk

Formal Methods and Tools Group
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Abstract

VerCors is a static verifier of concurrent/parallel programs developed at the University of Twente.
The software that is verified with VerCors (and similar tools) use common data types such as
lists or sets. The behavior of these data types is modeled in VerCors using axiomatic data
types (ADTs). VerCors currently supports axiomatic data types such as sequences/lists, sets,
and bags. To extend the support for ADTs, a list of features to add to VerCors was compiled
by using input from end-users. An implementation-level view of VerCors is given with general
approaches to implementing a feature in VerCors. For each feature in this list a definition is
given, its encoding into Viper (the back end of VerCors) is discussed and its implementation
using the general approaches is explained.

Contents

1 Introduction 4

2 Background 8
2.1 VerCors . 8

2.1.1 The intermediate language: COL . 9
2.1.2 The input languages . 9
2.1.3 The transformations: Passes . 10
2.1.4 The final transformation: From COL to back end language 11
2.1.5 The back end: Viper . 12
2.1.6 Silver . 12
2.1.7 Natively supported ADTs in Viper . 15

2.2 Natively Supported ADTs in VerCors . 16
2.2.1 Sequences . 16
2.2.2 Sets and bags . 16

2.3 Triggers . 17
2.3.1 Categorization of trigger . 18
2.3.2 Axiom Profiler . 19

3 Functionality to Add to VerCors/PVL 23
3.1 Survey Questions . 23
3.2 Survey Results . 24
3.3 List of Features to Implement . 25

4 Rephrasing the Research Questions 26

5 Implementation-level View of VerCors 28
5.1 The Initial Transformation: From Input Language to a COL AST 28
5.2 COL . 30
5.3 Passes . 31
5.4 COL AST to Viper . 33

6 Approaches to Implementing Functionality 35
6.1 Syntactic Sugar . 35

6.1.1 Pure syntactic sugar . 36
6.1.2 Transformed syntactic sugar . 36

6.2 Mapping Directly to Back End . 39
6.3 Function Generation . 40
6.4 Domains . 41

1

7 Implementation-focused Features 44
7.1 Checking if a Sequence is Empty . 45
7.2 Adding Single Values to Sequences . 47
7.3 Taking Ranges from Sequences . 50
7.4 Removing Values from Sequences by Index . 57
7.5 Simple Collection Constructors . 61
7.6 Subset Notation . 68

8 Set Comprehension 70
8.1 Description and Syntax . 70
8.2 Design . 71
8.3 Implementation . 73
8.4 Limitations and Design Choices . 76

8.4.1 Difficulties with proving simple properties 76
8.4.2 Scoping issues . 77
8.4.3 Classes must have a domain . 78

8.5 Examples using Set Comprehension . 78

9 Maps 79
9.1 Description and Syntax . 79
9.2 The Silver Equivalent of Dafny’s Map Axiomatization 81
9.3 Implementation . 84
9.4 Evaluation of the Implementation . 87

9.4.1 The chosen triggers . 87
9.4.2 Instantiation graphs . 88

9.5 Examples using Maps . 91

10 Generics 92
10.1 Description and Syntax . 92
10.2 Design . 93

10.2.1 Monomorphizing generic classes and generic functions 93
10.2.2 The verification of the generic class . 94
10.2.3 Concrete example . 94

10.3 Implementation . 97
10.3.1 Common part of the implementation . 97
10.3.2 Generic classes . 97
10.3.3 Generic functions . 98
10.3.4 Determine mapping for a generic function. 98

10.4 Limitations . 99
10.4.1 No support for generic methods . 99
10.4.2 No static functions in generic classes . 100

10.5 Future Improvements . 100
10.6 Examples using Generics . 101

11 Conclusion 103
11.1 Summary of Contributions . 105
11.2 Future Work . 106

A Survey Results 107

2

B Isabelle Proof for the Proper Subset Operator 109

C Axiomatization of Maps 110

D A Large Example using Maps 117

E Instantiation Graphs for the Methods in Listing D.1 120

3

Chapter 1

Introduction

The importance of software verification is stressed in numerous papers and it has been the
motivation for a wide variety of research. Different techniques have been researched and realized
in different software verification tools. All these different techniques combined give the user of
these tools the ability to verify properties on their software projects such as functional correctness
(e.g Dafny [1]), data-race freedom (e.g. GPUVerify [2]), loop termination (e.g. Frama-C [3]) and
memory management (e.g. VerCors [4]). Instead of focusing on a specific technique of a tool or
a case study, let us focus more on the tools themselves and how they are used.

In general, it could be said about any tool (be it software or hardware) that the initial goals
for that tool are relatively simple and robust. The tool meets the users’ requirements and can
solve most problems the user has. More complex features can be realized using existing features
and so self-defined functionality might come into existence. However there is one large caveat,
the more complex the problem at hand becomes, the more experienced hands are needed to
utilize these simple tools. Every user needs some experience to work with any tool, however, the
threshold of becoming an expert user of the tool can be too high.

With time, tools expand on their initial feature set in the form of major/minor releases. The
new features contribute to the tools in a variety of ways. Expressiveness of code is one of these
ways and can come in many forms, for instance in the form of entirely new features or simpler or
more complex user interfaces of existing features. Expressiveness gives the user choice in tools
to tackle their problem with and if done correctly the tools become more refined to aid them on
their journey.

In the context of software verification, these tools are software projects by which software
is verified. There are a plethora of these tools of which Dafny, VeriFast [5] and Boogie [6] are
just some popular examples. These tools (in general) are most often used by experts referred to
as verification engineers. The verification engineers have to come from somewhere, or phrased
differently, an amateur user will have to start somewhere to become an expert. To both lower
the threshold for new users and give expert users more refined tools, a software verification tool
needs to develop with a plethora of users in mind.

For this thesis, we take a look at the verification tool VerCors, a tool for the verification of
concurrent and parallel software written in programming languages such as Java, C and its own
language PVL. The specification language of VerCors is based on JML with permission-based
separation logic for concurrent programs [7].

VerCors uses a layered approach to its implementation of functionality by processing the
input file and encoding/translating it in an intermediate language COL. COL is then encod-

4

ed/translated into the back end Viper for verification. Viper [8] is a toolchain used to verify
concurrent programs (see Chapter 2 for more detail). VerCors supports a variety of features in
the form of techniques, data types and flow constructs. This thesis focuses on a specific set of
these features namely the axiomatic data types supported by VerCors as expressed in PVL.

Axiomatic data types (ADTs) are data structures that are defined using axioms. ADTs
express the behavior of a data structure instead of its exact implementation. From a user-
perspective, these ADTs behave the same as data structures used in programming languages
such as Java’s lists and Python’s sets.

ADTs are used by different software verifiers (e.g. Dafny, Viper, VeriFast) and are interesting
in this context because they abstract from the concrete implementation of a data structure. For
example, a sequence of train stops can be modeled as a Java list (i.e. a data structure). This
Java list has an implementation with concrete steps on how it behaves. When proving a property
of that list (e.g. the trains stops when it should) the implementation of this list is not necessarily
important, it is the behavior of the list that is important. Thus the behavior of a list is expressed
axiomatically and the resulting ADT is used to specify properties on the Java list.

To make ADTs more useful, basic operations are natively supported, giving the user a robust
base to work with (e.g. such as the concatenation of two sequences or the difference between two
sets). Although users can define their own features on ADTs using these basic operations, there
are some shortcomings to the support of ADTs in VerCors:

• Only a handful of ADTs are supported, namely sequences, sets and bags. In addition to
these ADTs, software projects also use more frequently-used data structures such as maps
and deques. These ADTs can be supported to verify a wider range of problems.

• The set of basic operations on the supported ADTs is limited. For example, the operations
on a sequence that are currently supported are the comparison of sequences, concatenation
of two sequences, getting the head/tail of a sequence and retrieving the element at some
index. Using these basic operations, other operations can be defined by the users, however
compared to Java’s or Python’s operations on lists, this set of basic operations can be
expanded upon.

• When defining some general-purpose functionality, that functionality is defined for a specific
type. For example, if we have some function for appending a single value to a sequence of
integers, we have to redefine it for a sequence of fractions. This results in code duplication
(in ghost code or actual functions). This can be solved by allowing abstract/generics
functions.

These shortcomings are solved in this thesis by focusing on two main questions:

RQ1 What ADTs or functionality on ADTs is desired from VerCors/PVL?

RQ2 How can the architecture of VerCors and the back end Viper support the functionality of
RQ1?

The following approach is taken to answer these questions. Different resources are consulted
and a survey is held to get feedback from users. RQ1 is answered by extracting a list of features
from these sources (see Chapter 3). With this concrete list, RQ2 is made concrete for each
feature in the list (see Chapter 4). These individual concrete questions are then answered by
looking at the architecture of VerCors (see Chapter 5) and discussing how this feature can be
implemented using the architecture of VerCors (see Chapter 6 and on).

Normally, the resulting features would be evaluated by performing a user study to determine
whether the mentioned shortcomings were solved. Unfortunately, a user study was not performed

5

due to a lack of participants with different levels of experience. It would be optimal to have
both experts that have used VerCors and participants that have no (or little) experience with
VerCors. The first group of participants would mainly consist of VerCors developers. The
second group is more difficult to find. It was considered to have students participate after their
own course on software verification. This idea could not be realized since the time allocated for
this thesis did not overlap enough with the timeslot students with basic knowledge of software
verification were available.

The main challenge addressed by this thesis is RQ2. After determining a list of features to
implement, this question can be made concrete for each feature, however the implementation of
said feature or its encoding into Viper is not always trivial. The more complex a specific feature
gets, the less straightforward it gets to implement it into VerCors (e.g. the COL encoding) and
encode it into Viper (e.g. sound axioms over an ADT). The complexity of implementing a feature
in VerCors is tackled by discussing the architecture of VerCors at an implementation-level and
formalizing general approaches to implement a feature (see Chapters 5 and 6). The complexity
of the encoding into Viper is specific to each feature and is discussed in detail in Chapters 8, 9
and 10.

A chapter roadmap of this thesis is given in Figure 1.1. The relation between the individual
chapters is as follows. Background information on VerCors, its architecture, the back end Viper
and the ADTs supported by VerCors is given in Chapter 2. Next, Chapter 3 answers RQ1 by
consulting different sources, resulting in a list of features to implement. With RQ1 answered, the
research questions are rephrased in Chapter 4 to be more specific to the remaining features to be
implemented. Next, a detailed implementation-level view of VerCors is explained in Chapter 5.
Different approaches to implement a feature in VerCors are described in Chapter 6. The features
to implement are discussed in Chapters 7, 8, 9 and 10. Chapters 8, 9 and 10 are independent
and can be read in any order. Chapter 11 concludes the thesis.

6

Chapter 1
Introduction

Chapter 2
Background

Chapter 3
Functionality to Add to VerCors/PVL

Chapter 4
Rephrasing the Research Questions

Chapter 5
Implementation-level View of VerCors

Chapter 6
Approaches to Implementing Functionality

Chapter 7
Implementation-focused Features

Chapter 8
Set Comprehension

Chapter 9
Maps

Chapter 10
Generics

Chapter 11
Conclusion

Appendix

Figure 1.1: Chapter roadmap for this thesis

7

Chapter 2

Background

In this chapter, background information required for the rest of the thesis is discussed. The
software verification tool VerCors is introduced with a design-level view of its architecture. The
back end Viper is introduced with its language and architecture. Axiomatic data types supported
by VerCors are introduced with a discussion on their semantics. Also in this chapter, triggers
(or patterns) are introduced with a look at the tool Axiom Profiler to analyze them.

2.1 VerCors
At the core of this research is VerCors. VerCors is a tool for static verification of concurrent and
parallel programs developed at the University of Twente [9]. With VerCors, different properties of
software can be proven such as data race freedom [10], memory management [11] and functional
correctness [10].

This research requires implementation work on VerCors, therefore the inner workings of
VerCors are discussed. Figure 2.1 shows a design-level view of the architecture of VerCors taken
from [12]1.

VerCors
Tool

Viper

PassesOpenCL

OpenMP

PVL

Java
COL

Figure 2.1: Design-level view of VerCors

Figure 2.1 shows that VerCors can be split into three parts:

1. (Left side) The translation of an input language to the intermediate language COL.

2. (Middle) Passes that transform the COL language into the COL language.

3. (Right side) The translation of the COL language into the Viper back end.
1It should be noted that some older literature on VerCors, such as [10, 13, 14], represent the VerCors architec-

ture using a (now) outdated figure. Although the architecture of VerCors has not changed drastically, the figures
have become somewhat obsolete.

8

Below a detailed explanation is given of each part, leaving out implementation details such
as class/method names as they are discussed in Chapter 5.

2.1.1 The intermediate language: COL
COL (Common Object Language) is a language used internally by VerCors during all three steps.
It is the intermediary language between the input language and the output language. Since COL
is an intermediary language, it does not require a concrete syntax and only has an abstract
syntax.

COL is expressed as an AST (abstract syntax tree). The nodes in the COL AST represent
different structures supported by VerCors. For example, the addition of two constants 1 and 2
can be expressed as a COL AST (see Figure 2.2).

Operator Add

Constant 1 Constant 2

Figure 2.2: A simplified representation of a COL AST for adding two constants

2.1.2 The input languages
VerCors currently supports several input languages such as Java, OpenMP, OpenCL and VerCors’
own language PVL. The architecture of VerCors has been designed to easily extend VerCors with
new input languages. There are two ingredients to achieve this extendability; First, the COL
language and second ANTLR, a parser generator for structured text or binary files [15]. A parser
is generated for the new input language using ANTLR and the input file is encoded in COL. The
rest of the work in VerCors is independent of the input language.
To support a (new) input language, the following steps are taken in VerCors:

• An ANTLR grammar file is defined for the input language. ANTLR generates a parser from
the grammar file. This step is performed only once, since the parser and accompanying
Java classes are generated beforehand and bundled with VerCors. During development,
VerCors generates a new parser if the grammar changed.

• Using the parser, the input file is converted into a parse tree. This is functionality provided
by ANTLR.

• This parse tree is transformed into a COL AST. This COL AST is the basis for the rest of
the transformations performed by VerCors.

Prototypal Verification Language

PVL (Prototypal Verification Language) is described as a procedural toy language for prototyping
verification features [16]. To be more precise, PVL is a purely prototypal language meaning it
has no runtime environment. This gives the benefit of easily adding new features to PVL and
by extension VerCors without having to implement a compiler or interpreter. PVL is a simple
object-oriented language with verification flow constructs as part of the language (e.g. constructs
to specify preconditions, loop invariant, etc.).

Listing 2.1 shows a simple PVL program. This program consists of a class Incrementer with
a method incrementAllByN. This method takes two arguments: a sequence/list of integers input
and an integer n. Inside the method, a sequence res is created. Using a while loop, we iterate

9

over the input list and append the value plus n to the sequence res. Pre/post conditions and
loop invariant are used to aid the tool to verify the behavior of the program.

Besides the constructs in the example, PVL supports many other constructs. For the rest of
the thesis, PVL syntax is only introduced where necessary. An overview of the syntax of PVL
can be found at [17].

1 class Incrementer {
2 requires n >= 0;
3 ensures |\result| == |input|;
4 ensures (\forall int k; 0 <= k && k < |\result|; \result[k] == input[k]+n);
5 seq<int> incrementAllByN(seq<int> input, int n) {
6 seq<int> res = seq<int> {};
7 int i = 0;
8
9 loop_invariant 0 <= i && i <= |input|;

10 loop_invariant i == |res|;
11 loop_invariant (\forall int k; 0 <= k && k < i; res[k] == input[k]+n);
12 while (i < |input|) {
13 res = res + seq<int> {input[i]+n};
14 i = i + 1;
15 }
16 return res;
17 }
18 }

Listing 2.1: A simple program in PVL

2.1.3 The transformations: Passes
After the initial transformation of the input language to a COL AST, the resulting COL AST
goes through a series of transformations called passes in VerCors. These passes are tree visitors
that aim to transform the COL AST into a new COL AST. Each pass changes parts of the COL
AST with a specific purpose in mind.

For clarity, suppose we have a pass named simplifyMathExpressions. The goal of this pass
is to simplify expressions of the form a + (−b) to a − b where a and b are integers. When this
pass is applied to the current COL AST, the tree is traversed and the combination of the plus
and minus operators is matched and rewritten. Figure 2.3 shows a visual representation of this
pass.

10

Operator +

Integer a Unary operator -

Integer b

(a) Original COL AST, before the pass

Operator -

Integer a Integer b

(b) New COL AST, after the pass

Figure 2.3: An example pass simplifyMathExpressions

2.1.4 The final transformation: From COL to back end language
The final COL AST, which is the result of all the passes, should contain only expressions that
have a mapping to the back end language. The reason for this constraint is that only a subset
of all possible expressions in COL can be mapped to a structure used by the back end. That
subset we refer to as the core language of COL.

The initial COL AST possibly contains expressions that are not part of the core (see Figure
2.4a) and those expressions will be rewritten (by a pass) into expressions that are part of the
core (see Figure 2.4b). After all passes have finished, the final COL AST consists only of core
language expressions (see Figure 2.4c).

The core language
of COL

All possible COL expressions

Initial
COL AST

(a) Initial COL AST.
The initial COL AST is defined

partially by the core and partially by
non-core expression.

The core language
of COL

All possible COL expressions

Updated
COL AST

(b) Updated COL AST.
After a pass, some of the
non-core expressions are
expressed with equivalent
expressions in the core

language.

The core language
of COL

All possible COL expressions

Final
COL AST

(c) Final COL AST.
The final COL AST consists only of
expression of the core language.

Figure 2.4: A visual representation of the COL AST from the initial AST to the final AST

What is and isn’t part of the core of COL is dependent on the chosen back end. The back end
has its own set of functionality that the core of COL can be directly mapped to. For example, if

11

both the chosen back end and PVL have an operator to get the size of a sequence, then the PVL
operator can be mapped to the operator in the back end. In the initial step, the PVL syntax is
transformed into a COL expression with the size/length operator and that operator is directly
mapped to the equivalent operator in the back end.

It can be assumed that for any new, self-defined operator a mapping does not exist and thus
a pass will have to be defined to transform it into something that is mapped. It can also be
assumed that if an operator exists, the operator either directly maps to a back end operator or
a pass rewrites the existing operator into another operator that is mapped to the back end.

2.1.5 The back end: Viper
The main back end of VerCors is Viper. Viper (Verification Infrastructure for Permission-based
Reasoning) is a toolchain built for quick and simple development of other verification tools [8].
A visual representation of the Viper infrastructure can be seen in Figure 2.5 (based on the figure
drawn by [18], p. 11 fig. 3).

Final COL AST

Silver

Carbon

Boogie

Silicon

Z3

verified by either

encoded in

queries queries

Viper

VerCors

translated into

Figure 2.5: The Viper infrastructure

The input language of Viper is called Silver (see below). VerCors transforms the final COL
AST into a Viper problem (in the form of a Silver file), Viper processes the problem using one
of its back ends and encodes it as an SMT problem to be solved by Z3.

Viper supports two back ends named Carbon and Silicon that use different techniques to verify
the problem. Silicon is an automated verifier based on symbolic execution [19] and Carbon is a
verifier based on the generation of verification conditions [20]. When verifying a problem with
VerCors, a flag is set to run Viper with either Carbon or Silicon.

2.1.6 Silver
Silver is an imperative language with methods/functions at top-level. Since the COL AST is
transformed into a Silver AST, all relevant constructs for this thesis are introduced based on the
Viper tutorial2.

Natively supported types

The Viper tutorial lists the types supported by Silver/Viper:
2For a complete overview of Silver constructs, please visit http://viper.ethz.ch/tutorial/.

12

http://viper.ethz.ch/tutorial/

• Int: mathematical integers.

• Bool: Booleans.

• Rational: Mathematical rationals.

• Perm: Permission amounts. 0 or none for no permission, 1 or write for write permissions
and a value in between 0 and 1 for read permission.

• Ref: References to objects.

• Seq[T]: Immutable sequences.

• Set[T]: Immutable sets.

• Multiset[T]: Immutable multisets.

Fields

Objects are modeled in Silver as references. The fields of these objects are declared at top-level.
Listing 2.2 shows an example of two fields myInt and myBool of types Int and Bool respectively.

1 field myInt: Int
2 field myBool: Bool

Listing 2.2: An example of fields in Silver

Every reference (to an object) has all declared fields. A field can be accessed iff there is
sufficient permission for it. Permission to a certain field can be acquired using the accessibility
predicate acc. This predicate is often used in the pre/postcondition of a method to acquire/return
permission to read or write to a field.

Listing 2.3 shows an example using the accessibility predicate. Suppose that we want to
model an object incrementer that has an integer field inc and we want to define a method
named myMethod to increment that field by 1. On the top-level we define the field (line 1) and
the method (lines 3-9) with the incrementer object instance as an argument of type Ref. In the
precondition, write permission for the field inc on the object incrementer is acquired using acc.
The same permission is returned, again, using the accessibility predicate. If sufficient permission
would not be acquired, for example no permission or only read permission, the verification effort
would fail with cause "There might be insufficient permission to access incrementer.inc".

1 field inc : Int
2
3 method myMethod(incrementer: Ref)
4 requires acc(incrementer.inc, write)
5 ensures acc(incrementer.inc, write)
6 ensures incrementer.inc == old(incrementer.inc) + 1
7 {
8 incrementer.inc := incrementer.inc + 1
9 }

Listing 2.3: Example of permissions in Silver

Pure functions

Functions in Silver are pure, meaning that a call to that function does not affect the state of
the program (including permissions). This allows for functions to be used both in code and
specifications.

13

Listing 2.4 shows an example similar to Listing 2.3. Two functions myFunc and
equivalentMyFunc have been defined with the incrementer object as their argument. The pre-
conditions state that there is 1/2 permission (i.e. read permission) on the field inc.

The difference between the two functions is in the optional body. The body consists of
a single (possibly recursive) expression. This expression is implicitly used as a postcondition.
Instead of defining the body, the behavior of the function can also be expressed in the postcon-
dition. The function myFunc uses a body and thereby expresses its behavior and the function
equivalentMyFunc uses the postcondition to express its behavior using the keyword result to
refer to the result of the function.

1 field inc : Int
2
3 function myFunc(incrementer: Ref): Int
4 requires acc(incrementer.inc, 1/2)
5 {
6 incrementer.inc + 1
7 }
8
9 function equivalentMyFunc(incrementer: Ref): Int

10 requires acc(incrementer.inc, 1/2)
11 ensures result == incrementer.inc + 1

Listing 2.4: Examples of a function in Silver

Domains

New ADTs can be introduced in Silver using domains. Domains consist of a name, type param-
eters, functions and axioms.

• Domain name: The name of the new type. This name is globally unique and globally
accessible.

• Type parameters: The type parameters for the new type. The scope for these types
is the domain. These type parameters have to be instantiated when used outside of the
domain.

• Functions: Function signatures defined in the domain. The name of a function is glob-
ally unique and globally accessible. The functions are bodyless and uninterpreted (if no
accompanying axioms are defined over it).

• Axioms: Expressions that express the behavior of the functions and the relation between
them. An axiom has a globally unique name and a body consisting of a Boolean expression
to express the behavior of a function or the relation between functions.

Only the name of the domain is strictly mandatory. Functions and axioms are not strictly
mandatory, however a domain without functions and axioms over it is only a type. No instance
of that type can be obtained since there are no constructor functions.

Listing 2.5 shows a domain modeling a tuple. The domain has two type parameters F
and S that are the types of the first and second element in the tuple respectively. A func-
tion constructor is declared along with two destructor functions fst and snd. The function
constructor takes two arguments of type F and S and returns a Tuple[F,S] and the two de-
structors take a Tuple[F,S] and return something of type F and S respectively.

The behavior of these functions and the relation between them are expressed using two axioms
named FstAxiom and SndAxiom. The FstAxiom can be read as follows; for all elements f1 and

14

s1 of type F and S respectively, if a tuple is constructed (using the constructor function), the
function fst returns the first element f1. The axiom SndAxiom can be read similarly.

1 domain Tuple[F,S] {
2 function constructor(f:F, s:S): Tuple[F,S]
3 function fst(t:Tuple[F,S]): F
4 function snd(t:Tuple[F,S]): S
5
6 axiom FstAxiom {
7 forall f1:F, s1:S :: fst(constructor(f1,s1)) == f1
8 }
9

10 axiom SndAxiom {
11 forall f1:F, s1:S :: snd(constructor(f1,s1)) == s1
12 }
13 }

Listing 2.5: A Tuple domain

Axioms are assumed to hold in every state of the program. Unsoundness can be introduced
if an axiom is unsatisfiable or if two axioms are contradictory. Consider the example in Listing
2.6. A domain MyDomain is made with an axiom stating false. Since this axiom should hold in
all states of the program, the assertion false in myMethod succeeds3.

1 domain MyDomain {
2 axiom falseAxiom {
3 false
4 }
5 }
6
7 method myMethod() {
8 var myVariable: MyDomain
9 assert false

10 }

Listing 2.6: Example of unsoundness caused by domain axioms

2.1.7 Natively supported ADTs in Viper
Viper natively supports three composite data types: sequences, sets and bags. Viper expresses
these data types axiomatically (in the same way as domains), hence they are called axiomatic
data types. The two back ends Carbon and Silicon have their own axiomatizations for these
ADTs using the SMT2 format used by Z3 [21, 22].

The implementations of these ADTs are similar to the tuple example in Listing 2.5. The type
Seq is introduced and functions over Seq are declared. The behavior of the functions and the
relation between them is expressed using axioms.

For completeness, let us look at an axiom that expresses that when two sequences are ap-
pended, the length of the resulting sequence is equal to the sum of the length of the two sequences.
Listing 2.7 shows the axiom in the SMT2 format. Some predefined functions are used in this
axiom, namely the function Seq#Empty() for an empty sequence, the function Seq#Length(s0)
for the length of the argument and Seq#Append(s0, s1) for appending the two arguments. The

3For some versions of Viper, it suffices to have the domain specified without using the domain to get un-
soundness. For other versions, the unsoundness is only introduced when the domain is used at least once in the
program.

15

axiom reads as follows: for all sequences s0 and s1 (line 1), if both s0 and s1 are not empty (line
2), then the length of s0 and s1 appended is equal to the length of s0 plus the length of s1.

1 axiom (forall<T> s0: Seq T, s1: Seq T ::
2 s0 != Seq#Empty() && s1 != Seq#Empty() ==>
3 Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1));

Listing 2.7: Example of an axiom

2.2 Natively Supported ADTs in VerCors
VerCors natively supports three ADTs: sequences, sets and bags. These ADTs are directly
mapped to Viper’s sequences, sets and multisets respectively. Since these three ADTs are both
natively supported by VerCors and Viper, a definition is given below of each ADT with a small
discussion on their definition in different contexts.

2.2.1 Sequences
When it comes to an established definition of a sequence, there is no single definition broad
enough to capture everything since some definitions contradict others. Let us examine by which
properties a sequence is defined in other contexts.

• The mathematical definition speaks mostly about sequences of integers. In the context of
programming languages, sequences are also defined on other types such as objects, thus
this definition is ignored.

• In programming languages often one of two terms is used to describe sequences: sequence
or list. For example, Java uses the term list and PHP uses the term sequence. They might
even be used interchangeably. Some languages have both sequences and lists which are used
to describe similar yet different data structures, for example Haskell lists can be infinite
and Haskell sequences are finite.

• Sequences can be strictly finite or possibly infinite. Infinite sequences are achieved us-
ing different techniques such as lazy evaluation baked into the language (in Haskell) or
generators (in Python).

• Some languages allow sequences to be changed, in other words, the sequences are mutable.
Other languages have immutable sequences where if it is required to change the sequence,
the sequence is first copied and the changes are applied to the new sequence.

In short, the most general definition of a sequence is an ordered/enumerated collection. Other
assumptions on sequences/lists are language-dependent. The most-suitable definition for se-
quences in VerCors is an ordered/enumerated, finite, immutable collection.

2.2.2 Sets and bags
Similar to sequences, sets and bags also have no single definition. The exact definition is context-
dependent. Let us first examine by which properties sets are defined.

• The mathematical definition of sets is an unordered collection of objects (e.g. numbers,
matrices or arrays). Although mathematical objects are not the same as objects in object-
oriented programming, a set in programming can also be defined with the same definition;

16

an unordered collection of objects. Bags are called multisets in mathematics which are also
unordered collections of objects. The difference between sets and bags is that values in sets
are unique and in bags values are not necessarily unique. For example, the set {1, 2, 3} is
equivalent to the bag {1, 2, 3} and not equivalent to the bag {1, 1, 2, 3}.

• Sets/bags are either mutable or immutable.
• Sets/bags are either strictly finite or possibly infinite. In the context of programming,
sets/bags are mostly finite. There are implementations for infinite sets, however these
implementations have their limitations. For example, on the main page of the Haskell
package lazyset4 it is mentioned that it implements infinite sets using infinite lists, however
the implementation fails if the infinite set is filtered. Another example is an article on
DZone5. This implementation uses Java streams, however it has two limitations. First,
the implementation is immutable and second the size of the set is limited by the maximum
number of elements in a Java stream which is 263 − 1. Although sets with the size larger
than 263 − 1 are possible, the size is reported as 263 − 1. The same limitations also hold
for a bag implementation.

In short, the most general definition of a set is an unordered collection of objects with unique
values and the most general definition of a bag is an unordered collection of objects. Other prop-
erties are language-dependent. The most suitable definition for sets in VerCors is an unordered,
finite, immutable collection with unique values and the most suitable definition for bags is an
unordered, finite, immutable collection.

2.3 Triggers
As stated above, both back ends of Viper use the SMT solver Z3 to solve the problem at hand.
SMT solvers (Satisfiability Modulo Theories) are tools to decide the satisfiability of formulas in
first-order theories (e.g. arithmetic or arrays). The efficiency of these tools is based on various
heuristics of which one is finding candidates (i.e. constants) to instantiate universal quantifiers.
These candidates are called triggers6 and can be either user-provided or heuristically found with
different heuristics [23, 24, 25].

Listing 2.8 shows an example of how triggers help the SMT solver. Suppose, we have a
domain MyDomain with a function f with an integer argument. The axiom fAxiom states that
for all integers k larger than zero, the result of the function (i.e. f(k)) is larger than zero. The
trigger f(k) is defined in between curly braces. Whenever this trigger is matched, the body of
the universal quantifier is instantiated with k bound to the constant.

Next, we have a method myMethod with an integer argument l that is required to be larger
than zero. The body of the method consists of an assertion with a part of the assertion matching
the trigger. Since the trigger matches, the SMT solver instantiates the body of the universal
quantifier with the constant l and adds (l > 0) ==> (f(l) > 0) to its pool of knowledge. With
this knowledge, the assertion is verified.

If the trigger would not be matched, the body of the universal quantifier would not be
instantiated and the assertion would fail. For example, if the trigger in Listing 2.8 was g(k) with
g being another function, the trigger does not match and as a result the body of the universal
quantifier is not instantiated and so the assert fails.

4A link to the main page of the lazyset package: https://hackage.haskell.org/package/lazyset
5Link to the DZone article: https://dzone.com/articles/infinite-sets-in-java-9. Although DZone is no

authority, the implementation and its limitations are interesting to mention.
6Triggers are also called patterns in tools such as Z3 and Simplify. In this thesis, the word trigger is used even

in the context of tools that use the word pattern.

17

https://hackage.haskell.org/package/lazyset
https://dzone.com/articles/infinite-sets-in-java-9

1 domain MyDomain {
2 function f(i:Int): Int
3
4 axiom fAxiom {
5 forall k: Int :: {f(k)} (k > 0) ==> (f(k) > 0)
6 }
7 }
8
9 method myMethod(l: Int)

10 requires l > 0
11 {
12 assert f(l) > 0
13 }

Listing 2.8: An example of a trigger

The example above has a single trigger f(k) as part of a single trigger set. More triggers can
be added to that set to make the set more restrictive. For example, if the trigger would state
{f(k), g(k)} with some function g, the instantiation would only happen if both functions f
and g have been used with the same argument. It is also possible to specify multiple trigger
sets where, if all triggers in one of the sets are matched, the body of the universal quantifier
is instantiated. For example, for the two trigger sets {f(k)}{g(k)} , the instantiation would
happen if f(k) is matched or g(k) is matched.

In essence, a trigger is a (Silver) expression and there are certain restrictions placed on these
expressions by Viper7:

• Each quantified variable must occur at least once in a trigger set. For example, if we
quantify over x, y and z, all three variables must be mentioned within the trigger set.

• Each trigger expression must include at least one quantified variable. For example, a func-
tion without any arguments cannot be a trigger.

• Each trigger expression must have some additional structure (typically a function applica-
tion); a quantified variable alone cannot be used as a trigger expression.

• Arithmetic and boolean operators may not occur in trigger expressions. In Viper, the
membership operator in and the subset operator subset are allowed as triggers.

• Accessibility predicates (the acc keyword) may not be used in trigger expressions.

2.3.1 Categorization of trigger
Triggers can be categorized into two groups based on how they are effectively matched: good
trigger and bad triggers. We define a good trigger as a trigger that helps the SMT solver to
prove the given problem. Whether a trigger is good (or not) is case-dependent. A bad trigger
we define as a trigger that does not help the SMT solver. Bad triggers are split into two groups:
restrictive triggers and looping triggers.

Listing 2.9 shows an example of a function f with the behavior expressed using three different
triggers (based on the Viper Tutorial). Depending on the trigger, the SMT solver verifies or fails
in cases that seem straightforward. The behavior of the function is expressed as an assumption
in the three methods.

7These restrictions are listed in the Viper Tutorial [26]. The italic parts are quoted from the tutorial.

18

• restrictive_trigger: The chosen trigger is f(f(f(k))). The trigger is only matched if the
function f is used within the same function twice. This trigger is not used in the assumption
or in any other expression, meaning that it is never matched and so the assertion fails.

• good_trigger: The chosen trigger is f(f(k)). This trigger matches against the expression
f(f(3)) and the body of the universal quantifier is instantiated with k → 3. This results
in the verification of the assertion.

• looping_trigger: The chosen trigger is f(k). For the first assertion, the trigger matches
f(3) (with k ← 3), f(f(3)) (with k ← f(3)) and f(9) (with k ← 9). Since f(3) is
matched, f(f(3)) == f(3*3)+1 is instantiated and the assertion succeeds.

For the second assertion, the verifier goes into an matching loop. The trigger matches f(3)
(with k ← 3), f(f(3)) (with k ← f(3)) and f(4) (with k ← 4). For f(3), f(f(3)) ==
f(3*3)+1 is instantiated. Parts of this new expression again matches the trigger, namely
f(9). This results in f(f(9)) == f(9*9)+1 being added to the pool of knowledge. As can
be seen, parts of this new expression again match the trigger and so a matching loop is
formed. The same holds for the other two matched expression.

A matching loop in itself is not necessarily a bad trigger according to the definition given
above. If the matching loop is finite in all cases (e.g. in a recursive definition), it is
considered a good trigger since it helps the SMT solver verify the problem, although it is
inefficient compared to a good trigger. However, if the matching loop is infinite, the SMT
solver times out and fails to verify the problem. This difference can be seen in the two
assertions where the first assertion is a finite matching loop (with one iteration) and the
second assertion is an infinite loop.

1 function f(i: Int): Int
2
3 method good_trigger() {
4 assume forall k: Int :: {f(f(k))} f(f(k)) == f(k*k)+1
5 assert f(f(3)) == f(9)+1 // Verifies
6 }
7
8 method restrictive_trigger() {
9 assume forall k: Int :: {f(f(f(k)))} f(f(k)) == f(k*k)+1

10 assert f(f(3)) == f(9)+1 // Fails
11 }
12
13 method looping_trigger() {
14 assume forall k: Int :: {f(k)} f(f(k)) == f(k*k)+1
15 assert f(f(3)) == f(9)+1 // Verifies
16 assert f(f(3)) == f(4)+1 // Times out
17 }

Listing 2.9: Different categories of triggers and their behaviors

2.3.2 Axiom Profiler
The triggers in Listing 2.9 and matching expressions are simple enough to reason about and
hypothesize which trigger is matched against which expression. As the program grows, reasoning
about triggers and instantiated terms becomes much more difficult. The tool Axiom Profiler can
be used to understand and debug SMT quantifier instantiations [27]. Provided with a Z3 log,

19

Axiom Profiler visualizes the instantiations and produces readable text to understand what
happens in Z3.

The user-interface of Axiom Profiler is divided into three columns (see Figure 2.6). The
middle column is raw data8. The right column is the instantiation graph. The colored nodes
in the graph are instantiations where different colors represent different quantifiers and if the
newly instantiated expression results in another instantiation, an arrow is drawn in between
them. When a node is selected, the instantiation information is shown in the left column which
includes which trigger is matched, what the variables are bound to and what the resulting
expression is.

Figure 2.6: The user-interface of Axiom Profiler

As an example, let us show the instantiation graphs produced by Axiom Profiler for the
methods in Listing 2.9.

• good_trigger, Figure 2.7a: There are seven nodes meaning that there are seven cases
where a universal quantifier body is instantiated. When Viper encodes its own problem
into the SMT2 format, it introduces (internally used) axioms and functions. The purple
and blue nodes are related to those internal functions. The node which is interesting for
our method is the green node.

Figure 2.7b shows the instantiation information of the green node. Do note here that
the functions f%limited (i.e. the function generated by Viper) and f are defined to be
equivalent and the expression $Snap.unit() can be ignored since it is not used by our
expression and has no effect on this case. The instantiation information reads as follows:

1. Blame: f(f(3)). This means that the blamed term is matched against our trigger.
8For the rest of the thesis, the middle column is hidden since the data is difficult to comprehend in that form.

20

2. Bind: k ← 3. With the blamed term, the variable k is bound to the constant 3.
3. The shown quantifier body is the one we defined in the good_trigger method.
4. Resulting term: 1 == f(f(3)) + −f(3 × 3). The term resembles the body of the

quantifier which is rewritten by Z3 using simple arithmetic rules.

Using the resulting term, the assertion is verified.

For the rest of the thesis, the instantiation information column is not shown. Instead, the
information in this column is presented in text using the instantiation graph. The reason for
this is to present the information in a readable format (as in the enumeration above) instead
of the SMT2 format used by Z3 and to abstract from variable/function names generated by
Viper which are not relevant for the analysis.

• restrictive_trigger, Figure 2.7c: We reasoned that the assertion in this method fails
since the trigger is not matched and the instantiation graph confirms our hypothesis. The
purple and blue nodes are all related to functions generated by Viper. Since there is no
expression matching the trigger, the instantiation graph does not show an instantiation for
that trigger and the assertion fails.

• looping_trigger, Figure 2.7d: We hypothesized that in this method three terms matched
the trigger: f(4), f(f(3)) and f(3). In the instantiation graph we see these three term in
the form of three paths (from top to bottom) annotated with (1), (2) and (3) respectively.
The purple nodes are again related to a function generated by Viper and thus can be
ignored. The blue nodes are related to our function.

For path (1), the first blue node from the top is the trigger matching f(4). The variable k
(in the trigger) is bound to 4 and the resulting term is f(f(4))+−f(4×4) == 1. There are
two new expressions in this new term matching our trigger, namely f(4×4) and f(f(4)).
These new expressions are again matched and new terms are instantiated as represented
by the two blue nodes in path (1) labeled (4). These new terms in turn contain new
expressions matching the trigger and so a matching loop is started. The same holds for the
other two paths.

A visual inspection of the instantiation graph already points to a matching loop. There is
a match of a trigger in a quantifier represented by some colored node (in this case the blue
node). The resulting term matches some other trigger (in this case the purple node). This
continues until the same trigger is matched again (in this case the blue node) or in other
words there is a loop of the same triggers being matched.

If there is an infinite matching loop, the instantiation graph is (in theory) infinite. By
default, Axiom Profiler shows only a small part of the graph. By allowing more nodes to
be drawn, the entire graph can be shown. The graph that is drawn is still finite. While Z3
tries to verify the problem by matching triggers and instantiating more terms, it times out
and only a finite amount of instantiations are shown. However, if left running, Z3 keeps on
instantiating new terms and never stops.

21

(a) The instantiation graph for the method good_trigger
(b) The instantiation information for the method

good_trigger

(c) The instantiation graph for the method
restrictive_trigger

(d) The instantiation graph for the method
looping_trigger

Figure 2.7: An analysis of the methods in Listing 2.9 using Axiom Profiler

22

Chapter 3

Functionality to Add to
VerCors/PVL

In this chapter, the first research question on what functionality is desired by users is answered.
Different sources have been used to answer the question including a survey. The survey questions
and results are discussed in Sections 3.1 and 3.2. Section 3.3 presents the result in a list of
features to implement in VerCors/PVL.

When looking through the GitHub page of VerCors, two sources can be found that give a
general idea of what functionality users are missing. These two sources are the VerCors ADT
documentation [28] and the VerCors examples directory [29]. The VerCors ADT documentation
contains sections on possible future enhancements. These enhancements are suggestions from
users who both work on the back end of VerCors and use VerCors for their own verification. The
VerCors examples directory contains examples in different languages such as Java and PVL that
give an idea of what functionality is written by the users to help their verification efforts.

From these two sources, we built the following list of functionality to add to VerCors:

• Maps
• Set comprehension
• List comprehension1

• Subset notation for sets and bags
• Simple syntax for sequence, set and bag creation. For example, instead of seq<int> {a,
b, c} we would have [a, b, c].

• Appending and prepending values to sequences.
• Taking ranges/subsequences from a sequence.
• Removing elements from a sequence.

3.1 Survey Questions
Although these two sources do give some idea on how PVL is used, a survey was conducted to get
direct input from users on desired functionality. The survey below has been sent to two groups;

1Although list/sequence comprehension is an interesting feature, realizing this feature is not straightforward.
Mainly due to the difficulty of mapping values to indices of the resulting sequence, it was decided to drop this
feature since it does not make sense in the context of a language without a runtime.

23

the VerCors team (consisting of users and developers of VerCors) and students who have used
VerCors/PVL in the past. The survey questions can be found in Figure 3.1.

The last question was preceded with a list of features that were already determined to be
implemented from the previous sources.

1. Have you used PVL before?

2. Which of the currently supported ADTs have you used before?

3. Were there any auxiliary functions you wrote for those ADTs which could be used in
general?

4. Was there ever a point where you were looking for a specific ADT which was not
supported? Did you instead model the problem using a supported ADT? If so, could
you explain what you wanted to model and how you solved it?

5. What new functionality/ADT would help you with your software verification in PVL?

Figure 3.1: Survey questions

3.2 Survey Results
The results of the survey can be found in Appendix A. In total there were 9 responses. From
these results, it can be concluded that all responses are from users who have used PVL before
(based on question 1). From the 9 responses, all have used sequences, 4 have used bags and 4
have used sets (based on question 2). The responses from the last three questions are combined
into the list below with a small discussion on the feature itself.

• A get function for sequences: In the time since the survey, this issue has been solved by
rewriting the grammar. All cases that did not work before (e.g. seq<int> {1, 2, 3}[0])
are now properly supported by the syntax.

• Checking if a sequence is a permutation of another: In the VerCors ADT wiki,
a suggestion was made to have the <= operator defined on sequences as ⊆ and < to be
defined as ⊂. Using these operators, a permutation operator can be easily defined (either
by the user or in VerCors itself).

• Summing over sequences: Summing over a sequence requires the sequence to have
elements that can be summed. Currently, the only types that can be summed natively are
integers and permissions. For a sequence of integers, the binding expression \sum can be
used to sum elements between two bounds.

Having such a function for a generic type T is interesting if the function takes a (pure)
function as its argument that performs the summing. Using this function, any type could
be "summed" if a function can be defined summing the two elements of type T.

• Min/max functions over bags: A min/max function over bags requires the bag to
have orderable elements of some type. The previous discussion is also applicable here were
a general function min/max should be defined that takes a comparison function as its
argument.

• Maps: Maps are already part of the list of features to research and implement.

24

• Pairs, Triples, Tuples: Tuples of any size is an interesting general-purpose ADT if the
elements have a generic type.

• Custom ADTs: Instead of implementing different ADTs, a custom ADT can be defined
by the users. In another discussion, a suggestion by Marieke Huisman was to have generic
classes/functions. After some thought on the possibility of having generics in VerCors, it
was decided to implement it.

• Sequences with per element permission: If we have interpreted the suggestion cor-
rectly, it is already part of VerCors. Besides having permissions on the sequence itself,
permissions can be specified for the elements (in the case of objects).

• Simple constructors for sets, bags, sequences and maps: This feature is already
planned to be implemented.

• MCRL2 support: If a mapping could be made between MCRL2 functions and COL
functions, this feature could be possible. However, this feature is out of scope for this
thesis mainly due to time constraints.

• Multidimensional arrays: This feature is already part of PVL.

• Higher-order functions: The examples given are the map and fold function. For these
functions to be possible/to make sense within PVL, it should be possible to give a function
argument (that maps or folds the elements) to these functions.

3.3 List of Features to Implement
From the VerCors ADT wiki, the VerCors example directory and the survey, a list of features to
implement is collected (see Figure 3.2).

• Appending and prepending values to sequences.

• Taking ranges/subsequences from a sequence.

• Removing elements from a sequence.

• Simple syntax for sequence, set and bag creation. For example, instead of seq<int> {a, b,
c} we would have [a, b, c].

• Subset notation for sets and bags.

• Set comprehension.

• Maps with basic operations.

• Generic classes and functions.

Figure 3.2: Features to implement

25

Chapter 4

Rephrasing the Research Questions

In Chapter 3, the first research question was answered resulting in a list of features to implement.
The second research question is rephrased to be more concrete based on that list.

As a reminder, the two general research questions and the list of features to implement
can be found in Figure 4.1. The implementation of these features is discussed in two parts:
implementation-focused and design-focused. The first five features are relatively small compared
to the other three features. For the first five features, Chapter 7 focuses on the implementation
of these features. For the remaining features, Chapters 8, 9 and 10 focus more on the design of
these features.

RQ1 What ADTs or functionality on ADTs is
desired from VerCors/PVL?

RQ2 How can the architecture of VerCors and
the back end Viper support the function-
ality of RQ1?

1. Appending and prepending values to se-
quences, sets and bags.

2. Taking ranges/subsequences from a se-
quence.

3. Removing elements from a sequence.

4. Simple syntax for sequence, set and
bag creation. For example, instead of
seq<int> {a, b, c} we would have [a,
b, c].

5. Subset notation for sets and bags.

6. Set comprehension.

7. Maps with basic operations.

8. Generic classes and functions.

Figure 4.1: The general research questions and the list of features to implement

The research questions are rephrased as follows:

26

RQ3 For features number 1 to 5:

RQ3.1 What is the definition of the functionality?

RQ3.2 Which of the five approaches in Chapter 6 can be applied to implement the function-
ality?

RQ4 For set comprehension:

RQ4.1 What is the definition of set comprehension?

RQ4.2 How is set comprehension encoded into Viper?

RQ5 For maps:

RQ5.1 What is the definition of a map?

RQ5.2 What operations are defined on maps?

RQ5.3 How can Viper Domains be used to implement a map?

RQ6 For generic classes/functions:

RQ6.1 What is the definition of generic classes/functions?

RQ6.2 How should type checking work for generics classes/functions?

RQ6.3 How does the verification of generic classes/functions work?

27

Chapter 5

Implementation-level View of
VerCors

This chapter goes over the three general parts of the architecture of VerCors introduced in
Chapter 2. An implementation-level view is given of each part, explaining the role of different
classes and giving concrete examples of the code and COL ASTs where useful.

5.1 The Initial Transformation: From Input Language to a
COL AST

The input language parsers/tree visitors are named using a convention where the input lan-
guage is appended with the string toCOL. For example, the parser for Java 8 is named
Java8JMLtoCOL.java and for PVL it is called PVLtoCOL.java. Some additional parsing might
be needed for some languages, however in general a single parser is sufficient. Since this paper
is focused on PVL, we refer solely to PVLtoCOL.java (or simply PVLtoCOL) and ANTLRtoCOL.java
which is a parser that covers language constructs common among the support input languages.

In PVLtoCOL, the ANTLR parsed AST for PVL is walked and each node is transformed into a
COL AST node using an AST node factory. For example, if the function head is used in the input
file (which returns the head of a sequence)1, it is matched in the tree visitor and transformed to
a COL expression with the corresponding operand and its arguments.

There are several approaches used to match the syntax:

• The match method

• The PVLSyntax class

• Iterating over all defined syntax

The match method is defined in ANTLRtoCOL. It takes at least one argument ctx of type
ParseRuleContext. The ANTLR class ParseRuleContext contains all information on the current
grammar rule that is matched in the input file. For example, if a + b is parsed, ctx will be
a corresponding ParseRuleContext with references to a and b. The other arguments are Java
strings that need to be matched against. These Java strings are either strings to be matched
against exactly or null to match anything.

1The syntax for the head function is head(xs) where xs is a sequence.

28

Listing 5.1 shows an example of how the match method is used in PVLtoCOL to match the
logical negation operator !. The arity of this operator (i.e. the number of arguments it takes)
is one. To match the operator itself, "!" is given as an argument to the match method and
null to match the argument of the operator. When the ! operator is matched, the AST node
factory create is used to make a COL expression with operator Not and its argument. The
corresponding operator is defined in a Java enum StandardOperator.java and these operators
have an attribute arity which is the number of arguments the operator takes. In the case of the
Not operator the arity is 1. The argument of the operator is accessed using the convert method.

1 //From the context of the expression we are visiting,
2 // try to match the operator "!"
3 if (match(ctx,"!",null)){
4 return create.expression(StandardOperator.Not,convert(ctx,1));
5 }

Listing 5.1: Example using the match method

Another example is the construction of a sequence. Creating a new sequence in PVL initialized
with some values is done using the following syntax: seq<TYPE> { VALUES }. The variables in
this syntax are the type of the sequence and the (comma-separated) values. The if statement (in
PVLtoCOL) that matches this syntax and transforms it into COL can be seen in Listing 5.2.

1 //Match the syntax with the type and arbitrary values
2 if (match(ctx,"seq","<",null,">",null)){
3 //From the child 2 (the type of the sequence), get an equivalent type to be used internally
4 Type t=checkType(convert(ctx,2));
5 //Visit the arguments and store the result in the args array
6 ASTNode args[]=convert_list((ParserRuleContext)ctx.getChild(4),"{",",","}");
7 return create.struct_value(create.primitive_type(PrimitiveSort.Sequence,t),null,args);
8 }

Listing 5.2: Another example using the match method

In this case, the tokens seq, < and > are matched and the variable parts of the syntax are left
null. The first null value is interpreted as the type and the second null value is interpreted as
the comma-separated values of the sequence. Using the AST node factory create, a struct value
(i.e. a representation of a structured value in COL) is constructed, defining it as a sequence
with the given type t and values args.

The second approach to match syntax is using methods in the Java class PVLSyntax. This
class specifies a mapping between StandardOperators and the concrete syntax. For example, the
Not operator (used in the example above) has a mapping to the concrete syntax "!". PVLSyntax
has two methods to parse a given string named parseFunction and parseOperator. For a
given string, these methods return the corresponding StandardOperator if there is a mapping,
else they return null. For functions, PVLtoCOL tries to match a function invokation using the
parseFunction method. This means that if a new function is added to VerCors, a mapping
needs to be defined in PVLSyntax and the parsing is handled in PVLtoCOL.

The last approach is to iterate over all defined StandardOperators. This approach is im-
plemented in the Java class ANTLRtoCOL, a general-purpose parser which is also used by parsers
for different languages such as C and Java. This class is the superclass of PVLtoCOL and tries
its approach if the previous approaches do not succeed. ANTLRtoCOL iterates over all (defined)
StandardOperators, retrieves the syntax from PVLtoCOL and tries to match it. If the syntax is

29

matched, a COL expression is made with the matched operator and the provided arguments.

5.2 COL
COL is a language used internally by VerCors and is encoded as an abstract syntax tree. Using
this AST, the input file is internally represented.

All nodes of the COL AST are subclasses of the abstract Java class ASTNode. This Java
class contains all common properties of AST nodes such as the type of the AST node and the
parent of the node. There is a variety of subclasses of ASTNode. For example, a COL method is
encoded using the subclass Method, a COL contract is encoded using the subclass Contract and
a COL expression with an operator is encoded using the subclass OperatorExpression. All of
these classes extend (directly or indirectly) the abstract class ASTNode. Since there are a lot of
different AST nodes, relevant AST nodes are introduced where necessary.

Since ASTs are trees, a simple visual representation of the COL ASTs can be drawn. For
example, the visual representation of the simple PVL program in Listing 5.3 can be seen in
Figure 5.1. It can be seen that a simple program can lead to a (visually) large AST. To improve
readability, COL ASTs in the rest of the thesis are simplified by drawing only the relevant parts
of the AST.

1 class Example {
2 requires a >= 0;
3 ensures \result == a + 1;
4 int incr(int a) {
5 return a + 1;
6 }
7 }

Listing 5.3: A simple example PVL program

ASTClass
Name: Example

Method
Name: incr

Return type: int

PrimitiveType
Name: a
Type: int

Contract

OperatorExpression
Operator: GTE

NameExpression
Name: a

ConstantExpression
Value: 1

OperatorExpression
Operator: EQ

NameExpression
Name: Result

OperatorExpression
Operator: Plus

NameExpression
Name: a

ConstantExpression
Value: 1

BlockStatement

ReturnStatement

OperatorExpression
Operator: Plus

NameExpression
Name: a

ConstantExpression
Value: 1

Entries

Arguments Contract

Preconditions Postconditions

Body

Statements

Figure 5.1: A visual representation of the PVL program in Listing 5.3

30

5.3 Passes
The result of the initial step is a COL AST. This COL AST is processed and transformed
numerous times into (again) a COL AST by different passes. In essence, passes are tree visitors
implementing the interface ASTVisitor.

When looking at the general behavior of a pass, two types of passes can be distinguished:
rewrite passes and visitor passes.

Rewrite passes
Rewrite passes are tree visitors that rewrite the entire COL AST. These passes (which are Java
classes) extend the AbstractRewriter class. The implementation of AbstractRewriter consists
of a collection of methods named visit with different arguments. These arguments correspond
to different COL AST nodes such as OperatorExpressions and Methods. When walking the COL
AST, the visit method with the argument matching our current node is called.

The implementation of AbstractRewriter copies the COL AST into a new COL AST without
changing any nodes in the tree. Rewrite passes extend AbstractRewriter and therefore copy all
AST nodes by default. If an AST node needs to be transformed, the corresponding visit method
is overridden in the rewrite pass to implement the desired transformation.

For clarification, let us look at the following example. Suppose there is a new operator Empty
with arity 1 that returns true if the length of the argument is zero. This new operator is not part
of the core COL language or in other words it cannot be mapped to the back end. A rewrite
pass is used to transform this operator into an equivalent expression using COL AST nodes that
do have a mapping.

In the initial step, the syntax is transformed into a COL expression, that is
create.expression(StandardOperator.Empty, sequence). These types of COL expressions are
encoded as ASTNodes of the subtype OperatorExpression, thus our pass overwrites the visit
method with argument of type OperatorExpression. Since there are more than one operands
defined in StandardOperator, the expression with operand Empty is matched and transformed
into a COL expression of the form 0 == |sequence| (see Listing 5.4). A visual representation of
the transformation can be found in Figure 5.2.

1 public void visit(OperatorExpression e){
2 if (e.operator().equals(StandardOperator.Empty)) {
3 result = create.expresson(StandardOperator.EQ, constant(0), length(seq));
4 }
5 }

Listing 5.4: Matching and transforming the Empty operator

31

OperatorExpression
Operator: Empty

StructValue
Sequence

(a) Before rewrite

OperatorExpression
Operator: EQ

ConstantExpression
Value: 0

OperatorExpression
Operator: Length

StructValue
Sequence

(b) After rewrite

Figure 5.2: Rewriting the Empty operator to an equivalent COL expression

Visitor passes
As the name suggests, visitor passes are tree visitors that visit AST nodes in contrast to rewrite
passes that rewrite/copy AST nodes. Similar to rewrite passes, visitor passes also have visit
methods for all different kinds of AST nodes. These passes extend the RecursiveVisitor class
that by default visits all nodes.

For instance, one of the uses for visitor passes is type checking. The class responsible for
type checking the COL AST is called AbstractTypeCheck. This pass has two functions: type
checking and setting the type. Let us take the Empty operator again as our example. A COL
expression is encoded as an ASTNode of type OperatorExpression, thus the visit method with
the argument of type OperatorExpression is overwritten. A simplified version of the type check
for the operand Empty can be seen in Listing 5.5. The argument of Empty has to be a sequence
and the result is of type Boolean. A visual representation can be seen in Figure 5.3.

1 public void visit(OperatorExpression e){
2 switch(e.operator()) {
3 case Empty: {
4 if (!argumentOfEmpty.isPrimitive(Sequence)) {
5 Fail("argument␣of␣empty␣not␣a␣sequence"); // Internal method to signify a fail.
6 }
7 e.setType(Boolean);
8 break;
9 }
10 }
11 }

Listing 5.5: Type checking the Empty operator

Note here that the type of e, the AST node corresponding to the COL expression with

32

operator Empty, is set to the appropriate value. The fact that the type checking pass is a visitor
pass does not imply that COL AST cannot change. Visitor passes can set attributes of the AST
node, however they cannot transform or replace it entirely.

OperatorExpression
Operator: Empty

Type: null

StructValue
Sort: Sequence
Type: null

(a) Initial COL AST

OperatorExpression
Operator: Empty

Type: null

StructValue
Sort: Sequence

Type: Sequence with
elements of some type

(b) After the type check for
the StructValue

OperatorExpression
Operator: Empty
Type: Boolean

StructValue
Sort: Sequence

Type: Sequence with
elements of some type

(c) After the type check for
the Empty operator expression

Figure 5.3: An example of a visitor pass

Besides the examples of passes given above, there are numerous visitor and rewrite passes
defined in VerCors for different purposes. Examples of visitor passes are type checkers, scanners
that check if a certain feature is used and visitors that collect all predicates. Examples of rewrite
passes are a pass that rewrites methods marked as pure into functions and a pass that propagates
invariants on a method to loops inside the method. From the examples, we can see that passes
have a specific purpose or are related to a specific feature. These passes are related to features
that are not relevant for this thesis since they are not related to ADTs, so they are not discussed
individually.

5.4 COL AST to Viper
The final transformation of the COL AST to a Viper problem is implemented using a pass. This
type of pass is called a validation pass and it is different from the rewrite and visitor passes in
that it does not change the COL AST.

Validation passes are implementations of the abstract Java class ValidationPass.
ValidationPass has two methods named apply and apply_pass that are used to apply that
pass to the current COL AST. The apply method starts the verification back end returning a
TestReport, a Java class containing information on whether the verification has passed or not
and on exceptions that were possibly thrown. The apply_pass method applies the pass by calling
the apply method and returning a PassReport based on the return value of the apply method.
PassReport is a Java class containing information on the pass such as the arguments given to
the pass, the output of the pass and whether there was a fatal error.

The validation pass for the Viper back end requires some setup compared to the default
implementation of apply_pass (that does no setup), thus the apply_pass method is overwritten
in SilverBackend. The SilverBackend performs the following three steps:

1. An instance of the Viper verifier is retrieved. VerCors has its own interface to setup and

33

retrieve an instance of the Viper verifier. During this setup, any flags or options passed
onto the Viper back end are set such as the chosen back end and arguments for Z3.

2. The COL AST is converted into a Silver program.

3. The Silver program is passed onto the verifier. The Silver program is modeled in the Viper
API by the Scala class Program.

The conversion of the COL AST to a Silver program happens in the Java class
VerCorsProgramFactory. This class, as the name suggests, is a factory for Programs in Ver-
Cors. For the Viper back end, the Program is a class modeling a Silver program. The conversion
is based on the mapping defined in the following classes:

• SilverTypeMap: Mapping of COL types to Silver types. Implementation of the TypeMapping
class.

• SilverExpressionMap: Mapping COL expression to Silver expressions. Implementation of
the ASTMapping class.

• SilverStatementMap: Mapping COL statements to Silver statements. Implementation of
the ASTMapping class.

TypeMapping and ASTMapping match parts of the final COL AST and use the class
SilverExpressionFactory to get equivalent Silver expressions. These Silver expressions are
defined in the Silver project.

34

Chapter 6

Approaches to Implementing
Functionality

This chapter goes over five general approaches to implement a feature in VerCors. These
approaches are used as a basis for the implementation work of later chapters.

There are multiple approaches one can take to implement a feature in VerCors. To categorize
these implementations, we discuss general approaches in detail. Five general approaches have
been identified to implement a new feature:

• Pure syntactic sugar

• Transformed syntactic sugar

• Mapping Directly to Back End

• Function Generation

• Domains

The list is ordered such that the first approach is the simplest and least involved. As the list
goes on, it becomes more involved.

6.1 Syntactic Sugar
There does not seem to be a widely used, formal definition of syntactic sugar. The simplest and
most fitting description in the context of VerCors was found in [30]:

Many languages use syntactic sugar to define parts of their surface language in terms
of a smaller core.

This description is applicable in the context of VerCors with the surface language being PVL
and the smaller core being the core language of COL that is mapped to the back end.

On an implementation level, a distinction can be made between two types of syntactic sugar:
pure syntactic sugar and transformed syntactic sugar.

35

6.1.1 Pure syntactic sugar
We define pure syntactic sugar in the context of VerCors as follows:

Pure syntactic sugar is syntax that is transformed into an existing COL expression
during the initial step from PVL to the COL AST1.

The definition entails the following; Firstly, the functionality expressed by the syntactic sugar
is already part of VerCors. Secondly, the only transformation required is the initial transforma-
tion from PVL to the COL AST. All other transformations on the COL AST regarding this
functionality have to already be part of VerCors.

The second condition for the transformation comes from the limited information about the
type of structures during this initial step. Let us look at the example in Listing 6.1. In this
example, we define a new sequence a and initialize it with some values. The right side of the
assignment is a sequence with elements of type MyClass and at a later stage it will be checked
if all values are of this type. In this case, a COL sequence can be constructed with elements of
type MyClass since the type is provided.

1 seq<MyClass> a = seq<MyClass> {AInstanceOfMyClass, BInstanceOfMyClass, CInstanceOfMyClass};

Listing 6.1: Sequence initialization in PVL

To conclude, pure syntactic sugar can only be used if the feature already exists and all
information needed for the transformation is available during the first step.

To implement a feature using pure syntactic sugar, the following steps are taken:

1. The new syntax has to be defined in the ANTLR grammar file.

2. The PVL syntax is transformed into an equivalent COL expression in PVLtoCOL.

6.1.2 Transformed syntactic sugar
Transformed syntactic sugar is used in cases where not all information is available during the
initial step. Before defining transformed syntactic sugar, let us look at a case in Listing 6.2 where
pure syntactic sugar is not applicable.

1 seq<int> a = seq<int> {someIntA, someIntB, someIntC};
2 seq<int> b = someIntD :: a;

Listing 6.2: Prepending a value to a sequence

We have a sequence of integers a initialized to a sequence with some values. Since the type is
given, we can construct a sequence with elements of type int. In the next line, a sequence b is
initialized to the value someIntD::a which should be read as prepend the variable someIntD to the
sequence a2. This should eventually be transformed into an expression stating that a sequence
with the value someIntD should be concatenated with sequence a, however there is one missing
piece of information, the types of the variable someIntD and a are not known during the initial
transformation. In the COL AST, these variables will be the AST nodes of type NameExpression
without a type. Since the type of the resulting sequence is not known, the sequence cannot be
constructed.

1As a reminder, the back-end of VerCors could be split up into three steps: 1. PVL to COL AST, 2. transfor-
mations on the COL AST and 3. COL AST to Viper.

2Currently this syntax does not exist (yet) in PVL.

36

Cases such as this cannot be implemented using pure syntactic sugar since some information
is missing during the initial step. The missing information might be available during the next
step which is the passes. In cases where the information is available at a later step, transformed
syntactic sugar is applicable.

We define transformed syntactic sugar in the context of VerCors as follows:

Transformed syntactic sugar is syntax that is transformed into an existing COL ex-
pression during the transformation step from PVL to the COL AST and at least one
rewrite pass.

Again, this definition entails the following; Firstly, the functionality expressed by the syntactic
sugar is already part of VerCors or better said, the functionality is expressible in the COL
language. Secondly, in addition to the initial transformation (which is always required), at least
one rewrite pass is defined that performs a transformation on parts of the COL AST related to
that feature.

Pure and transformed syntactic sugar are the same approach from a design point-of-view
since both express a new feature using existing features. The difference between them is that
from an implementation point-of-view different steps are taken to apply them, hence they are
discussed separately.

To implement a feature using transformed syntactic sugar, the following steps are taken:

1. The new syntax has to be added to the ANTLR grammar file.

2. A new operator is defined in the enum class StandardOperator. The new operator has an
arity that is the number of arguments of the operator.

3. The PVL syntax related to the new feature is transformed into a COL expression with the
new operator and the arguments it takes.

4. A rewrite pass is defined (or an existing rewrite pass is extended) to perform the transfor-
mation.

For clarification, let us look at the example of prepending a value to a sequence. As a reminder,
pure syntactic sugar is not applicable due to insufficient information during the initial step, thus
transformed syntactic sugar is applied. Firstly, a new operator PrependSingle is defined in the
enum class StandardOperator (see Listing 6.3). Since this operator is new, it does not have
a mapping to Viper and so it is mapped to an expression of the core language of COL. The
syntax for the functionality is matched in PVLtoCOL and transformed into a COL expression with
operator PrependSingle and its arguments (the value to prepend and the sequence to prepend
to, see Listing 6.4).

In this specific case, an existing rewrite pass named Standardize is extended instead of
defining a new rewrite pass (see Listing 6.5). Since the COL expression is an expression with an
operator, it is encoded in the COL AST as an OperatorExpression. Thus we override the visit
method with an OperatorExpression as its argument. When we visit an OperatorExpression
with operator PrependSingle, the arguments themselves are visited using the same rewrite
pass. Using an AST node factory, a new COL expression is returned with operator Append
which concatenates the two provided arguments. The first sequence here is a newly constructed
sequence with the value to prepend as its only value and the second sequence is the sequence that
is prepended to. A visual representation of this rewrite/transformation can be seen in Figure 6.1.

37

1 public enum StandardOperator {
2 ..., PrependSingle(2), ...
3 }

Listing 6.3: The enum class StandardOperator with a newly defined operator PrependSingle

1 create.expression(StandardOperator.PrependSingle, arguments);

Listing 6.4: The construction of a COL expression with operator
StandardOperator.PrependSingle with its arguments. The variable create is the AST node

factory

1 public class Standardize extends AbstractRewriter {
2 @Override
3 public void visit(OperatorExpression e){
4 if (e.operator().equals(StandardOperator.PrependSingle)) {
5 Type seqElementType = e.arg(0).getType();
6 ASTNode var = e.arg(0).apply(this); // Visit the first argument, which is the value to prepend
7 ASTNode seq = e.arg(1).apply(this); // Visit the second argument, which is the sequence to prepend

↪→ to
8
9 StructValue newSeq = create.struct_value(create.primitive_type(PrimitiveSort.Sequence,

↪→ seqElementType), null, var);
10 result = create.expression(StandardOperator.Append, newSeq, seq);
11 }
12 }
13 }

Listing 6.5: A part of the rewrite pass Standardize

OperatorExpression
Operator: PrependSingle

StructValue
Sequence

ASTNode
Value to prepend

(a) Before rewrite

OperatorExpression
Operator: Append

StructValue
Sequence

StructValue
Sequence

ASTNode
Value to prepend

(b) After rewrite

Figure 6.1: A visual representation of the rewrite/transformation

38

It should be noted that there is one more step that is possibly required. As said before, when
choosing between pure and transformed syntactic sugar, the difference was in the information
available during the initial step.

In the example above, it is assumed that the type is known, now let us briefly look at where
the type comes from. The type of the COL AST nodes is set during the type checking pass
which is a visitor pass. Later passes can use this type information if needed. However, there is
a caveat that lies in the fact that rewrite passes copy the entire COL AST by default without
copying any additional attributes. Thus the type information and most other attributes set by
a visitor or rewrite pass are omitted. This is intended behavior since it could be that as a result
of a transformation the attributes set do not hold anymore, for example after a transformation
it could be that the type of a part of the AST does not match anymore. Thus a prerequisite to
a rewrite pass which requires the type of some AST node is the type checking pass without any
other rewrite passes in between.

6.2 Mapping Directly to Back End
Mapping functionality directly to the back end is an option if the functionality is already present
in the back end. This approach is very similar to the previous two approaches. The main
difference is in the last step which is mapping the operator to the back end. In this section,
the approach is explained with Viper as the specific back end for two reasons: explaining the
approach using a concrete example helps in understanding the approach instead of an abstract
explanation and Viper is chosen since it is the main back end of VerCors. This approach is
the same for any other back end with the only difference in the classes where the mappings are
defined.

The steps taken to map directly to the back end are as follows:

1. The new syntax has to be added to the ANTLR grammar file.

2. A new operator is defined in the enum class StandardOperator. The new operator has an
arity which is the number of arguments of the operator.

3. The PVL syntax related to the new feature is transformed into a COL expression with the
new operator and the arguments it takes.

4. A mapping is defined from the new StandardOperator into Silver.

The first three steps are the same steps from the previous approaches: The syntax is defined in
the ANTLR grammar for PVL, a new operator is added to StandardOperator and the PVL syntax
is matched and transformed into a COL expression with the new operator and the arguments it
takes.

As explained in Section 5.4, the mapping of COL AST nodes to Silver is performed by a
special pass (of type ValidationPass). Inside of an anonymous ValidationPass3, the class
SilverBackend is used to transform the COL AST into Silver and call the Viper toolset to
verify the problem. SilverBackend already defines the logic to go through the COL AST and
transform it to Silver based on the three mapping classes SilverTypeMap, SilverExpressionMap
and SilverStatementMap (also mentioned in Section 5.4). In order to define a new mapping, the
newly defined StandardOperator is matched in the appropriate mapping class and transformed
into a Silver AST node (provided by the Silver project).

For clarification, let us look at the mapping of the size operator in PVL. In COL, the size
operator is an expression with a single argument with the type of the argument either a sequence,

3An anonymous instance of a class is a local class without a name.

39

set or a bag encoded as the COL AST node OperatorExpression. In Silver, size is one of two
expressions for different types of arguments, for sequences it is named SeqLength,and for sets
and bags it is named AnySetCardinality. SeqLength and AnySetCardinality are part of the
Silver project.

Listings 6.6 and 6.7 show the code implementing this transformation. In List-
ing 6.6, the OperatorExpression with operator Size is matched (line 5) and using the
SilverExpressionFactory named create a Silver expression with operator size is returned (line
6). The Silver expression that is returned is dependent on the type of the argument of the size
operator. In Listing 6.7, the type of the argument is matched and the correct Silver expression
is returned (lines 4-6).

1 public class SilverExpressionMap implements ASTMapping {
2 public Exp map(OperatorExpression e) {
3 switch(e.operator()){
4 ...
5 case Size: \\ Match the COL operator Size
6 return create.size(o,e1); \\ return a size expression in Silver
7 ...
8 }
9 }

10 }

Listing 6.6: A part of the Java class SilverExpressionMap

1 class SilverExpressionFactory {
2 override def size(o:O,e1:Exp) :Exp = {
3 e1.typ match {
4 case SeqType => SeqLength(e1)
5 case MultisetType => AnySetCardinality(e1)
6 case SetType => AnySetCardinality(e1)
7 case _ => throw new Error("cannot␣convert␣size␣for␣type␣"+e1.typ);
8 }
9 }

10 }

Listing 6.7: A part of the Scala class SilverExpressionFactory

6.3 Function Generation
The previous approaches are used for relatively simple functionality. When functionality becomes
more complex, function generation becomes a viable option. Function generation is generating
a function to perform the needed functionality. The approach to generating a function is similar
to transformed syntactic sugar in the steps taken to implement it. The steps taken for function
generation are as follows:

1. The syntax related to the functionality needs to be defined.

2. A new operator is defined in enum class StandardOperator.

3. The syntax is matched in PVLtoCOL and transformed into a COL expression with the newly
defined operator and its arguments.

4. A rewrite pass is defined (or an existing one is used) that generates the related function.

40

The difference with transformed syntactic sugar is in the pass that is defined. By default, a
rewrite pass only walks and rewrites the COL AST. For this approach, a rewrite pass performs
an extra step which is the generation of the functions. Similar to the other approaches, the visit
method with the argument of type OperatorExpression is overridden. All COL expressions with
the newly defined operator are rewritten to a function invokation with the provided arguments
using a COL AST node factory (see Listing 6.8). A reference to the function name is kept in a
static map to keep track of functions to generate.

1 colASTNodeFactory.invokation(null, null, functionName, arguments);

Listing 6.8: A COL representation of a function invokation with name functionName

Functions themselves are also encoded in the COL language (using ASTNodes such as Method
and Contract). Functions can be broken down into five parts: The function name, the return
type, the arguments, the contract and the body. From the functionality to be implemented, the
name, return type, arguments follow naturally. The contract of the function is encoded using
COL expressions (obtained from a COL AST node factory). The example in Listing 6.9 is a
COL expression expressing that a variable i is within the boundaries of a certain sequence (i.e.
0 <= i && i < |sequence|).

1 create.expression(And,
2 create.expression(LTE, constant(0), "i"),
3 create.expression(LT, "i", size(sequence))
4)

Listing 6.9: A precondition encoded in the COL language describing the validity of an index i
for a given sequence

The body of the function does not have to be defined. Bodyless functions have two benefits.
The first one is the most obvious, which is that only the behavior of the functionality has to be
specified which saves work in implementing the functionality and secondly the Viper back end
does not prove that the function is correct every time an attempt is made to verify something. The
preconditions of the function are checked where the function is invoked and the postconditions
are assumed on the result of the function.

When generating functions for ADTs in Viper, a new function has to be generated for each
ADT if the type of the ADT differs. This is a result of the lack of generic types for functions in
the Viper back end. For example, if we generate a function foo with a sequence argument and
the function foo is invoked using an integer sequence and a boolean sequence, then two functions
are generated; one for the integer sequence and one for the boolean sequence.

Details of the implementation depend on the generated function. A more detailed look at the
implementation work is discussed for a feature using function generation (for a concrete example,
see Section 7.3).

6.4 Domains
If the new functionality is a new ADT, Silver domains are the best option. Given an ADT
expressed as a domain in Silver, the steps to support the ADT in VerCors are as follows:

1. The syntax related to the functionality is defined.

2. The new ADT is added as a PrimitiveType.

41

3. Operators are defined in the enum class StandardOperator for all domain functions that
need to be supported.

4. The syntax for all functions is matched in PVLtoCOL and transformed into COL expressions
with the newly defined operator and its arguments.

5. The Silver domain is added to the file prelude.sil.
6. The domain is added to the COL AST.
7. The new operators are transformed into invokations of the domain functions.

As an example, the domain Tuple (from Section 2.1.6) is implemented along with its three
functions. The three functions constructor, fst and snd will be supported as functions named
tuple, fst and snd respectively.

The syntax that we need to define is twofold: the syntax for the type and syntax for the
functions. The syntax for the type is defined in the ANTLR grammar (see Listing 6.10). The
type is encoded as a PrimitiveType. PrimitiveType models a type such as an integer, an array
or a set where the actual type is specified by a PrimitiveSort. PrimitiveSort is a Java enum
with values such as Integer, Array and Set to specify what the sort of a PrimitiveType is. For
the new tuple type, a value Tuple is added to the Java enum PrimitiveSort. Listing 6.11 shows
the syntax for the type being matched in PVLtoCOL and transformed into a PrimitiveType with
sort Tuple.

Three StandardOperators named TupleConstructor, TupleFst and TupleSnd are defined for
the three functions. The syntax for the three functions is added to PVLSyntax (see Listing
6.12). With these functions defined in PVLSyntax, the syntax for the functions are matched and
transformed into OperatorExpression with the matching StandardOperator.

1 non_array_type :
2 'tuple' '<' type ',' type '>'
3 ;

Listing 6.10: The ANTLR grammar rule for the constructor of Tuple

1 if (match(ctx,"tuple","<",null,",", null, ">")){
2 Type t1=checkType(convert(ctx,2));
3 Type t2=checkType(convert(ctx,4));
4 return create.primitive_type(PrimitiveSort.Tuple,t1, t2);
5 }

Listing 6.11: Matching the Tuple type

The pass responsible for parsing the Silver domain and adding it to the COL AST is
rewrite pass SilverClassReduction. This pass adds the Tuple ADT in two steps. First, the
StandardOperators are matched and rewritten to function invokations. Listing 6.13 shows the
transformation for the constructor function tuple. The PrimitiveType with sort Tuple is also
rewritten. Listing 6.14 shows Tuple being rewritten as a class type Tuple corresponding to the
name of the domain. The two arguments are labeled with the labels of the type parameters in
the domain. These labels are used by Viper internally. A boolean flag named tuple is set to
true to signify that the Tuple domain has to be loaded.

Next, the Silver domain is copied over to the file prelude.sil. This Silver file contains all
domains and functions that are loaded in and added to the COL AST. After parsing the Silver
file, we iterate over all the domains and match the domain Tuple by its name and add it to the
COL AST.

42

1 public class PVLSyntax {
2
3 private static Syntax syntax;
4
5 public static Syntax get(){
6 ...
7 syntax.addFunction(TupleConstructor, "tuple");
8 syntax.addFunction(TupleFst, "fst");
9 syntax.addFunction(tupleSnd, "snd");

10 ...
11 }
12 }

Listing 6.12: The three functions for Tuple defined in PVLSyntax

1 public class SilverClassReduction extends AbstractRewriter {
2 @Override
3 public void visit(OperatorExpression e){
4 switch(e.operator()){
5 case TupleConstructor:{
6 // Rewrite the arguments
7 List<ASTNode> args = rewrite(e.argsJava());
8 // Invoke the function constructor with its arguments and return type
9 result = create.invokation(rewrite(e.first().getType()), null, "constructor", args);

10 break;
11 }
12 }
13 }
14 }

Listing 6.13: Transformation of the Tuple constructor into a function invokation

1 public class SilverClassReduction extends AbstractRewriter {
2 @Override
3 public void visit(PrimitiveType t){
4 switch(t.sort){
5 case Tuple:
6 tuple = true;
7 List<ASTNode> args = rewrite(((PrimitiveType)t).argsJava());
8 args.get(0).addLabel(create.label("F"));
9 args.get(1).addLabel(create.label("S"));

10 result=create.class_type("Tuple",args);
11 break;
12 }
13 }
14 }

Listing 6.14: Transformation of the Tuple type into a class type

43

Chapter 7

Implementation-focused Features

In this chapter, we discuss the implementation of the first five features mentioned in Chapter 3.
These features are:

Section 7.2: Appending and prepending values to sequences.

Section 7.3: Taking ranges/subsequences from a sequence.

Section 7.4: Removing elements from a sequence.

Section 7.5: Simple syntax for sequence, set and bag creation.

Section 7.6: Subset notation for sets and bags.

For each of these features, we answer the two subquestions of RQ3 (from Chapter 4). The
first section for each feature answers RQ3.1, showing a description of the behavior and the
defined syntax. The next question answers RQ3.2 by discussing the chosen approach (from
Chapter 6) and implementation details with design choices.

Before continuing with the implemented features, we (again) briefly discuss the immutability
of sequences (and other ADTs) in VerCors. As stated in Section 2.2, VerCors has native support
for sequences, sets and bags which are all immutable. To keep in line with existing functionality
all implemented functionality on sequences is therefore pure (i.e. no side effects). The original
sequence is not changed or overwritten, instead a new sequence is constructed which is the result
of the functionality. In case it is required to change a sequence, the variable can be overwritten
by the result of the functionality (e.g a = <immutable function on a>, where a is a sequence).

The implementation of the features described below can be found on GitHub. The repository
is a fork of the VerCors repository and can be found at https://github.com/OmerSakar/vercors.
It must be noted that the functionality below was not already part of VerCors. They are all
implemented as a part of this research.

1. For the first 4 features, the implementation described in this thesis can be found in
commit a3e3518 which can be browsed at https://github.com/OmerSakar/vercors/tree/
a3e3518a3e720a6b05359bd956312d1b96329d57.

2. For feature 5, the implementation can be found in commit 7875084
which can be browsed at (https://github.com/OmerSakar/vercors/tree/
78750843b96ab4897b08e154342676a09a8c931a)

44

https://github.com/OmerSakar/vercors
https://github.com/OmerSakar/vercors/tree/a3e3518a3e720a6b05359bd956312d1b96329d57
https://github.com/OmerSakar/vercors/tree/a3e3518a3e720a6b05359bd956312d1b96329d57
https://github.com/OmerSakar/vercors/tree/78750843b96ab4897b08e154342676a09a8c931a
https://github.com/OmerSakar/vercors/tree/78750843b96ab4897b08e154342676a09a8c931a

7.1 Checking if a Sequence is Empty

Description and syntax
The isEmpty function is defined as follows1:

Empty

Syntax:
isEmpty(a)

Arguments:
a - A sequence, set or bag.

Description:
Check if the argument a is empty.

Returns:
true if the size of the argument equals zero, else false.

Implementation
The isEmpty function is implemented using pure syntactic sugar. Since all information to express
the operation in the COL language is available during the initial pass, we can avoid the more
complex approaches.

The syntax for this operation is a function syntax with name isEmpty and a single argument.
This syntax has already been defined in the ANTLR grammar file, thus no changes have to be
made to the grammar. In PVLtoCOL the syntax of this operator is matched and transformed
into the COL expression which describes the functionality of the isEmpty function, that COL
expression being a comparison between the size of the given argument and the constant zero (i.e.
0 == size(argument), see Listing 7.1).

The reason for the argument a being either a sequence, set or bag is a consequence of using
existing functionality, namely the size operation. The size operation is defined for sequences,
sets and bags and by extension the isEmpty function is also defined on those types.

1 ...
2 if (match(ctx, "isEmpty", tuple)) {
3 ASTNode args[]=getTuple((ParserRuleContext)ctx.getChild(1));
4 return create.expression(
5 StandardOperator.EQ,
6 create.constant(0),
7 create.expression(StandardOperator.Size, args)
8);
9 }

10 ...

Listing 7.1: The if block matching and rewriting the isEmpty function in PVLtoCOL

1This feature is not in the list of features to implement. It has been implemented as part of this research to
understand the architecture of VerCors. To document the feature, it is mentioned in this thesis.

45

Small example
See Listing 7.2. The example constructs an empty sequence a and a non-empty sequence b.
Using the isEmpty function, it is asserted that a is empty and b is not empty.

1 class EmptyExample {
2 void main() {
3 seq<int> a = seq<int> {};
4 seq<int> b = seq<int> {1, 2, 4};
5 assert isEmpty(a) && !isEmpty(b);
6 }
7 }

Listing 7.2: Example of using the isEmpty function

46

7.2 Adding Single Values to Sequences
In the following section, two operations are introduced, namely appending and prepending single
values to sequences. These two operations are introduced together since they are counterparts
of each other.

Description and syntax
The append and prepend operators are defined as follows:

Append

Syntax:
a ++ b

Arguments:
a - A sequence with elements of type T.
b - A value of type T.

Description:
Construct a new sequence by adding a single value b to the end of a sequence a.

Returns:
A new sequence with all values from sequence a (in order) and the last value b.

Prepend

Syntax:
a :: b

Arguments:
a - A value of type T.
b - A sequence with elements of type T.

Description:
Construct a new sequence by adding a single value a to the front of a sequence b.

Returns:
A new sequence with all values from sequence b (in order) and the first value a.

Implementation
The append and prepend operations are implemented using transformed syntactic sugar due to
two reasons. Firstly, the functionality can be easily expressed in COL thus function generation is
not needed and secondly, the type of the value to add is not necessarily known during the initial
transformation, meaning pure syntactic sugar is not an option.

The syntax for these operations is defined in the ANTLR grammar file for PVL named
PVFull.g4. By default, ANTLR grammar rules are left-associative thus the prepend operator is
explicitly defined as right-associative in order for a :: b :: c to be interpreted as a :: (b :: c) instead
of (a :: b) :: c. Listing 7.3 shows the ANTLR grammar rule for atomExpression with the two
cases for our operations. atomExpressions are the building blocks for expressions in PVL and
thus it was deemed appropriate to define our operations as a part of this rule.

47

1 atomExpression
2 : <assoc=right> atomExpression '::' atomExpression
3 | atomExpression '++' atomExpression
4 ...
5 ;

Listing 7.3: The ANTLR grammar rules of the operators append and prepend

Two StandardOperators are defined for these operations namely AppendSingle and
PrependSingle (see Listing 7.4). The operator could have been named Append and Prepend
however the operator Append is already defined for the concatenation of two sequences and thus
an alternative, more descriptive name was chosen. In PVLtoCOL, the syntax for the operations
is matched in the visit method for the rule atomExpression named visitAtomExpression. In-
stead of using the match operator, the matching of the syntax is left to ANTLRtoCOL (the super
class of PVLtoCOL). As a reminder, ANTLRtoCOL iterates over all syntax defined in PVLSyntax and
tries to match it. So the syntax for append and prepend have been added to PVLSyntax where
AppendSingle maps to ++ and PrependSingle maps to ::.

1 public enum StandardOperator {
2 ..., AppendSingle(2), PrependSingle(2), ...
3 }

Listing 7.4: The enum class StandardOperator with operators AppendSingle and
PrependSingle

Since these new operators do not have a mapping to the Viper back end, they are rewritten.
The pass performing this rewrite is the rewrite pass Standardize.java. Listing 7.5 shows part
of the Standardize pass which is responsible for the rewrite of the operator AppendSingle2. A
visual representation of this rewrite can be seen in Figure 7.1. Both arguments are visited since
they can be expressions themselves that need to be transformed. A new sequence is constructed
with the second argument which is the value to append. This new sequence is then concatenated
to the other sequence using a COL expression with operator Append. The Append operator has
a mapping to the Viper back end, thus no further rewrite is necessary. It must be noted that
the type check pass is a prerequisite of the Standardize pass since it requires the type of the
arguments of the OperatorExpression.

1 public class Standardize extends AbstractRewriter {
2 @Override
3 public void visit(OperatorExpression e) {
4 if (e.operator().equals(StandardOperator.AppendSingle)) {
5 Type seqElementType = e.arg(1).getType(); // Get the type of the sequence
6 ASTNode var=e.arg(1).apply(this); // Visit the second argument, which is the value to append
7 ASTNode seq=e.arg(0).apply(this); // Visit the first argument, which is the sequence to append to
8
9 StructValue newSeq = create.struct_value(create.primitive_type(PrimitiveSort.Sequence,

↪→ seqElementType),null,var); //Create a new sequence with the value to be appended
10 result = create.expression(StandardOperator.Append, seq, newSeq);
11 }
12 }
13 }

Listing 7.5: Rewriting the AppendSingle operator
2The rewrite for PrependSingle has been left out since it is similar to the rewrite of AppendSingle.

48

OperatorExpression
Operator: AppendSingle

StructValue
Sequence

ASTNode
Value to append

(a) Before rewrite

OperatorExpression
Operator: Append

StructValue
Sequence

StructValue
Sequence

ASTNode
Value to append

(b) After rewrite

Figure 7.1: Rewrite of the AppendSingle operator to an expression using the existing operator
Append

Small example
See Listing 7.6. In the example, a sequence a is instantiated with some values and an integer b is
instantiated to the value 17. The first assert appends the value 20 to sequence a and asserts that
the value has been appended. The second assert prepends the variable b to sequence a again
asserting that the value of b has been prepended.

1 class AppendPrepend {
2 void main() {
3 seq<int> a = seq<int> {1, 8, 7, 5, 9};
4 int b = 17;
5 assert (a ++ 20) == seq<int> {1, 8, 7, 5, 9, 20};
6 assert (b::a) == seq<int> {17, 1, 8, 7, 5, 9};
7 }
8 }

Listing 7.6: Example of using the append and prepend operators

49

7.3 Taking Ranges from Sequences
In this section, three operations are introduced related to taking ranges from sequences, namely
range, take and drop. These three operations are introduced together since they are similar.

Description and syntax

Range

Syntax:
a[b..c] or range(a, b, c)

Arguments:
a - A sequence.
b - An integer index within the range of sequence a.
c - An integer index within the range of sequence a.

Description:
Construct a new sequence using the elements of sequence a starting from index b (inclusive) to

index c (exclusive).

Returns:
A new sequence with all values from sequence a between indices b (inclusive) and c (exclusive).

Take
Syntax:

a[b..] or take(a, b)

Arguments:
a - A sequence.
b - An integer index within the range of sequence a.

Description:
Construct a new sequence using the elements of sequence a starting from index b (inclusive) to the

end of the sequence.

Returns:
A new sequence with all values from sequence a starting from index b.

50

Drop

Syntax:
a[..c] or drop(a, c)

Arguments:
a - A sequence.
c - An integer index within the range of sequence a.

Description:
Construct a new sequence using the elements of sequence a starting from the start of the sequence

(inclusive) up to index c (exclusive).

Returns:
A new sequence with all values from sequence a up to index c.

Taking ranges in Viper
The Viper back end has native support for taking ranges from sequences. The Viper syntax
is defined as a[b..c] with the same semantics as for our operators where either b or c could
be omitted to either perform a take or drop operation. However, there is one major difference
between our defined operators and the Viper operators which is constricting conditions for b and
c. Viper does not require b and c to be valid indices. To be more precise in what Viper does,
the Viper tutorial states the following:

sub-sequence operators: s[e1..e2], where s is a sequence and e1 and e2 are integers,
returns a new sequence that contains the elements of s starting from index e1 until
(but not including) index e2. The values of e1 and e2 need not be valid indices for
the sequence; for negative e1 the operator behaves as if e1 were equal to 0, for e1
larger than |s| the empty sequence will result (and vice versa for e2). Optionally,
either the first or the second index can be left out (leading to expressions of the form
s[..e] and s[e..]), in which case only elements at the end or at the beginning of s
are dropped, respectively.

In short, the indices given to these operators do not have to be valid and with the documen-
tation above it is left to the users to discover what is and is not possible. Instead of having these
operations loosely defined, a stricter alternative is implemented in VerCors where it is required
to have valid indices .

Implementation
This feature is implemented using function generation. Both variants of syntactic sugar are not
an option since it is not simple to express in one (or a few) COL expression. Defining a new
domain for this functionality is more involved than using function generation.

In the definitions of the operations above it can be seen that two syntax have been defined
for each operation. The reason for defining two syntax instead of one is to give the user options.
One of the syntaxes is a more intuitive syntax (e.g. a[b..c]) and the other syntax is a function
with a descriptive name (e.g. range(a, b, c)). The user can decide for themselves what is
easier to use or what is more readable.

For the intuitive syntax, cases are added to the grammar rule atomExpression. Again,
atomExpressions are the building blocks for expressions in PVL and thus it was deemed ap-
propriate to define our operators as a part of this rule. The function syntax is already part of

51

the ANTLR grammar. Listing 7.7 shows the ANTLR grammar rule for atomExpression with
the three cases for our operations.

1 atomExpression
2 : atomExpression '[' (atomExpression '..' | '..' atomExpression | atomExpression '..'

↪→ atomExpression)']'
3 ...
4 ;

Listing 7.7: The ANTLR grammar rules of the operators range, take and drop

A new StandardOperator is defined for the operation range namely RangeFromSeq. Operators
for take and drop already exist which currently map to the Viper syntax (see Listing 7.8). In
PVLtoCOL, the syntax is matched using the match method (see Listing 7.9). The first three
if statements match the function syntax and the next three if statements match the different
intuitive syntaxes.

1 public enum StandardOperator {
2 ..., Take(2), Drop(2), RangeFromSeq(3), ...
3 }

Listing 7.8: The enum class StandardOperator with operators Take, Drop, RangeFromSeq

1 ...
2 if (match(ctx,"range",tuple)){
3 ASTNode args[]=getTuple((ParserRuleContext)ctx.getChild(1));
4 return create.expression(StandardOperator.RangeFromSeq,args);
5 }
6 if (match(ctx,"take",tuple)){
7 ASTNode args[]=getTuple((ParserRuleContext)ctx.getChild(1));
8 return create.expression(StandardOperator.Take,args);
9 }

10 if (match(ctx,"drop",tuple)){
11 ASTNode args[]=getTuple((ParserRuleContext)ctx.getChild(1));
12 return create.expression(StandardOperator.Drop,args);
13 }
14 if (match(ctx,null, "[", "..", null, "]")) {
15 return create.expression(StandardOperator.Take,convert(ctx, 0), convert(ctx, 3));
16 } else if (match(ctx,null, "[", null, "..", "]")) {
17 return create.expression(StandardOperator.Drop,convert(ctx, 0), convert(ctx, 2));
18 } else if (match(ctx,null, "[", null, "..", null, "]")) {
19 return create.expression(StandardOperator.RangeFromSeq,convert(ctx, 0), convert(ctx, 2), convert(ctx,

↪→ 4));
20 }
21 ...

Listing 7.9: Matching the syntax of the operations take, drop and range

The following step is to rewrite the take and drop operators into range operation. It can
be seen that the take and drop operators are special cases of range where the missing index
is implicit. By providing the missing index, these operations are transformed into range oper-
ations. For the take operation, the missing index is the first index where a statement a[..b]
is rewritten to a[0..b] and for the drop operation, the upperbound of the sequence is missing
where a statement a[b..] is rewritten to a[b..|a|]. This rewrite is performed by the rewrite
pass Standardize which has also been used in the previous section. Figure 7.2 shows a visual
representation of the transformation/rewrite of the COL AST.

52

OperatorExpression
Operator: Take

StructValue
Sequence

ASTNode
Lower bound argument

(a) Before rewrite

OperatorExpression
Operator: RangeFromSeq

OperatorExpression
Operator: Length

ASTNode
Lower bound argument

StructValue
Sequence

StructValue
Sequence

(b) After rewrite

Figure 7.2: Rewrite of the Take operator to the operator RangeFromSeq

Now that the three operations have been reduced to a single operation namely RangeFromSeq,
the function(s) can be generated. Generating the functions is done in a new rewrite pass
RewriteSequenceFunctions3. This pass has two purposes, firstly identify which functions need
to be generated and secondly generate the identified functions.

Similar to other rewrite passes, the COL AST is rewritten and all occurrences that need to
be rewritten are matched in the visit method with the corresponding argument type. Since
the RangeFromSeq operator needs to be rewritten, the visit method with argument of type
OperatorExpression is overridden (see Listing 7.10). If the COL expression with operator
RangeFromSeq is matched, the COL expression is rewritten to a COL function invokation. To in-
voke a function, the name and arguments of the function are required. The name of the function
to invoke consists of two parts, a predefined part and a part specific to the function. In the case
of the operation range, the predefined part is chosen to be take_range_ and the specific part is
the type of the sequence.

When the COL expression is rewritten into a COL function invokation, the type of the
argument sequence is stored in a static map in the RewriteSequenceFunctions pass. The key of
the map is the type of the argument sequence since a function only needs to be defined once for
the same type of sequence. The value of the map is the name of the function to be generated
based on the predefined and specific parts of the function name. The name is stored for both
convenience and to avoid generating two semantically different functions under the same name.

Now onto generating the actual functions. Using the map which contains the type of the
sequence on which the function operates and the name of the function to generate, the self-defined
Scala method takeRangeFromSequence is called. Before continuing with the implementation in
detail, let us first look at the function to generate.

3It should be noted that the RewriteSequenceFunctions pass is a Scala class instead of a Java class. There is
no specific reason to have this pass written in Scala other than a similar pass being written in Scala. Since Scala
is a JVM language, the behavior of our pass is similar to other passes.

53

1 override def visit(operator: OperatorExpression): Unit = {
2 operator.operator match {
3 case StandardOperator.RangeFromSeq =>
4 val sequenceType = operator.arg(0).getType
5 result = create.invokation(null, null, RewriteSequenceFunctions.getRangeFunction(sequenceType),

↪→ rewrite(operator.args.toArray):_*)
6 }
7 }

Listing 7.10: Rewriting a COL expression with operator RangeFromSeq to a COL function
invokation

Listing 7.11 shows the PVL equivalent of the generated take_range_sequence function. As
can be seen there are three preconditions and three postconditions. The preconditions state
that the given indices should be valid and that the lower bound should be smaller or equal to
the upper bound. The postconditions state that the result should be the elements from index
lowerbound to the index upperbound.

1 requires 0 <= lowerbound && lowerbound < |xs|;
2 requires 0 <= upperbound && upperbound <= |xs|;
3 requires lowerbound <= upperbound;
4 ensures |\result| == upperbound - lowerbound;
5 ensures (\forall int j; lowerbound <= j && j < upperbound; \result[j - lowerbound] == xs[j]);
6 ensures (\forall int j; 0 <= j && j < |\result|; \result[j] == xs[j + lowerbound]);
7 seq<T> take_range_Sequence<T>(seq<T> xs, int lowerbound, int upperbound);

Listing 7.11: PVL equivalent of the generated take_range_sequence function

Now that we know what needs to be generated, let us look at how it is generated.
As mentioned above, generating this function is done by the self-defined Scala method
takeRangeFromSequence. The function without the pre/postconditions definitions can be seen in
Listing 7.12. A ContractBuilder is defined by which a COL contract can be easily constructed.
After the contract has been defined, a COL function declaration is created with the proper return
type, contract, function name and arguments.

1 def takeRangeFromSequence(sequenceType: Type, functionName: String): ASTNode = {
2 val contract = new ContractBuilder
3 val result = create.reserved_name(ASTReserved.Result, sequenceType)
4
5 val sequenceArg = new DeclarationStatement(sequenceArgName, sequenceType)
6 val lowerboundArg = new DeclarationStatement(lowerboundArgName, create.primitive_type(PrimitiveSort.

↪→ Integer))
7 val upperboundArg = new DeclarationStatement(upperboundArgName, create.primitive_type(PrimitiveSort.

↪→ Integer))
8
9 .

10 .
11 .
12
13 val declaration = create.function_decl(sequenceType, contract.getContract, functionName,

↪→ functionArguments.toArray, null)
14 declaration.setStatic(true)
15 declaration // return the function declaration
16 }

Listing 7.12: Simplified version of the Scala method takeRangeFromSequence

54

The pre/postconditions are encoded as COL expressions. As mentioned in Section 6.3, the
body of a function does not have to be defined, it is sufficient to express the behavior of the
function in the contract. Simplified versions of the definition of one precondition and one post-
condition can be seen in Listing 7.13 corresponding to the third and fifth condition in Listing
7.11. The result of this Scala method is a bodyless, static COL function expressing the range
operation. This function is then added to the COL AST.

1 def takeRangeFromSequence(sequenceType: Type, functionName: String): ASTNode = {
2 val contract = new ContractBuilder
3 ...
4
5 \\Pre: lowerbound <= upperbound;
6 contract.requires(lte(lowerboundArg, upperboundArg))
7
8 \\Post: (forall int j; lowerbound <= j && j < upperbound; result[j - lowerbound] == seq[j]);
9 contract.ensures(

10 create.forall(
11
12 \\2. Condition: where lowerbound <= j and j < upperbound
13 and(lte(lowerArg, someIndexJ), less(someIndexJ, upperArg))
14
15 \\3. Statement: result[j - lowerbound] equals sequenceArg[j]
16 eq(
17 get(result, minus(someIndexJ, lowerArg)),
18 get(sequenceArg, someIndexJ)
19),
20
21 \\1. Variable definition: For all integers j
22 someIndexJ
23)
24)
25 ...
26 }

Listing 7.13: Simplified definition of a pre and postcondition of the range operation.

Small example
See Listing 7.14. A sequence of integers a is instantiated with some values and five sequences b,
c, d, e and g are defined as ranges from sequence a using the new functions and operators. A
sequence of sequences of integers f is instatiated with some values and shown that the operators
(with syntax a[b..c]) are equivalent to the function calls. Finally, a sequence h is instantiated
which is a sequence of instances of the class Object and it is asserted that the operations also
work on sequences of objects.

55

1 class Range {
2
3 void main() {
4 seq<int> a = seq<int> {1, 4, 5, 7, 8};
5
6 seq<int> b = range(a, 1, 3);
7 assert b == seq<int> {4, 5};
8
9 seq<int> c = take(a, 1);

10 assert c == seq<int> { 1 };
11
12 seq<int> d = drop(a, 2);
13 assert d == seq<int> { 5, 7, 8 };
14
15 seq<int> e = a[1 .. 4];
16 assert e == seq<int> {4, 5, 7};
17
18 seq<int> g = a[2..];
19 assert g[2..] == seq<int> {5, 7, 8};
20
21 seq<seq<int>> f = seq<seq<int>> {seq<int>{1}, seq<int>{2}, seq<int>{3}, seq<int>{4}};
22 assert f[0..|f|][0..|f|] == range(range(f, 0, |f|), 0, 4);
23
24 Object x = new Object(1);
25 Object y = new Object(4);
26 Object z = new Object(6);
27 seq<Object> h = seq<Object> {x, y, z};
28 assert h[..1] == seq<Object> {x};
29 }
30 }
31
32 class Object {
33 int var;
34
35 Object (int v) {
36 var = v;
37 }
38 }

Listing 7.14: Example of using the range, take and drop functions/operators

56

7.4 Removing Values from Sequences by Index
In this section, the remove operation is introduced. The implementation of this operation is
similar to the range operation, therefore this section is less detailed by excluding the discussion
on implementation choices.

Description and syntax

Remove
Syntax:

remove(a, b)

Arguments:
a - A sequence.
b - An integer index within the range of sequence a.

Description:
Construct a new sequence using the elements of sequence a excluding the element at index c.

Returns:
A new sequence with all values from sequence a except the element at index b

Implementation
This feature is implemented using function generation. Both variants of syntactic sugar are not
an option since it is not simple to express in one (or a few) COL expression. Viper does not
support this feature natively, so mapping to the back end is not an option. Defining a new
domain for this functionality is more involved than using function generation.

For this operation, only a single syntax has been defined. An intuitive syntax using the minus
operator was considered, however this was discarded to avoid confusion with similar remove
operations in other languages where instead of providing an index to remove, an element is
provided which is removed from the sequence. For example, for an integer sequence a with
values [1, 2, 3, 4], the syntax a - 2 could both be interpreted as removing the second index
or removing the value 2.

Since the syntax is a function syntax, no additions need to be made to the ANTLR grammar
file. A new StandardOperator is defined named Remove (see Listing 7.15) and in PVLtoCOL the
syntax is matched and transformed into a COL expression with operator Remove (see Listing
7.16).

1 public enum StandardOperator {
2 ..., Remove(2), ...
3 }

Listing 7.15: The enum class StandardOperator with operators Remove

1 if (match(ctx,"remove",tuple)){
2 return create.expression(StandardOperator.Remove,args);
3 }

Listing 7.16: Matching the syntax of the remove

57

No additional rewrites are needed on the remove operation, thus the next step is generating
the function. This task is again performed by the rewrite pass RewriteSequenceFunctions which
has also been used for the range operation in the previous section. Again, this pass has two pur-
poses, firstly identify which functions need to be generated and secondly generate the identified
functions. In the first step, the tree is visited and all COL expression with operator Remove are
rewritten to a COL function invokation (see Listing 7.17).

To invoke a function, the name and arguments of the function are required. The name of the
function to invoke consists of two parts, a predefined part and a part specific to the function. In
the case of the operation remove, the predefined part is chosen to be remove_by_index_ and the
specific part is the type of the sequence. The type of the sequence and the name of the function
to generate are again stored in a map to be used in the next step.

1 override def visit(operator: OperatorExpression): Unit = {
2 operator.operator match {
3 case StandardOperator.Remove =>
4 val sequenceType = operator.arg(0).getType
5 result = create.invokation(null, null, RewriteSequenceFunctions.getRemoveFunction(sequenceType),

↪→ rewrite(operator.args.toArray):_*)
6 }
7 }

Listing 7.17: Rewriting a COL expression with operator Remove to a COL function invokation

The next step is to generate the invoked functions. The map built in the previous step
contains all information that is required to generate the remove function, that being the type
of the sequence the remove function has to operate on and the name of the function. Before
continuing with implementation in detail, let us first look at the function to generate.

Listing 7.18 shows the PVL equivalent of the generated remove_by_index_ function. As can
be seen, there is one precondition and three postconditions. The precondition states that the
given index should be valid and the postconditions state that the result should be the elements
from the original sequence excluding the removed element.

1 requires 0 <= i && i < |sequence|;
2 ensures |\result| == |sequence| - 1;
3 ensures (forall int j; 0 <= j && j < i; \result[j] == sequence[j]);
4 ensures (forall int j; i <= j && j < |\result|; \result[j] == sequence[j + 1]) ;
5 seq<T> remove_by_index_T(seq<T> sequence, int i);

Listing 7.18: PVL equivalent of the generated remove_by_index_ function

Now that we know what needs to be defined, let us look at how it is defined. Gen-
erating the function is performed by the Scala method removeFromSequenceByIndex in the
RewriteSequenceFunctions class. Similar to generating the function for the range operation,
a ContractBuilder is defined by which a COL contract can be easily constructed. After the
contract has been defined, a COL function declaration is created with the proper return type,
contract, function name and arguments.

Simplified versions of the definition of one precondition and one postcondition can be seen in
Listing 7.19 corresponding to the first and second conditions in Listing 7.18. The result of this
Scala method is a bodyless COL function expressing the remove operation and this function is
added to the COL AST as a static function.

58

1 def removeFromSequenceByIndex(sequenceType: Type, functionName: String): ASTNode = {
2 val contract = new ContractBuilder
3 val result = create.reserved_name(ASTReserved.Result, sequenceType)
4
5 val sequence; // The original sequence
6 val index; // The index to remove
7
8 // Require the index to be valid in the given sequence
9 contract.requires(

10 and(
11 lte(0, index),
12 less(index, size(sequence))
13)
14)
15
16 // Ensure |result| to be equal to |original sequence| - 1
17 contract.ensures(
18 eq(
19 size(result),
20 minus(
21 size(name(sequence)),
22 create.constant(1)
23)
24)
25)
26
27 val declaration = create.function_decl(sequenceType, contract.getContract, functionName,

↪→ functionArguments.toArray, null)
28 declaration.setStatic(true)
29 declaration
30 }

Listing 7.19: Simplified definition of a pre and postcondition of the range operation.

Small example
See Listing 7.20. A sequence of integers a is instantiated with some values. For each of the
following sequences, a value at some index is removed and it is asserted the value has been
removed until the sequence is empty. Afterwards, a sequence of Edge objects is instantiated and
it is asserted that the remove function also works on objects.

59

1 class RemoveValues {
2
3 void main() {
4 seq<int> a = seq<int>{1, 2, 3, 4, 5};
5 seq<int> b = remove(a, 2);
6 assert b == seq<int> {1, 2, 4, 5};
7
8 seq<int> c = remove(b, 0);
9 assert c == seq<int> {2, 4, 5};

10
11 seq<int> d = remove(c, 2);
12 assert d == seq<int> {2, 4};
13
14 seq<int> f = remove(d, 1);
15 assert f == seq<int> {2};
16
17 seq<int> g = remove(f, 0);
18 assert empty(g);
19
20 Edge e1 = new Edge(0, 1);
21 Edge e2 = new Edge(1, 2);
22 Edge e3 = new Edge(2, 0);
23 seq<Edge> es = seq<Edge> {e1, e2, e3};
24 assert remove(es, 1) == seq<Edge> {e1, e3};
25 }
26 }
27
28 class Edge {
29 int source;
30 int target;
31
32 Edge (int s, int t) {
33 source = s;
34 target = t;
35 }
36 }

Listing 7.20: Example of using the remove function

60

7.5 Simple Collection Constructors

Description and syntax
The current syntax for declaring an empty sequence of type T is seq<T> {} and to initialize the
sequence with some values the syntax seq<T> {val1, val2, val3} is used. The syntax for sets
and bags are equivalent.

This syntax makes it difficult to write readable code when using it multiple times in a single
function such as the two PVL functions in Listing 7.21. To solve this, a simpler syntax is needed
for sequences, sets and bags.

1 pure static seq<int> update(seq<int> xs, int i, int v) =
2 0 < i ? seq<int> { head(xs) } + update(tail(xs), i - 1, v) : seq<int> { v } + tail(xs);
3
4 pure static seq<seq<int>> Place(seq<seq<int>> stacks, int card) =
5 empty(stacks) ?
6 seq<seq<int>> { seq<int>{ card } } :
7 (head(head(stacks)) >= card ?
8 seq<seq<int>> { card :: head(stacks) } + tail(stacks):
9 seq<seq<int>> { head(stacks) } + Place(tail(stacks), card)

10)
11 ;

Listing 7.21: Examples of PVL methods using sequence constructors

We decided to implement square bracket notation for sequences based on the suggestion made
in the VerCors Axiomatic Data Types documentation [28]. This notation/syntax is also used by
languages such as Python and Haskell. For sets, curly brackets are suggested and for bags curly
brackets preceded by a b are suggested.

Since the type of the constructed collection is not given, it has to be inferred. Type inference
is deducing the type of an expression based on the context. In this case, the context is mainly
the values provided to initialize the collection. The topic of type inference and its scope for this
feature is discussed in the next section. Let us first introduce simple notation.

Simple Empty Collection Constructor

Syntax:
<openingbracket> t:T <closingbracket>

Arguments:
T - The type of the new collection.

Description:
Construct a empty collection with type T.

Returns:
A empty collection with type T.

61

Simple Initialized Collection Constructor

Syntax:
<openingbracket>a, b, c<closingbracket>

Arguments:
a - A value of the new collection.
b - A value of the new collection.
c - A value of the new collection.

Description:
Construct a new collection with the type of the given value(s). The values have to be of the same

type. The syntax definition shows, as an example, 3 values. The minimum amount of values is 1 with
theoretically no upper bound.

Returns:
A new collection with the type of the given value(s).

For example, the syntax for a sequence with values 1 to 3 is [1,2,3, for sets that would be
{1,2,3} and for bags that would be b{1,2,3}. For an empty integer sequence is [t:int], for an
empty integer set it is {t:int} and for an empty integer bag it is b{t:int}.

Type inference
A variety of languages such as Java 7+, Kotlin, Python, Scala, Haskell and more have some level
of type inference baked into the language. In general, we can say that every language infers the
type of an expression using some form of a type system where for example a comparison with an
equals operator == is deduced to be of type boolean and the addition of two integers is again an
integer. There are more complex cases where the type of an expression is not obvious and this
is where type inference in programming languages is implemented.

Let us look at how some languages use type inferences at different scopes, starting with Java.
There are two places where Java uses type inference where the type of an expression is not
obvious. The first place is with diamond operators in assignments (for Java 7+). Let us first
look at the example in Listing 7.22. The first line instantiates a list of strings someListOfStrings
to an empty list where the type of the value (i.e. the right side) and the target (i.e. the left
side) can be immediately inferred to be lists of string. Semantically, the second line is equal to
the first, however the type of the value is not explicitly stated. The user could either explicitly
tell Java what the type is in the diamond operator as in the first line or the user can tell Java
to infer the type of the value by leaving the diamond operator empty as in the second line. Java
deduces the type of the value from the target which is a list of strings.

1 List<String> someListOfStrings = new ArrayList<String>();
2 List<String> anotherListOfStrings = new ArrayList<>();

Listing 7.22: Type inference of Java for the diamond operator

The second case where Java has type inference is Java 10’s var keyword. The var keyword can
be used to declare a local variable without explicitly stating the type. Let us look at the example
in Listing 7.23. The first line is what we have seen above where the type can be immediately
inferred to be a list of objects. Since the type of the value in the assignment can be inferred
directly, the type of the target can be replaced by the keyword var. By using this keyword, Java
knows to infer the type from the context in which it is used.

62

1 List<Object> objects = new ArrayList<Object>();
2 var objects2 = new ArrayList<Object>();

Listing 7.23: Type inference of Java 10+ for the var keyword

The type system of languages such as Python and Haskell are entirely based on type inference.
The type of a variable or function does not need to be explicitly written down anywhere. Haskell
has a gradual type system, meaning that the type of a function can either be stated explicitly or
implicitly, in the latter case the type is inferred at compile time or by the interpreter. Languages
such as Python have type checking during runtime, meaning that if some types are incompatible
the program fails at runtime.

Although it is not required to specify the type of a variable or function, Haskell does have a
way to specify a type baked into the language (see Listing 7.24) and Python 3.5+ has a library
for type hinting which can be used by third party type checkers and code linters (see Listing
7.25).

1 increment :: Int -> Int
2 increment x = x + 1

Listing 7.24: Type declaration in Haskell

1 # Without type hints
2 def scale1(x):
3 return x + 1
4
5 # With type hints
6 def scale2(x: Int) -> Int:
7 return x + 1

Listing 7.25: Type hints in Python 3.5+

Implementation
To implement type inference for collection constructors in VerCors, the scope of type inference
needs to be defined. The scope of type inference is set to the scope of the constructor, meaning
that only the values supplied in the constructor are used. Information about the context such
as if it is used in an assignment or a method call is not available. Having type inference at a
larger scope, for example an assignment such as with Java 10+’s var keyword, requires more
involved changes to the architecture of VerCors. For programming languages, it makes sense to
implement type inference at a larger scope, however for a verification language without a runtime
the benefit is not as apparent.

Recall that there are two simple constructors; a constructor for an empty collection where
the type is supplied and a constructor for an initialized collection where the values are supplied.
The reason for this distinction is directly related to the scope of type inference. In the case where
values are supplied the type can be inferred from those values. In the case where there are no
values to infer the type from, the type has to be supplied.

For the rest of the section, the focus of the discussion is put on sequences to keep the listings
readable. The steps for sets and bags are equivalent.

Although this feature might be dissimilar to other operations discussed above, the imple-
mentation generally follows the same steps as transformed syntactic sugar: match the syntax

63

to transform it into a COL expression and define a pass to perform some action or transforma-
tion. Let us start with the syntax defined in the ANTLR file. Before the implementation of this
feature, the ADT constructors for sequences, sets and bags were a part of the atomExpression
rule which is the building block of PVL expressions. Instead of adding new cases to the rule
atomExpression, a new rule was defined named collectionConstructors which contains all dif-
ferent constructors for ADTs (see Listing 7.26). In the future, if a new constructor for any ADT
needs to be added, it can simply be added to the collectionConstructors rule.

1 atomExpression
2 : collectionConstructors
3 ;
4
5 collectionConstructors
6 : CONTAINER '<' type '>' values
7 | '[' arguments ']'
8 | '[t:' type ']'
9 ;

10
11 CONTAINER : 'seq' | 'set' | 'bag' ;

Listing 7.26: The ANTLR grammar rules atomExpression and collectionConstructors

Since a new rule is defined in the syntax, the parser will have a new method called
visitCollectionConstructors in which the syntax of the constructors is matched. Using the
match method, the new sequence constructor syntax is matched (see Listing 7.27). If a type
is provided, an empty sequence is defined with the given type. If values are provided, then a
sequence is initialized with the given values and variable type INFER_ADT_TYPE.

1 if (match(ctx, "[t:", type_expr, "]")) {
2 Type t=checkType(convert(ctx,1));
3 return create.struct_value(create.primitive_type(PrimitiveSort.Sequence, t), null);
4 }
5 if (match(ctx, "[", null, "]")) {
6 ASTNode[] args = getValues((ParserRuleContext)ctx.children.get(1));
7 return create.struct_value(create.primitive_type(PrimitiveSort.Sequence, create.type_variable(

↪→ InferADTTypes.typeVariableName())),null,args);
8 }

Listing 7.27: Matching the new constructors in PVLtoCOL

Type checking

During type checking, the variable type named INFER_ADT_TYPE is matched. The values are
type checked and all non-null types (of the values) are collected into a set. Now there are three
possibilities for the length of that set:

• The length is 0. In this case, all values have their type set to null. This is only the case
when the type of none of the elements are set which could be an implementation error in
the type checker. This error should, in theory, never be reached in a release. If it does
happen, a descriptive error message is shown.

• The length is 1. In this case, all values have the same type and thus the type of the
sequence can be inferred to be of the same type.

64

• The length is more than 1. In this case, the sequence cannot be constructed resulting
in a fail. This case also does not work with the old constructor syntax simply because a
sequence cannot contain elements of multiple types.

Types in COL

The variable type named INFER_ADT_TYPE is modeled by TypeVariable. TypeVariable is not the
only type in VerCors. TypeVariable is one of the implementations of the abstract class Type and
every ASTNode in a COL AST has a Type.

When choosing the correct Type to be used for type inference, different types were con-
sidered. In the current version of VerCors, there are seven implementations of Type which
are PrimitiveType, ClassType, FunctionType, RecordType, TupleType, TypeExpression and
TypeVariable. Let us go over these different types, discussing their function and how they
are used within VerCors.

• PrimitiveType: Models supported types. Used when any supported type (such as integers
or sequences) are created.

• ClassType: Models the type with a class.

• FunctionType: Models the type of a function as a list of types for the arguments and a
result type. Used for functions and methods.

• RecordType: Models a mapping from variable names to their types. Used in tests.

• TupleType: Models a tuple of type (e.g (integer, boolean)). Used by some operators to
keep track of the types they operate on.

• TypeExpression: Models an expression of types, similar to what we have seen with
OperatorExpression. TypeExpression takes an operators of type TypeOperator and an
array of Types. Used to express that some type T extends some type G.

• TypeVariable: Models a Type with a variable name.

The three viable options are PrimitiveType, ClassType and TypeVariable with TypeVariable
being the best option. A PrimitiveType is not used since the inferred type INFER_ADT_TYPE is
not a supported type, it is a temporary type. A ClassType is not used since using a ClassType
would imply that a class with that specific name would be created. This creates unnecessary
overhead.

Type of StructValue

A StructValue is an AST node that models a structured value (such as a sequence or bag).
StructValue has two types: the type given when creating it and the type inherited by ASTNode.
The difference between the two is that the type inherited from ASTNode is omitted after a rewrite
pass and the type given at creation is not. This means that the variable type INFER_ADT_TYPE is
still the type of the collection.

A rewrite pass InferADTTypes is defined to properly set the both types of the collection (see
Listing 7.28). Four conditions have to be met to infer the type:

1. First, the StrucValue has to be a sequence, set or bag.

2. Second, the collection should not be empty.

3. Third, the type should be a TypeVariable.

4. Lastly, the name of the TypeVariable should match INFER_ADT_TYPE.

65

When all of these conditions are met, a new StructValue is created with the values of the
old collection and the inferred type. All types should be known after this pass or in other words
there should be no type INFER_ADT_TYPE in the COL AST.

1 class InferADTTypes(source: ProgramUnit) extends AbstractRewriter(source, true) {
2 override def visit(v: StructValue): Unit = {
3 if((v.`type`.isPrimitive(PrimitiveSort.Sequence) || v.`type`.isPrimitive(PrimitiveSort.Set) || v.`

↪→ type`.isPrimitive(PrimitiveSort.Bag)) &&
4 v.`type`.args.nonEmpty &&
5 v.`type`.firstarg.isInstanceOf[TypeVariable] &&
6 v.`type`.firstarg.asInstanceOf[TypeVariable].name == InferADTTypes.typeVariableName
7) {
8 // If the inference succeeded in the type checker, then the type should be v.getType
9 result = create.struct_value(create.primitive_type(v.`type`.asInstanceOf[PrimitiveType].sort, v.

↪→ getType.firstarg), null, v.values: _*)
10 } else {
11 super.visit(v)
12 }
13 }
14 }

Listing 7.28: The rewrite pass InferADTTypes

Limitation
The feature in its current form is relatively simple. For future reference, one of the possible
difficulties is discussed.

If inheritance is going to be supported in PVL, both type checking and type inference will
have to be reimplemented. The current type check and type inference are simple since the type
system is not complex. When inheritance is supported, the type checker will have to find the
closest common superclass of all values. For example, if we have a class A extending C and a
class B extending C, then the closest common superclass is class C and thus the sequence will be
of type C. When inferring the type, a similar approach must be taken.

Small example
See Listing 7.29. In this example, two sequences a and b are instantiated using the old syntax
and two equivalent sequences c and d are instantiated using the new syntax and it is asserted
that the new syntax behaves the same as the old syntax. An empty sequence of Edge objects in
instantiated and it is asserted that an initialized sequence with some values is equivalent to an
empty sequence with those values prepended to it.

66

1 class SimpleCollectionConstructors {
2 void main() {
3 seq<int> a = seq<int> {};
4 seq<int> b = seq<int> {1, 5, 7, 9, 2};
5
6 seq<int> c = [t:int];
7 seq<int> d = [1, 5, 7, 9, 2];
8
9 assert a == c && b == d;

10
11 Edge e1 = new Edge(0, 1);
12 Edge e2 = new Edge(1, 2);
13 seq<Edge> es = [t:Edge];
14
15 assert [e1, e2] == e1::e2::[t:Edge];
16
17 set<int> f = set<int> {};
18 set<int> g = set<int> {1, 5, 7, 9, 2};
19
20 set<int> h = {t:int};
21 set<int> i = {1, 5, 7, 9, 2};
22
23 assert f == h && g == i;
24
25 bag<int> j = bag<int> {};
26 bag<int> k = bag<int> {1, 1, 5, 7, 9, 2};
27
28 bag<int> l = {t:int};
29 bag<int> m = b{1, 1, 5, 7, 9, 2};
30
31 assert j == l && k == m;
32 }
33 }
34
35 class Edge {
36 int source;
37 int target;
38
39 Edge(int s, int t) {
40 source = s;
41 target = t;
42 }
43 }

Listing 7.29: Example of using the simple sequence constructor

67

7.6 Subset Notation

Description and syntax
The subset operator is defined as follows:

SubSet
Syntax:

a < b

Arguments:
a - A set or bag.
b - A set or bag.

Description:
Check if the argument a is a proper subset of argument b. The types of a and b have to match.

Returns:
true if a is a proper subset of b.

SubSetEq

Syntax:
a <= b

Arguments:
a - A set or bag.
b - A set or bag.

Description:
Check if the argument a is a subset of argument b. The types of a and b have to match.

Returns:
true if a is a subset of b.

Implementation
Silver has a subset operator for sets and bags, so the subset operator is directly mapped to the
back end. The syntax already exists to compare integers, so nothing is added to the ANTLR
grammar and PVLtoCOL rewrites the <= and < operators to the StandardOperators LTE and LT
respectively.

The LTE and LT operators are rewritten in a new rewrite pass ADTOperatorRewriter (see
Listing 7.30). This separates the behavior of the operators for numeric types and for sets/bags.
The operators are rewritten to expressions with new StandardOperators SubSetEq and SubSet.

A mapping of the StandardOperators to Silver expressions is defined in the
SilverExpressionMap (see Listing 7.31). The SubSetEq operator is mapped directly to the Silver
subset operator. The SubSet operator is mapped to the expression argument1 subset argument2
∧ |argument1| < |argument2|4. The Silver expression (as part of the Silver project) for the
subset operator is named AnySetSubset and using the SilverExpressionFactory this expression
is retrieved (see Listing 7.32).

4An Isabelle proof for this rewrite rule is given in Appendix B.

68

1 public class ADTOperatorRewriter extends AbstractRewriter {
2 @Override
3 public void visit(OperatorExpression e) {
4 switch (e.operator()) {
5 case LTE: case LT:
6 if (e.arg(0).getType().isPrimitive(PrimitiveSort.Set) ||
7 e.arg(0).getType().isPrimitive(PrimitiveSort.Bag)) {
8 StandardOperator op = (e.operator().equals(StandardOperator.LT)) ? StandardOperator.SubSet :

↪→ StandardOperator.SubSetEq;
9 ASTNode e1 = e.arg(0).apply(this);

10 ASTNode e2 = e.arg(1).apply(this);
11 result = create.expression(op, e1, e2);
12 } else {
13 super.visit(e);
14 }
15 }
16 }
17 }

Listing 7.30: Rewriting the LTE and LT operators for sets and bags

1 public class SilverExpressionMap implements ASTMapping {
2 public Exp map(OperatorExpression e) {
3 switch(e.operator()){
4 ...
5 case SubSet: create.and(o, create.any_set_subset(o, e1, e2), create.lt(o, create.size(o, e1),

↪→ create.size(o, e2)));
6 case SubSetEq: return create.any_set_subset(o, e1, e2);
7 ...
8 }
9 }

10 }

Listing 7.31: The mapping of SubSet and SubSetEq in SilverExpressionMap

1 class SilverExpressionFactory {
2 override def any_set_subset(o:O,e1:Exp,e2:Exp):Exp = add(AnySetSubset(e1,e2)_,o)
3 }

Listing 7.32: The Silver subset expression in SilverExpressionFactory

Small example
See Listing 7.33. In this example, two sets a and b and two bags c and d are initialized with
some values. It is asserted that a set is a subset of itself and that a smaller set/bag is a proper
subset of a larger set/bag.

1 class SubSet {
2 void main() {
3 set<int> a = set<int> {1, 5, 7, 8, 6, 1, 4, 8, 6, 3};
4 set<int> b = set<int> {1, 5, 7};
5 bag<int> c = bag<int> {1,5,7,4,9,6,3,2,4,5};
6 bag<int> d = bag<int> {4,6,2,4,5};
7
8 assert b <= b && b < a && d < c;
9 }

10 }

Listing 7.33: Example of using the subset operator

69

Chapter 8

Set Comprehension

This chapter answers the questions for RQ4 on set comprehension. Section 8.1 answers RQ4.1,
showing the definition of set comprehension with its syntax. Section 8.2 answers RQ4.2 by
discussing the encoding of set comprehension in Viper. Next, the implementation is discussed
followed by a discussion on limitations and design choices based on the limitations.

The implementation of set comprehension (as described in this chapter) can be found
in commit ce03982 which can be browsed at https://github.com/OmerSakar/vercors/tree/
ce03982b25b13d693a4b6fd2dda0fee62de96ba3.

8.1 Description and Syntax

Set Comprehension

Syntax:
set<T> { main | (U var (<- collection)?)+; selector}

Arguments:
T - The type of the resulting set.
main - The expression to be part of the set (of type T).
selector - The condition to include an element.
U var - A variable var of type U
collection - A sequence, set or bag.

Description:
Set comprehension is building a set based on generators. All variables var are quantified over

and have a possible domain collection (i.e. the value of var is from the collection collection). The
expression main is the element to include in the set only if the expression selector holds.

Returns:
A set with expressions of the form main based on the variable(s) var on the condition that selector

holds.

Since the syntax is complex, consider the example in Listing 8.1. We have two integers x and
y from sequences with values 1 to 5. We add the expression x+y to the resulting set iff x equals
y.

70

https://github.com/OmerSakar/vercors/tree/ce03982b25b13d693a4b6fd2dda0fee62de96ba3
https://github.com/OmerSakar/vercors/tree/ce03982b25b13d693a4b6fd2dda0fee62de96ba3

1 set<int> {x+y | int x <- {1, 2, 3, 4, 5}, int y <- {1, 2, 3, 4, 5}; x == y}

Listing 8.1: Example of set comprehension

8.2 Design
The example in Listing 8.1 can be read as follows: for all integer x in the set {1, 2, 3, 4, 5} and
integers y in the set {1, 2, 3, 4, 5}, x == y iff x+ y is in the resulting set. From this alternative
interpretation, the set comprehension could be seen as a set with a universal quantifier describing
its elements.

To translate this approach to Viper, there must be a construct that Viper supports to get such
a set. There is no special syntax to creating a set out of nothing, however there are bodyless
functions. A function can return a set with the postcondition of the function describing the
elements from that set.

In the design we differentiate between three cases:

• Quantifying over integers with a finite domain
• Quantifying over objects with a finite domain
• Quantifying over integers with an infinite domain

Quantifying over integers with a finite domain
Listing 8.1 shows an example of quantifying over integers with a finite domain. The Viper
encoding of this Listing is shown in Listing 8.2. The domain of the integers x and y (i.e. the range
of values x and y can have) are supplied through the two arguments of the function domainOfX
and domainOfY. The post condition describes the elements of the resulting set in almost the same
way as the alternative interpretation above: For all integers x and y, if they are in their respective
domain, then x == y iff x+ y is in the resulting set (where the special keyword result refers to
the result of the function).

1 function setComprehension(domainOfX: Set[Int], domainOfY: Set[Int]): Set[Int]
2 ensures forall x: Int, y: Int :: (x in domainOfX && y in domainOfY) ==> (x==y) <==> (x+y in result)

Listing 8.2: The Viper encoding of Listing 8.1

Quantifying over objects with a finite domain
Set comprehension on objects is similar to the previous case with one additional step. As men-
tioned in the background, classes in PVL are encoded as Refs in Viper. These references have
permission on fields that are declared at the top level. When using a collection of objects in set
comprehension, read permissions on the fields of that class are needed as a minimum.

Listing 8.3 shows an example of set comprehension over objects. We have a class Edge with
two integer fields a and b and a constructor initializing the fields returning read permission on
both fields. In the method main of the SetComp class, two Edge objects are instantiated after
which a set of Edges a is initialized using set comprehension. The two initialized Edge objects
are quantified over and added to the set iff the field a is larger than 2.

The Viper encoding of Listing 8.3 is shown in Listing 8.4. The two fields a and b (prepended
with Edge_) are declared at top-level. The precondition states that all Refs (i.e. Edge objects) in
the argument of the function must have wildcard permissions or in other words read permissions
at a minimum.

71

1 class SetComp {
2 void main() {
3 Edge e1 = new Edge(3, 2);
4 Edge e2 = new Edge(1, 2);
5 set<Edge> es = set<Edge> { e | Edge e <- set<Edge> {e1, e2}; e.a > 2 };
6 }
7 }
8
9 class Edge {

10 int a;
11 int b;
12
13 ensures Perm(a, read) ** Perm(b, read);
14 Edge(int c, int d) {
15 a = c;
16 b = d;
17 }
18 }

Listing 8.3: Example of set comprehension over objects

1 field Edge_a: Int
2 field Edge_b: Int
3
4 function vct_set_comprehension_Set_Edge_(domainOfE: Set[Ref]): Set[Ref]
5 requires (forall e: Ref :: (e in domainOfE) ==> acc(e.Edge_a, wildcard) && acc(e.Edge_b, wildcard))
6 ensures (forall e: Ref :: (e in domainOfE) ==> 2 < e.Edge_a == (e in result))

Listing 8.4: The Viper encoding of Listing 8.3

Quantifying over integers with an infinite domain
For integers, it is also possible to quantify over them with a (theoretical) infinite domain. Suppose
that we want all positive integers divisible by 2 (see Listing 8.5).

1 set<int> {x | int x; x > 0 && x % 2 == 0}

Listing 8.5: Example of set comprehension over integers with an infinite domain

The Viper encoding of Listing 8.5 is shown in Listing 8.6. The function returns a set of
integers containing all integers (from the infinite domain of all possible integers) where the
condition holds.

Since the domain of integers is infinite, the resulting set can also be (in theory) infinite. In
Chapter 2, it was stated that sets in Viper are finite. These two seemingly conflicting observations
can be combined with the following description of the resulting set; The resulting set is not
infinite, however it models an infinite set.

1 function setComprehension(): Set[Int]
2 ensures (forall x: Int :: (0 < x && x % 2 == 0) == (x in result))

Listing 8.6: The Viper encoding of Listing 8.5

72

8.3 Implementation
As stated above, a bodyless function can be used to get a set with the desired properties. Given
that set comprehension is not part of Viper and that it is a new feature to VerCors, function
generation seems like the only viable option.

The approach to implement set comprehension using function generation is slightly different
from the general approach explained in Section 6.3. The steps for the general approach are as
follows:

1. The syntax related to the functionality needs to be defined.

2. A new operator is defined in enum class StandardOperator.

3. The syntax is matched in PVLtoCOL and transformed into a COL expression with the newly
defined operator and its arguments.

4. A rewrite pass is defined (or an existing one is used) that generates the related function.

The steps that are taken for this specific case (which differ in steps 2 and 3) are:

1. The syntax related to the functionality needs to be defined.

2. A new binder is defined in enum class Binder.

3. The syntax is matched in PVLtoCOL and transformed into a COL BindingExpression AST
node with the newly defined binder and its arguments.

4. A rewrite pass is defined (or an existing one is used) that generates the related function.

There are two reasons to choose a BindingExpression over an OperatorExpression (in the
general approach). First, a StandardOperator has a constant number of arguments. Set com-
prehension needs to keep track of the variables, selector expression and main expression and the
relation between them. A constant number of arguments is not suited to model set compre-
hension. Second, set comprehension is very similar to a universal quantifier which is modeled
by a BindingExpression. This has the added benefit that the logic for BindingExpressions is
already present in VerCors and is suitable for this use case as well, for example the scoping of
the bounded variables for the selector and main expressions.

The BindingExpression AST node models an expression that binds fresh variables to an
expression. In the case of the universal/existential quantifier, the selector (or guard) and the
main expression are bound by the variables which are quantified over. Listing 8.7 shows a
universal quantifier with the different parts underlined.

1 \forall(int x, int y; x >= 0 && x < 5 && y >= 0 && y < 5; x+y >= 0 && x+y <= 8);
2
3
4 Variables Selector Main

Listing 8.7: An example of a binding expression with the universal quantifier as its binder

The AST node SetComprehension

Besides the variables, selector and main expression modeled in BindingExpression, set compre-
hension needs to keep track of the domain of the quantified variables. This is modeled by a new
Java class SetComprehension which extends BindingExpression.

73

Listing 8.8 shows the new Java class SetComprehension. SetComprehension has a Java map
of the quantified variable names (in the form of NameExpressions) to their domain (in the form
of ASTNodes). The constructor has the following arguments:

1. result_type: The result type of the expression itself. The expression in this case is set
comprehension and the result type is a set with elements of some type.

2. decls: The quantified variables. The declaration of these new variables are modeled as
DeclarationStatement.

3. selector: The selector expression.
4. main: The main expression. The type of this expression matches the type of the elements

of the resulting set.
5. variables: A map of variable names to their domain.

The first four arguments are passed to the constructor of BindingExpression along with the
enum value Binder.SetComp. Binder is an enum class used by BindingExpression to signify what
kind of binding expression it is (e.g. forall and exists). For set comprehension, the value SetComp
is added to Binder (see Listing 8.9) and passed to the constructor of BindingExpression.

1 public class SetComprehension extends BindingExpression {
2
3 public Map<NameExpression, ASTNode> variables;
4
5 public SetComprehension(Type result_type, DeclarationStatement[] decls, ASTNode selector, ASTNode main

↪→ , Map<NameExpression, ASTNode> variables) {
6 super(Binder.SetComp, result_type, decls, new ASTNode[0][], selector, main);
7 this.variables = variables;
8 }
9 }

Listing 8.8: The Java class SetComprehension

1 public enum Binder {
2 ...,
3 SetComp
4 }

Listing 8.9: The Java enum Binder

Syntax definition
The syntax for set comprehension is added in the form of three ANTLR grammar rules. Listing
8.10 shows these three rules. The rule collectionConstructor is the main rule and it is used to
define constructors for collections which are natively supported (i.e. sets, bags and collection).
The lexer rule CONTAINER contains the token set. The grammar rule setCompSelectors and
setCompSelector define the syntax to quantify over variables (e.g. int x <- [0, 1, 2]). The
reason for separating these rules from collectionConstructors is for easier parsing since some
quantified variables (of type integer) do not have a domain.

Listing 8.11 shows how the syntax is matched in PVLtoCOL. The match method is used to
match the syntax and the AST node factory named create is used to create a new instance of
SetComprehension as described above. The two methods getVariableDecls and getVarBounds
are used to go over the quantified variables and return the declared variables and a map of
variables to their domain respectively.

74

1 setCompSelector :
2 type identifier ('<-' (identifier | collectionConstructor))?
3 ;
4 setCompSelectors :
5 setCompSelector (',' setCompSelector)*
6 ;
7
8 collectionConstructor :
9 CONTAINER '<' type '>' '{' expr '|' setCompSelectors ';' expr '}'

10 ;

Listing 8.10: The ANTLR grammar rules of the set comprehension

1 if (match(ctx,"set","<",null,">","{",null,"|",null,";",null,"}")) {
2 // The type of the resulting set elements
3 Type t=checkType(convert(ctx,2));
4
5 // Get all variables which are quantified over
6 DeclarationStatement[] variables = getVariableDecls((ParserRuleContext)ctx.getChild(7));
7 // Get all variables which are quantified over including their bounds
8 Map<NameExpression, ASTNode> varBounds = getVarBounds((ParserRuleContext)ctx.getChild(7));
9

10 return create.setComp(
11 create.primitive_type(PrimitiveSort.Set, t), // The result type is a set with elements of type t
12 convert(ctx,9), // The selector expression
13 convert(ctx,5), // The main expression
14 varBounds,
15 variables
16);
17 }

Listing 8.11: Matching the set comprehension syntax in PVLtoCOL

Generating the function
The function is generated by the method generateSetComprehensionFunction in a new rewrite
pass GenerateADTFunctions. This method gets the SetComprehension object and the name of
the function to generate as its arguments. The method generates the function in six steps:

1. Create local variables to keep track fo the result type, ContractBuilder and the result
keyword.

2. Collect all field accesses from the main and selector expressions.

3. For each field access, acquire wildcard permission (i.e. at least read permission) for those
fields from the quantified variables in a precondition.

4. Create an argument for each quantified variable with a domain.

5. Generate the postcondition according to the following pseudo-code template: For all quan-
tified variables with a domain, if those variables are within their domain it implies that the
quantified variable is in the result set iff the selector holds.

6. Create a function declaration with the result type, contract, name and arguments.

The second step is performed by a RecursiveVisitor. Previously, implementations of the
abstract class RecursiveVisitor were used as visitor passes. For this use case, a tree visitor
FieldAccessCollector is created to walk the main and selector expressions (see Listing 8.12).

75

A list is made to store Dereference which is the ASTNode representing a field access. The
corresponding visit method is overwritten and the ASTNode e (corresponding to the field
access) is stored in the list. This list is then used in step 3.

1 public class FieldAccessCollector extends RecursiveVisitor<Object> {
2 private List<Dereference> fieldAccesses = new ArrayList<>();
3
4 @Override
5 public void visit(Dereference e) {
6 fieldAccesses.add(e);
7 }
8 }

Listing 8.12: The FieldAccessCollector class

The steps 4 to 6 are equivalent to the steps taken in Section 7.3.

8.4 Limitations and Design Choices

8.4.1 Difficulties with proving simple properties
Consider the three cases in Listing 8.13. In all three cases a set a is constructed using set
comprehension and it is asserted that . . .+ . . . is in the set:

• Case 1: Set a consists of all integers between 0 and 5 (inclusive). The assertion checks if
1 + 1 is within the set. This assertion succeeds.

• Case 2: Set a consists of all x+ x where the integer x is between 0 and 5 (inclusive). The
assertion checks if 1 + 1 is within the set. This assertion fails.

• Case 3: Set a consists of all x+ x where the integer x is between 0 and 5 (inclusive). The
assertion checks if j+ j is within the set where integer j is an argument of the method and
is required to be within the bounds. This assertion succeeds.

1 class SetComp {
2
3 void case1() {
4 set<int> a = set<int> { x | int x; x >= 0 && x <= 5 };
5 assert 1+1 in a; // Verifies
6 }
7
8 void case2() {
9 set<int> a = set<int> { x+x | int x; x >= 0 && x <= 5 };

10 assert 1+1 in a; // Fails
11 }
12
13 requires 0 <= j && j < 5;
14 void case3(int j) {
15 set<int> a = set<int> { x+x | int x; x >= 0 && x <= 5 };
16 assert j+j in a; // Verifies
17 }
18 }

Listing 8.13: Three different usecases of set comprehension

When the expression returned by set comprehension is the identity function as with case 1,
it can be asserted that a certain value is in the set or is not in the set. When a non-identity

76

function is used as with cases 2 and 3, it becomes more difficult for the SMT solver to solve the
problem.

The difficulty is caused by the simplification of arithmetic expressions, in case 2 that is 1+1.
The assertion in case 2 gets simplified by either Viper or Z3 to 2 in a. Z3 cannot match the
simplified expression 2 against x+x and fails in verifying the problem. Case 3 is a similar case
with an integer argument j and the reason that the assertion in case 3 succeeds is that j does
not have a concrete value and thus cannot be simplified further.

The limitation in case 2 can be overcome by using a function to wrap around the returned
expression. Listing 8.14 shows case 2 rewritten to use a function call. A new function plus is
defined taking two integer arguments and returning the sum. The expression x+x is replaced
with a function call. Instead of asserting 1+1 in a it now has to be asserted that plus(1,1) in
a and the same holds for j+j.

1 class SetComp {
2 requires 0 <= j && j < 5;
3 void case4(int j) {
4 set<int> a = set<int> {SetComp.plus(x, x) | int x; x >= 0 && x <= 5 };
5 assert plus(1, 1) in a; // Verifies
6 assert plus(j, j) in a; // Verifies
7 }
8
9 pure static int plus(int a, int b) = a+b;

10 }

Listing 8.14: An equivalent method case4 to the method case2

For any non-identity expression as its main expression, it is recommended to wrap the ex-
pression in a function and have a call to the function as the return expression. In the example
above, the non-identity expression x+x is wrapped in the plus function. With a single function
call, Viper can generate the correct triggers.

8.4.2 Scoping issues
Using a field of the current class or a local variable is not possible in the main and selector
expressions. This limitation is put by the fact that the scope of the generated function is entirely
new.

This limitation can be worked around relatively easily by defining another quantified variable
with as its domain a sequence with the local variable/class field. Listing 8.15 shows two methods
showing the limitation and the workaround. The method wrong fails due to the variable b being
used in the main expression of the set comprehension. The method right works around this
problem by defining a new quantified integer c with its domain a singleton sequence with b.

1 void wrong() {
2 int b = 0;
3 set<int> a = set<int> {x+b | int x; x >= 0};
4 }
5
6 void right() {
7 int b = 0;
8 set<int> a = set<int> {x+c | int x, int c <- [b]; x >= 0};
9 }

Listing 8.15: Scoping of Set Comprehension

77

The alternative solution is to generate arguments for each variable that is out of scope. This
solution has a major disadvantage compared to the workaround above. Finding all variables
used in the main/selector expression that is also out of scope is difficult. This would require
keeping track of which variables are in scope and out of scope for this specific function which is
a non-trivial problem.

8.4.3 Classes must have a domain
Quantified variables of the class type must have a domain (as mentioned in the design). This
limitation comes from the fact that PVL classes are encoded as Silver Refs with the write
permissions to the class fields.

As a reminder, Refs have all the declared fields, however they can only access those for which
permission is acquired. This implies that when we reason about all Refs that have a certain set
of permissions, we are reasoning about a larger set of Refs than the set of all instances of our
PVL class. It is due to this reason that instances of classes have to be bound by a domain.

8.5 Examples using Set Comprehension
Listing 8.16 shows examples from the previous section which create three different sets using set
comprehension.

1 class SetComp {
2 void main() {
3 set<int> c = set<int> {x+y | int x <- {1, 2, 3, 4, 5}, int y <- {1, 2, 3, 4, 5}; x == y};
4 set<int> d = set<int> {x | int x; x > 0 && x % 2 == 0};
5
6 Edge e1 = new Edge(3, 2);
7 Edge e2 = new Edge(1, 2);
8 set<Edge> a = set<Edge> { e | Edge e <- set<Edge> {e1, e2}; e.a > 2 };
9 }

10 }
11
12 class Edge {
13 int a;
14 int b;
15
16 ensures Perm(a, read) ** Perm(b, read);
17 Edge(int c, int d) {
18 a = c;
19 b = d;
20 }
21 }

Listing 8.16: An example using set comprehension in PVL

78

Chapter 9

Maps

This chapter answers the questions for RQ5 on maps. Section 9.1 answers RQ5.1, showing
the definition of a map with its syntax. Section 9.2 continues by answering both RQ5.2 and
RQ5.3, introducing the Dafny map axiomatization with its functions. Next, the implementation
is discussed followed by a discussion on triggers chosen for the axioms in the Map domain.

The implementation of maps (as described in this chapter) can be found in com-
mit 0899e5d which can be browsed at https://github.com/OmerSakar/vercors/tree/
0899e5da5498ca1ee3b49b9951c284e88e943944.

9.1 Description and Syntax
Similar to the discussion in Section 2.2, there is no a single definition for a map. The definition
of a map, implemented as part of this thesis, follows the same line as the sequences, sets and
bags in VerCors1. We define maps in VerCors as an unordered, finite, immutable collection of
key/value pairs with unique keys.

Function/operators on maps are introduced below in the form of tables. Some functions have
been grouped since their descriptions are very similar.

Map Constructor

Syntax:
map <K,V> {a -> b, c -> d}

Arguments:
K - The type of the keys.
V - The type of the values.
a, c - Keys of type K.
b, d - Values of type V.

Description:
Constructs a new map that maps elements of type K to elements of type V. The map is initialized

with key/value pairs using the syntax a -> b to variable a of type K to variable b to type V. If no
mappings are defined, an empty map is returned.

Returns:
A new map initialized with the given value(s).

1As a reminder, the ADTs in VerCors were finite and immutable collections.

79

https://github.com/OmerSakar/vercors/tree/0899e5da5498ca1ee3b49b9951c284e88e943944
https://github.com/OmerSakar/vercors/tree/0899e5da5498ca1ee3b49b9951c284e88e943944

Keys, values and items

Syntax:
keys(m), values(m), items(m)

Arguments:
m - A map with keys of type K and values of type V.

Description:
Gets the key set, value set or item set respectively of map m. The key set has elements of type K, the value set has elements of

type V and the item set has elements of type Tuple[K,V] (introduced in the next Section).

Returns:
Return the key set, value set or item set respectively of map m.

Add a key/value pair

Syntax:
buildMap(m, k, v) or m ++ (k,v)

Arguments:
m - A map with keys of type K and values of type V.
k - A key of type K.
v - A value of type V.

Description:
Adds the key/value pair (k,v) to the map m. If the key already
exists, update the value of the key.

Returns:
Returns a map with the new key/value pair.

Remove a key/value pair

Syntax:
removeFromMap(m, k)

Arguments:
m - A map with keys of type K and values of type V.
k - A key of type K.

Description:
Removes the key k and its associated value from the map m.

Returns:
Returns a map without the key k.

Get a value from a key

Syntax:
getFromMap(m, k) or m[k]

Arguments:
m - A map with keys of type K and values of type V.
k - A key of type K.

Description:
Gets the value mapped by the key k from the map m.

Returns:
Returns the value corresponding to the key k from the map m.

Cardinality

Syntax:
cardMap(m) or |m|

Arguments:
m - A map.

Description:
Gets the cardinality/size of map m which corresponds to the
number of keys in the key set.

Returns:
Returns the cardinality of the map m.

Equals

Syntax:
equalsMap(m1, m2) or m1 == m2

Arguments:
m1 - A map with keys of type K and values of type V.
m2 - A map with keys of type K and values of type V.

Description:
Checks if two maps are equal. Two maps are equal iff the key
sets are equivalent and the keys map to the same values.

Returns:
Returns true if the two maps are equivalent, else false.

Disjoint

Syntax:
disjointMap(m1, m2)

Arguments:
m1 - A map with keys of type K and values of type V.
m2 - A map with keys of type K and values of type V.

Description:
Check if two maps are disjointed. Two maps are disjoint iff no
key is in both the key set of m1 and the key set of m2.

Returns:
Returns true if the two maps are disjoint, else false.

80

9.2 The Silver Equivalent of Dafny’s Map Axiomatization
Instead of reinventing the wheel, we base our map axiomatization on that of the Dafny tool.
The axiomatization comes from the file DafnyPrelude.bpl [31] (from now on referred to as
DafnyPrelude). Among axiomatizations for sequences, sets and multisets, two axiomatizations
can be found for a map: Map and IMap.

Map models a finite map and IMap models a map with (possibly) infinitely many key/value
pairs. There is one key difference between Map and IMap that is the cardinality of a map is
undefined for IMap. Both the function for cardinality and axioms to express its behavior are
undefined in IMap. The axiomatizations for Map are used since we defined a map to be finite.

Instead of explaining every axiom, we discuss the different functions and show some examples
of axioms. The behavior of these functions has been described in Section 9.1. The full axiomati-
zation in Viper/Silver can be found in Appendix C. It can be assumed that the Viper axioms in
the following sections are part of the domain VCTMap with type parameters [K,V] and functions
are prefixed with vctmap_ unless specified otherwise.

Tuples
The axiomatization of Map uses tuples to keep track of the key/value pairs in the map. Tuples
are defined as a new type using a domain (see Listing 9.1). The domain consists of a constructor
vcttuple_tuple and two destructors vcttuple_fst and vcttuple_snd that return the first and
second elements in the tuple respectively.

1 domain VCTTuple[F,S] {
2 function vcttuple_tuple(f:F, s:S): VCTTuple[F,S]
3 function vcttuple_fst(t:VCTTuple[F,S]): F
4 function vcttuple_snd(t:VCTTuple[F,S]): S
5
6 axiom vctTupleFstAx {
7 forall f1:F, s1:S :: vcttuple_fst(vcttuple_tuple(f1,s1)) == f1
8 }
9

10 axiom vctTupleSndAx {
11 forall f1:F, s1:S :: vcttuple_snd(vcttuple_tuple(f1,s1)) == s1
12 }
13 }

Listing 9.1: Axiomatization of Tuple

Modeling a map
There are four functions that together model the map: keys, values, items and get (see Listing
9.2). The first three functions keep track of the keys, values and pairs respectively and the get
function keeps track of the mapping. The axiom vctMapValuesAx states that a value v1 is in the
set of values of m1 iff there exists a key k1 that is both in the keyset of m1 and maps to v1. The
axiom vctMapItemsKeysAx reads similarly.

81

1 function vctmap_keys(m:VCTMap[K,V]): Set[K]
2 function vctmap_values(m: VCTMap[K,V]): Set[V]
3 function vctmap_items(m: VCTMap[K,V]): Set[VCTTuple[K,V]]
4 function vctmap_get(m:VCTMap[K,V], k: K): V
5
6 axiom vctMapValuesAx {
7 forall v1: V, m1: VCTMap[K,V] ::
8 v1 in vctmap_values(m1) == (exists k1: K :: k1 in vctmap_keys(m1) && vctmap_get(m1, k1) == v1)
9 }

10
11 axiom vctMapItemsKeysAx {
12 forall t1: VCTTuple[K,V], m1: VCTMap[K,V] ::
13 (t1 in vctmap_items(m1)) <==>
14 (vcttuple_fst(t1) in vctmap_keys(m1) && vctmap_get(m1, vcttuple_fst(t1)) == vcttuple_snd(t1))
15 }

Listing 9.2: The four functions modeling a map

The Dafny axiomatization is written in the Boogie programming language and uses Boogie
maps. When translating the Dafny axioms into Silver, these Boogie maps need to be translated
as well. The type of a Boogie map is written as [U]V where U is the type of the key and V
is the type of the value. The function get is defined to behave like a map. For example, the
axiom vctMapItemsKeysAx expresses that if a key/value pair (a,b) is in the map, the function
get returns the value b given the key a.

Map constructors
The functions empty and build construct maps (see Listing 9.3). Starting from an empty map,
key/value pairs can be added using the build function2. The axioms vctMapEmptyKeyAx and
vctMapEmptyValueAx express the relation between an empty map and the functions keys and
values. The axiom vctMapBuildAx0 expresses that when a key/value pair (k1,v1) is added to
the map using the build function, the key k1 is in the key set and that the function get with k1
maps to the given value v1.

1 function vctmap_empty(): VCTMap[K,V]
2 function vctmap_build(m: VCTMap[K,V], k: K, v: V): VCTMap[K,V]
3
4 axiom vctMapEmptyKeyAx {
5 forall k1: K :: !(k1 in vctmap_keys(vctmap_empty())) && |vctmap_keys(vctmap_empty())| == 0
6 }
7
8 axiom vctMapEmptyValueAx {
9 forall v1: V :: !(v1 in vctmap_values(vctmap_empty())) && |vctmap_values(vctmap_empty())| == 0

10 }
11
12 axiom vctMapBuildAx0 {
13 forall k1: K, v1: V, m1: VCTMap[K,V] ::
14 k1 in vctmap_keys(vctmap_build(m1, k1, v1)) && vctmap_get(vctmap_build(m1, k1, v1), k1) == v1
15 }

Listing 9.3: Constructors for a map

2These two constructors are similar to sequence constructors Nil and Cons where the former is an empty
sequence and the latter is a sequence with a head and a tail.

82

Map destructor
In addition to the functions in DafnyPrelude, functions/methods/operators on maps in different
programming languages were considered to be added as an extension. The Dafny axioms cover
most basic functions except for removing a key/value pair from a map.

Listing 9.4 shows the function remove that has been added to support this operation. Six
axioms define the behavior of the remove function in relation to the other functions (see Listing
9.4). The axioms can be read as follows:

• vctMapRemoveAx1: Key k is removed from map m, k is not in the key set of m.
• vctMapRemoveAx2: If a key k is a key of map m, then the value of k is not the same value

after removing k.
• vctMapRemoveAx3: For any two distinct keys k1 and k2, if k1 is removed from the map,

then k2 is still a key of m and maps to the same value.
• vctMapRemoveAx4: If a key k is a key of map m, then removing k decreases the cardinality

of m by one.
• vctMapRemoveAx5: If a key k is not a key of map m, then removing k does not have an effect

on the cardinality of m.
• vctMapRemoveAx6: If a key k is not a key of map m, then removing k results in the same
map m.

1 function vctmap_remove(m: VCTMap[K,V], k: K): VCTMap[K,V]
2
3 axiom vctMapRemoveAx1 {
4 forall m: VCTMap[K,V], k: K :: !(k in vctmap_keys(vctmap_remove(m, k)))
5 }
6
7 axiom vctMapRemoveAx2 {
8 forall m: VCTMap[K, V], k: K ::
9 (k in vctmap_keys(m)) ==> vctmap_get(vctmap_remove(m, k), k) != vctmap_get(m, k)

10 }
11
12 axiom vctMapRemoveAx3 {
13 (forall m: VCTMap[K, V], k1: K, k2: K ::
14 k1 != k2 ==>
15 (k2 in vctmap_keys(vctmap_remove(m, k1)) == k2 in vctmap_keys(m) &&
16 vctmap_get(vctmap_remove(m, k1), k2) == vctmap_get(m, k2)))
17 }
18
19 axiom vctMapRemoveAx4 {
20 forall m: VCTMap[K,V], k: K ::
21 (k in vctmap_keys(m)) ==> vctmap_card(m)-1 == vctmap_card(vctmap_remove(m, k))
22 }
23
24 axiom vctMapRemoveAx5 {
25 forall m: VCTMap[K,V], k: K ::
26 !(k in vctmap_keys(m)) ==> vctmap_card(m) == vctmap_card(vctmap_remove(m, k))
27 }
28
29 axiom vctMapRemoveAx6 {
30 (forall m: VCTMap[K, V], k: K ::
31 !((k in vctmap_keys(m))) ==> vctmap_equals(m, vctmap_remove(m, k)))
32 }

Listing 9.4: The remove function and its axioms

83

Functions on maps
In addition to the functions above, there are 3 functions defined on maps as defined in Section
9.1 (see Listing 9.5):

• card: The cardinality of the map. The cardinality of the map is defined to be the cardinality
of the key set of the map (as expressed in the axiom vctMapCardAx2).

• equals: Check if two maps are equivalent. Two maps are equivalent iff their keysets are
equivalent and the keys map to the same value in both maps (as expressed in the axiom
vctMapEqualsAx1).

• disjoint: Check if two maps are disjoint. Two maps are disjointed if for all keys they are
not in the keyset of one of the maps (as expressed in the axiom vctMapDisjointAx1).

1 function vctmap_card(m:VCTMap[K,V]): Int
2 axiom vctMapCardAx2 {
3 forall m1: VCTMap[K,V] :: {vctmap_card(m1)} vctmap_card(m1) == |vctmap_keys(m1)|
4 }
5
6 function vctmap_equals(m1: VCTMap[K,V], m2: VCTMap[K,V]): Bool
7 axiom vctMapEqualsAx1 {
8 forall m1: VCTMap[K,V], m2: VCTMap[K,V] :: {vctmap_equals(m1, m2)} vctmap_equals(m1, m2) <==>
9 (

10 vctmap_keys(m1) == vctmap_keys(m2)
11 &&
12 forall k: K :: k in vctmap_keys(m1) ==> vctmap_get(m1, k) == vctmap_get(m2, k)
13)
14 }
15
16 function vctmap_disjoint(m1: VCTMap[K,V], m2: VCTMap[K,V]): Bool
17 axiom vctMapDisjointAx1 {
18 forall m1: VCTMap[K,V], m2: VCTMap[K,V] :: {vctmap_disjoint(m1, m2)} vctmap_disjoint(m1, m2) <==> (

↪→ forall k: K :: {k in vctmap_keys(m1)} {k in vctmap_keys(m2)} !(k in vctmap_keys(m1)) || !(k in
↪→ vctmap_keys(m2)))

19 }

Listing 9.5: The functions card, equals and disjoint

9.3 Implementation
With the Dafny axiomatization of a map, it follows that this feature is implemented using a
domain. The concrete implementation steps (based on the general approach) are as follows:

1. Add the syntax as defined above.

2. Add the value Map to the PrimitiveSort enum.

3. Define StandardOperators where necessary.

4. Match the syntax in PVLtoCOL and transform it into COL.

5. Add the Silver domain to the file prelude.sil and add the VCTMap domain to the COL
AST.

6. Transform the new operators into invokations of the domain functions.

84

The syntax
The ANTLR grammar is extended with the map constructor and the other syntax that is not
already part of VerCors. Listing 9.6 shows the ANTLR grammar rule for the map constructor.
The function syntax (as defined in Section 9.1) is added to the class PVLSyntax.

1 nonTargetUnit:
2 'map' '<' type ',' type '>' mapValues
3 ;
4
5 mapValues : '{' (| expr '->' expr (',' expr '->' expr)*) '}';

Listing 9.6: The ANTLR grammar rules for the map constructor

Map encoding in COL
Maps are encoded in COL as StructValues. As mentioned in Section 7.5, the AST node
StructValue models structured values such as sequences, sets, bags, boxes, and tuples. The
type of a StructValue depends on the type given during creation. For example, a sequence is
encoded as a StructValue with a PrimitiveType of sort Sequence. Maps are encoded similarly
by adding a new sort Map to the enum PrimitiveSort. Now we create the type of the map by
defining a PrimitiveType with sort Map and create a map by defining a StructValue with the
previously mentioned type.

Defining StandardOperators for the domain functions
There are ten functions in the VCTMap domain. Nine of these functions need a StandardOperator
associated with them. The exception is the empty function which is used by the constructor
syntax defined above. Listing 9.1 shows a mapping of the defined StandardOperators to the
domain functions.

• MapKeySet −→ vctmap_keys

• MapValueSet −→ vctmap_values

• MapItemSet −→ vctmap_items

• MapGetByKey −→ vctmap_get

• MapBuild −→ vctmap_build

• MapRemoveKey −→ vctmap_remove

• MapCardinality −→ vctmap_card

• MapEquality −→ vctmap_equals

• MapDisjoint −→ vctmap_disjoint

Figure 9.1: StandardOperators and their respective domain functions

85

PVLtoCOL

The function syntax is handled automatically since it was added to PVLSyntax. The syntax for
the constructor is matched and transformed into a StructValue (see Listing 9.7). The key/value
pairs are matched by the method convert_pairs which loops over all the pairs and makes an
array of ASTNodes. This array has to have an even length where the even indices point to keys
and odd indices point to values.

1 if(match(ctx, "map", "<", null, ",", null, ">",null)) {
2 Type t1 = checkType(convert(ctx,2)); // Get the type of the keys
3 Type t2 = checkType(convert(ctx,4)); // Get the type of the values
4 ASTNode[] pairs = convert_pairs(ctx.getChild(6), "{",",","->","}");
5 if (pairs.length %2 != 0 || Arrays.stream(pairs).anyMatch(Objects::isNull)) {
6 Fail("Values␣of␣map␣are␣not␣pairs");
7 }
8 return create.struct_value(create.primitive_type(PrimitiveSort.Map, t1, t2), null, pairs);
9 }

Listing 9.7: Matching the constructor syntax

Adding the domains to VerCors
The full axiomatization in Appendix C is added (without the comments) to the file prelude.sil.
In SilverClassReduction, the StandardOperators are rewritten as invokations of their respective
functions. The StructValue with sort Map is also rewritten (see Listing 9.8). The map is initially
empty (i.e. an invokation of the empty function). If there are key/value pairs in the map, they
get added to the empty map by invoking the build function3. For example, if we would construct
a map with 1 → 2 and 2 → 3, then this map would be constructed by build(build(empty(),
1, 2), 2, 3).

1 public class SilverClassReduction extends AbstractRewriter {
2 @Override
3 public void visit(StructValue v) {
4 if (v.type().isPrimitive(PrimitiveSort.Map)) {
5 Type resultType = rewrite(v.type());
6 ASTNode map = create.invokation(resultType,null,"vctmap_empty");
7 for (int i=0; i < v.valuesArray().length; i+=2) {
8 map = create.invokation(resultType, null, "vctmap_build", map, v.valuesArray()[i], v.valuesArray

↪→ ()[i+1]);
9 }

10 result = map;
11 }
12 }
13 }

Listing 9.8: Rewriting a StructValue to the constructors in the VCTMap domain

3This resembles how sequences are axiomatically defined as Nil and Cons. Sequences are initially empty (i.e.
the Nil constructor) and values are added to this empty sequence by using the Cons constructor.

86

9.4 Evaluation of the Implementation
We evaluate the implementation and the chosen triggers through a set of representative examples
that should verify and by a visual inspection of the instantiation graphs of those examples in
Axiom Profiler. The examples used for the evaluation can be found in Listing 9.12 and Appendix
D4. The former is an example written for this thesis and the latter is based on an example from
the Dafny GitHub repository.

9.4.1 The chosen triggers
Viper uses heuristics to generate possible triggers. These triggers are sufficient for examples with
a few candidate trigger sets. As the examples become larger/more complex, more trigger sets are
generated. An example is shown in Listing 9.9. Here we see the vctMapBuild1Dot5Ax axiom and
the trigger sets generated by Viper as comments above5. Z3 tries to match any of these trigger
sets, thereby slowing down the verification effort. For our running examples with no (explicitly
defined) triggers, Z3 times out at 100s.

1 // Generated triggers
2 // {vctmap_build(m1,k1,v1), k2 in vctmap_keys(m1)}
3 // {vctmap_build(m1,k1,v1), vctmap_get(m1,k2)}
4 // {vctmap_keys(vctmap_build(m1,k1,v1)), k2 in vctmap_keys(m1)}
5 // {vctmap_keys(vctmap_build(m1,k1,v1)), vctmap_get(vctmap_build(m1,k1,v1),k2)}
6 // {vctmap_keys(vctmap_build(m1,k1,v1)), vctmap_get(m1,k2)}
7 // {k2 in vctmap_keys(vctmap_build(m1,k1,v1))}
8 // {vctmap_keys(m1), vctmap_build(m1,k1,v1), vctmap_get(m1,k2)}
9 // {vctmap_keys(m1), vctmap_get(vctmap_build(m1,k1,v1),k2)}

10 // {k2 in vctmap_keys(m1), vctmap_build(m1,k1,v1)}
11 // {k2 in vctmap_keys(m1), vctmap_get(vctmap_build(m1,k1,v1),k2)}
12 // {vctmap_get(vctmap_build(m1,k1,v1),k2)}
13 axiom vctMapBuild1Dot5Ax {
14 forall k1: K, k2: K, v1: V, m1: VCTMap[K,V] ::
15 (k1 != k2 ==>
16 (
17 (k2 in vctmap_keys(vctmap_build(m1, k1, v1))) == (k2 in vctmap_keys(m1))
18 &&
19 vctmap_get(vctmap_build(m1, k1, v1), k2) == vctmap_get(m1, k2)
20)
21)
22 }

Listing 9.9: The axiom vctMapBuild1Dot5Ax

It is also possible that the heuristics of Viper change in the future. This implies that some
examples that did not work due to bad trigger choices, might work with the new heuristics or
vice versa. In other words, choosing good triggers is important to both speed up the verification
effort and keep the behavior consistent over time.

With these points in mind, it has been decided to explicitly define the trigger sets for the
VCTMap domain axioms. The trigger sets are chosen according to the following strategy:

1. Start off with the triggers in the DafnyPrelude: These axiomatizations have matured
over time since they are used by Dafny and other tools that follow DafnyPrelude closely
(for example Silicon and Carbon).

4The second example has been moved to the appendix for readability.
5For an overview of the generated triggers for each axiom in VCTMap, see Appendix C.

87

2. Use examples that should verify: These are the two examples mentioned above.
3. Consider the triggers generated by Viper: For the cases that do not verify, we try

to identify which axioms are related to it and if the triggers are sufficient. We consider the
trigger sets generated by Viper and try to make the examples verify.

The first step is relatively simple, however some changes were made w.r.t. the triggers in
DafnyPrelude. These changes can be summarized as follows:

• No triggers for existential quantifier: the existential quantifier in the DafnyPrelude
have triggers defined for them. Triggers are used to guide the SMT solver to instantiate
the body of a universal quantifier where needed. For existential quantifiers, triggers do not
have any effect. The syntax for triggers on existential quantifiers is allowed by different
tools such as Viper and Z3, however these are omitted for evaluation. For this reason, the
triggers for the existential quantifiers are omitted.

• Adding trigger sets: Some trigger sets were added that could be used in a verification
effort. For example, for the axiom vctMapCardAx2 the only trigger is size of the key set of
a map m (i.e. |keys(m)|). Since there is a function card that is defined to be the size of
the map, card(m) is added as an extra trigger set.

9.4.2 Instantiation graphs
With these triggers, the two examples verify. With the examples working, we use Axiom Profiler
to inspect the instantiation graph. This inspection gives us insight into how Z3 solves the problem
and what terms are instantiated. Given that the examples do verify we do not expect an infinite
matching loop.

The instantiation graphs for all methods can be found in Appendix E. A quick visual inspec-
tion of these graphs already tells us that not all cases are solved using triggers. We discuss these
graphs in two groups: cases that are solved by trigger instantiation and cases that are solved by
other strategies.

Trigger instantiation

The instantiation graphs are part of this group if they have colored nodes. The colored nodes
are instantiations of the body of a quantifier based on its trigger. The graphs for methods m, m2,
m4, m6, m7, m9 and the main method in Listing 9.12 are part of this group.

We take the main method in Listing 9.12 as an example to evaluate the triggers since its
instantiation graph is the most complex (see Figure 9.2). We can immediately see that there are
paths with multiple purple nodes which points to a matching loop. The purple nodes represent
the axiom vctMapBuildAx1 (see Listing 9.10).

This matching loop is a consequence of the recursive nature of the map constructor. The map
is initially empty and the key/value pair is added one by one. For example map<int, boolean>
{1 -> true, 2 -> false} is translated as build(build(empty(), 1, true), 2, false). A
trigger of the form build(m1, k1, v1) matches the entire expression as well as build(empty(),
1, true). Following the path from the top purple node to the last purple node we see that the
top purple node matches the entire map and that the last purple node matches the inner-most
build function. In other words, the map starts as the complete expression and is reduced to the
base value which is the empty map. Since the expression is reduced to a base value, we conclude
that the matching loop is finite.

The same holds about the instantiation graphs of the other methods in this group. There is
only one matching loop when a concrete map is constructed.

88

1 axiom vctMapBuildAx1 {
2 forall k1: K, k2: K, v1: V, m1: VCTMap[K, V] ::
3 {k2 in vctmap_keys(vctmap_build(m1, k1, v1))}
4 {vctmap_get(vctmap_build(m1, k1, v1), k2), vctmap_get(m1, k2)}
5 k1 == k2 ==>
6 k2 in vctmap_keys(vctmap_build(m1, k1, v1)) &&
7 vctmap_get(vctmap_build(m1, k1, v1), k2) == v1
8 }

Listing 9.10: The axiom vctMapBuildAx1 in the VCTMap domain

Figure 9.2: The instantiation graph for the main method in Listing 9.12

89

Other strategies

The remaining instantiation graphs are those for methods m3, m5 and m8. All three of these
graphs have no colored nodes. From this, we conclude that no triggers are instantiated. Given
that the methods verify, there must be some other strategy Z3 uses.

The three methods have in common that they work with integers. Let us take the method
m3 and its instantiation graph as an example (see Listing 9.11 and Figure 9.3). The method has
a map argument a and in the precondition it states that for all integers i between 0 and 100,
that i maps to (i * i).

The problem is solved in two steps. First, the problem is reduced by Silicon by introducing
a fresh integer i’ and the body of the quantifier is asserted with i’. Second, Z3’s arithmetic
solver and basic theory solver verify the problem without instantiating a term using a trigger.

We can see this behavior in the SMT2 files generated by Silicon/Viper and the instantiation
graphs in Axiom Profiler. The SMT2 files generated by Viper show that a new integer is declared
(for example i@9@08) and that the body of the quantifier is asserted or in other words it is added
to the pool of knowledge.

The instantiation graph shows several diamond-shaped nodes. These nodes correspond to
instantiations from either the arithmetic solver or the basic theory solver. As mentioned before,
Axiom Profiler shows only a part of the instantiation graph. The entire graph consists of 366
diamond nodes. By going through these nodes, we see that the following terms are part of the
knowledge pool:

• 0 <= 20

• 20 < 100

• 0 <= i′

• i′ < 100

• vctmap_get(a, i′) == i′ × i′

• 20× 20 == 400

With these terms in the knowledge pool, Z3 is able to prove that the assertion
vctmap_get(a, 20) == 400 holds without instantiation based on triggers.

Figure 9.3: The instantiation graph for the m3 method

1 requires (\forall int i; 0 <= i && i < 100; i in keysMap(a) && a[i] == i*i);
2 void m3(map<int, int> a) {
3 assert a[20] == 400;
4 }

Listing 9.11: The method m3 in PVL

90

9.5 Examples using Maps
The example in Listing 9.12 creates four maps named m1 to m4. The different function are used
on these maps with both the function syntax and the alternative syntax.

1 class MapsInPVL {
2 void main() {
3 map<int, boolean> m1 = map<int,boolean>{1 -> true, 2 -> true, 0 -> false};
4
5 assert m1 == map<int,boolean>{1 -> true, 2 -> true, 0 -> false, 1 -> false, 1 -> true};
6 assert m1[1] && !m1[0];
7 assert !isEmpty(m1);
8 assert |m1 ++ (1, false)| == 3;
9 assert getFromMap(m1, 1);

10 assert |m1| == 3;
11 assert getFromMap(map<int,boolean>{1 -> true, 2 -> true, 0 -> false}, 1);
12
13 m1 = buildMap(m1, 1, true);
14 assert !disjointMap(m1, map<int,boolean>{1 -> true});
15 assert disjointMap(m1, map<int,boolean>{3 -> false, 4 -> true});
16
17 set<tuple<int,boolean>> items = itemsMap(m1);
18 assert tuple<int,boolean>{1, true} in items;
19
20
21 map<int, boolean> m2 = map<int,boolean>{};
22 m2 = buildMap(m2, 1, true);
23 assert equalsMap(map<int,boolean> {1 -> true}, m2);
24
25 assert removeFromMap(map<int, boolean> {0 -> true}, 0) == map<int,boolean>{};
26
27 assert isEmpty(keysMap(map<int, boolean>{}));
28 assert keysMap(map<int, boolean>{123 -> false}) == {123};
29 assert valuesMap(map<int, boolean>{123 -> false}) == {false};
30
31 assert valuesMap(map<int, boolean>{123 -> false, 2 -> false, 84368 -> true}) == {false, true};
32 assert keysMap(map<int, boolean>{123 -> false, 2 -> false, 84368 -> true}) == {123, 2, 84368};
33
34
35 map<int, boolean> m3 = map<int,boolean>{1 -> true, 2 -> true, 0 -> false};
36 map<int, boolean> m4 = removeFromMap(m3, 1);
37
38 assert m3[2];
39 assert 0 in keysMap(m4);
40 assert false in valuesMap(m4);
41 assert m4[2];
42 assert true in valuesMap(m4);
43 assert removeFromMap(buildMap(map<int,boolean>{}, 0, true), 0) == map<int,boolean>{};
44 }
45 }

Listing 9.12: An example using maps in PVL

91

Chapter 10

Generics

This chapter answers the questions for RQ6 on generic classes and functions. Section 10.1 answers
RQ6.1, showing the definition of generic classes and generic functions, their scope and syntax.
Section 10.2 answers RQ6.3 by going into detail on the design and translation of generics into
Silver. Sections 10.3.2 and Section 10.3.4 answer RQ6.2 by discussing type checking for generic
classes and generic functions respectively.

The implementation of generics (as described in this chapter) can be found in
commit b835bc7 which can be browsed at https://github.com/OmerSakar/vercors/tree/
b835bc72575d263ba3376a6c02522fbb0d9c4106.

10.1 Description and Syntax
The syntax for generics is an extension of the current syntax for class types, construc-
tors and function signatures. The extension allows for type parameters to be defined, (e.g.
MyGenericClass<int,boolean> to represent a concrete instance of MyGenericClass with T ←
int and R ← boolean).

Generic Class
Syntax:

class MyGenericClass<T,R> {...}

Arguments:
T - A type parameter
R - A type parameter

Description:
Defines a generic class with type parameters T and R. These type parameters can be used as field

types or in functions. A generic class requires at least one type parameter.

92

https://github.com/OmerSakar/vercors/tree/b835bc72575d263ba3376a6c02522fbb0d9c4106
https://github.com/OmerSakar/vercors/tree/b835bc72575d263ba3376a6c02522fbb0d9c4106

Generic function
Syntax:

pure <T,R> returnType myGenericFunc(args) = exp;

Arguments:
T - A type parameter
R - A type parameter
returnType - The return type of the function. This type can be of type T or R
args - The arguments of the function
exp - The body of the function

Description:
Defines a generic function with type parameters T and R. These type parameters can be used as

argument types or the return type. A generic function requires at least one type parameter.

10.2 Design

10.2.1 Monomorphizing generic classes and generic functions
Encoding generics into Viper has been done by Matthias Erdin [32]. His Master’s thesis focuses
on generics, type states and traits in the programming language Rust and implements the ver-
ification of these Rust constructs in the formal verification tool Prusti [33]. The general idea is
to monomorphize structs (comparable to a class without fields in PVL) and generic functions
in Rust. Monomorphization in this context is creating a copy of the generic class/function and
substituting the type parameters of those classes/functions with their concrete instances. This
idea is extended by also monomorphizing pure functions in the generic class.

As an alternative to monomorphization, an approach was considered to encode generics using
domains. This approach seems the most straightforward since domains have type parameters
and thus do not have to be monomorphized. However, this approach was abandoned due to the
difficulty of translating a function in an imperative language into a set of axioms defined on
that function. For example, a function must require permissions on fields of classes that it uses
those fields (e.g. the field of an argument). This cannot be expressed using a domain axiom as
field accesses and permissions are not allowed.

A generic class is monomorphized by the following steps:

1. Search for all concrete instantiations of the generic class and keep track of a map-
ping of the type parameters to the concrete types. For example, the statement new
MyGenericClass<boolean, int> results in a mapping of T ← boolean and R ← int.

2. Generate a new class (based on the generic class) for each mapping found in the previous
step.

3. Rename the constructor to match the generated class if there is a constructor.

A generic function outside of a generic class is monomorphized similarly. The major difference is
in how the mapping for the type parameters is determined. For generic classes the mapping of the
type parameters is provided by the user in the syntax, for instance for MyGenericClass<boolean,
int> the first type parameter is mapped to a boolean as provided by the user. However, the
user does not provide a type in a function invokation. Consider the pure function pure <T,K>

93

T myFunc(T arg1, T arg2, K arg3) = arg1. This function has to be called with the first
two arguments of the same type. The algorithm used to determine the mapping is discussed in
Section 10.3.4.
To summarize, a generic function is monomorphized by the following steps:

1. Find all instances of the function.

2. Determine the mapping for the type parameters based on the arguments of the function.

3. Generate a new function (based on the generic function) for each mapping found in the
previous step.

10.2.2 The verification of the generic class
In addition to verifying the monomorphized classes, the generic class can also be verified. This
is achieved by introducing the type parameters as actual types. This idea is realized in Silver by
introducing a domain for each type parameter. This step is sufficient to support the verification
of generic classes since domains are types in Silver.

10.2.3 Concrete example
All these ideas combined form the concept of generics in PVL. Listing 10.1 shows a concrete case
with its Silver equivalent in Listing 10.21. The Silver code is relatively long as a consequence of
the monomorphization. It consists of several parts:

• Two domains L and R for the type parameters.
• Fields for the generic class (e.g. MyGenericClass_myField3).
• Fields for the concrete instances (e.g. MyGenericClass_Boolean_Integer_myField2).
• The functions of the generic class (e.g. MyGenericClass_getL with a return type L).
• The functions of the concrete instances (e.g. MyGenericClass_Boolean_Integer_getL with

a return type Bool).
• The rest of the methods, functions and fields, in this case the only additional method is

the main method of NormalClass.

Some of the functions have an argument diz (as generated by VerCors) which refers to the
current object similar to Java’s this or Python’s self.

1The constructors of the concrete instances have been omitted to simplify the example.

94

1 class MyGenericClass<L,R> {
2 int myField1;
3 L myField2;
4 R myField3;
5
6 requires Perm(myField2, write);
7 pure L getL() = myField2;
8
9 requires 0 <= i && i < |xs|;

10 ensures |\result| <= |xs|;
11 ensures (\forall int k; 0 <= k && k < |\result|; \result[k] == xs[k]);
12 pure seq<R> take(seq<R> xs, int i) = xs[..i];
13 }
14
15 class NormalClass {
16 void main() {
17 MyGenericClass<boolean,int> mac2 = new MyGenericClass<boolean,int>();
18 mac2.myField2 = true;
19 boolean LofMac2 = mac2.getL();
20 assert mac2.getL();
21 }
22 }

Listing 10.1: An example of a generic class

95

1 domain L {} // Type parameter L
2 domain R {} // Type parameter R
3
4 // The fields of the generic class
5 field MyGenericClass_myField1: Int
6 field MyGenericClass_myField2: L
7 field MyGenericClass_myField3: R
8 // The fields of the concrete instance
9 field MyGenericClass_Boolean_Integer_myField1: Int

10 field MyGenericClass_Boolean_Integer_myField2: Bool
11 field MyGenericClass_Boolean_Integer_myField3: Int
12
13
14 /////////////////////////////////////
15 // Functions of the generic class //
16 /////////////////////////////////////
17 function MyGenericClass_getL(diz: Ref): L
18 requires acc(diz.MyGenericClass_myField2, write)
19 { diz.MyGenericClass_myField2 }
20
21 function MyGenericClass_take_Sequence_R_Integer(diz: Ref, xs: Seq[R], i: Int): Seq[R]
22 requires 0 <= i && i < |xs|
23 ensures |result| <= |xs|
24 ensures (forall k: Int :: 0 <= k && k < |result| ==> result[k] == xs[k])
25 { xs[..i] }
26
27 ///
28 // Functions of the concrete instances //
29 ///
30 function MyGenericClass_Boolean_Integer_getL(diz: Ref): Bool
31 requires acc(diz.MyGenericClass_Boolean_Integer_myField2, write)
32 { diz.MyGenericClass_Boolean_Integer_myField2 }
33
34 function MyGenericClass_Boolean_Integer_take_Sequence_Integer_Integer(diz: Ref, xs: Seq[Int], i: Int):

↪→ Seq[Int]
35 requires 0 <= i && i < |xs|
36 ensures |result| <= |xs|
37 ensures (forall k: Int :: 0 <= k && k < |result| ==> result[k] == xs[k])
38 { xs[..i] }
39
40 ///////////////////////////////////////
41 // The main function of NormalClasss //
42 ///////////////////////////////////////
43 method NormalClass_main(diz: Ref)
44 requires diz != null
45 {
46 var mac2_1: Ref
47 var LofMac2_2: Bool
48
49 mac2_1 := MyGenericClass_Boolean_Integer_MyGenericClass_Boolean_Integer()
50 mac2_1.MyGenericClass_Boolean_Integer_myField2 := true
51 LofMac2_2 := MyGenericClass_Boolean_Integer_getL(mac2_1)
52 assert MyGenericClass_Boolean_Integer_getL(mac2_1)
53 }

Listing 10.2: The Silver equivalent of Listing 10.1

96

10.3 Implementation
The implementation of generics is relatively complex (compared to the other features discussed
in this thesis) and combines multiple approaches described in Chapter 6 although there are sim-
ilarities with function generation. Instead of generating functions, concrete classes are generated
by copying the generic class.

The implementation is explained in three parts: a common part (Section 10.3.1), generic
classes (Section 10.3.2) and generic functions (Section 10.3.3). The reason for this division is that
the implementation of generic classes and functions differs enough that they are best explained
separately.

10.3.1 Common part of the implementation
The generic class is encoded as ASTNodes of the subclass ASTClass with the type parameters as
TypeVariables (with the same name). ASTClass has a field kind representing the kind of class.
Generic classes are of kind Abstract and normal classes are of kind Plain. It is assumed that a
class of kind Abstract has type parameters.

Generic functions are encoded as ASTNodes of the subclass Method with the type parameters
as TypeVariables (with the same name). Methods also have a kind, however there is no special
kind for a generic function. Since we only support pure generic functions, generic functions are
of kind Pure and have at least one type parameter.

The type parameters should be introduced as new types, however this cannot be achieved by
simply introducing a new class with the same name at this point. This is because the scope of
these type parameters is the class or function. To introduce the type parameters as actual types
in a certain scope, the Java class ASTFrame is used. ASTFrame keeps track of a stack of loaded
classes and methods. Upon entering an ASTClass in the COL AST, that class is pushed on the
stack and upon leaving the class is popped off the stack. The same holds for methods.

This behavior is extended by pushing an empty ASTClass onto the stack of classes for each
of the type parameters (with the same name). Upon leaving, those classes are popped from the
stack.

The type parameters are eventually represented in Silver as domains. This translation is done
by the rewrite pass SilverClassReduction (as used in the approach for supporting domains).
This pass is preceded by several type checks. From these type checks, we can conclude that
a type parameter is not used outside its scope. This means that we can introduce the type
parameters as actual classes at this point. Therefore, SilverClassReduction introduces a new,
empty ASTClass of kind Abstract to the list of classes for each type parameter. These Abstract
ASTClasses are translated into domains during the final step.

10.3.2 Generic classes
Generic classes are monomorphized by a new rewrite pass MonomorphizeGenericClass. This class
has three tasks. The first is rewriting all constructors and class types to match the generated
class by appending the concrete types to the name of the class. For example, if the generic type
is GenericType<int, myClass>, the generated type is rewritten to GenericType_int_myClass.

The second task is to find all concrete instances of the generic type. The visit method
with argument type ASTClass is overwritten to visit all normal classes using a new visitor pass
GenericsScanner. GenericsScanner overwrites the visit method with argument ClassType. If
this class type uses type parameters, then the mapping is kept of the ClassType to a list of

97

Types in a (Java) map. The list is the mapping of type parameters to concrete types. After
all mappings are collected by the pass GenericsScanner, the pass MonomorphizeGenericClass
continues.

The third task is to generate the concrete instances of the generic class. The rewriteAll
method of MonomorphizeGenericClass is overwritten2. After performing the tasks above, the
new rewrite pass GenerateGenericClassInstance is used for each mapping found. The input for
this pass is the generic class to monomorphize and the mapping of type parameters to concrete
types. Each instance of a type parameter is rewritten to its concrete type. The output of this
pass is a class with no instances of the type parameters. The name of this class is generated by
appending the concrete types to the name of the class. This class is then added to the list of
classes in the program.

10.3.3 Generic functions
Generic functions are monomorphized by a new rewrite pass MonomorphizeGenericFunctions
in a similar way. This pass has two tasks. The first task is to find all invokations of generic
functions. A function invokation is encoded as a MethodInvokation with a reference to the
invoked method/function. This reference is set during type checking. How it is determined
which generic function corresponds to a function invokation is discussed in Section 10.3.4.

The second task is to generate the concrete instances of the generic function. The rewriteAll
method of the MonomorphizeGenericFunctions is overwritten. After performing the task above,
the new rewrite pass GenerateGenericFunctionInstance is used for each mapping found. The
input for this pass is the generic function to monomorphize and the mapping of type parameters
to concrete types. Each instance of a type parameter is rewritten to its concrete type. The
output of this pass is a function with no instances of the type parameters. This function is then
added to the same ASTClass as the generic function.

10.3.4 Determine mapping for a generic function.
During type checking and generating the concrete instances for a generic function, it is necessary
to determine a mapping of type parameters (of a generic function) to concrete types based on the
function invokation and the arguments of a generic function. We treat the type of the arguments
of a generic function and the corresponding type of the argument of an invokation as trees and
traverse those trees simultaneously in post order (i.e. children first). The types at each level
should be the same unless that type is a type variable. When a type variable is encountered, we
save a mapping of the type parameter to the concrete type in a (Java) map.

For example, if we need to match the type Edge<T, seq<R>> to an instance of type
Edge<int,seq<boolean>>, we traverse both types simultaneously as shown in Figure 10.1. In
the first step we determine that T is mapped to an integer and in the second step we determine
that R is mapped to boolean. This continues until both types are compared.

If this process ends successfully, the result is a mapping for each type parameter. This process
can fail in two ways; Either the type does not match or there are two (concrete) mappings for the
same type parameter. For example, a function with the signature myFunc(seq<T> a, seq<T> b)
cannot be invoked with a a sequence of integers and b a sequence of booleans since T is mapped
to two different types (integers and booleans).

2This is similar to how functions are generated after identifying which functions to generate.

98

(4) Class Edge

(1) TypeVariable T (3) Sequence

(2)TypeVariable R

(4) Class Edge

(1) Integer (3) Sequence

(2) Boolean

Figure 10.1: Mapping the type of the argument of a generic function (left) to the type of the
argument of an invokation of a generic function (right)

10.4 Limitations

10.4.1 No support for generic methods
Methods in a generic class or generic methods are currently not supported. This limitation stems
from the fact that methods are not pure and combined with generics they give rise to permission
issues. Consider the PVL example in Listing 10.3. We have a class MyObj with a field n where
the permissions for n is stored in a lock invariant. We have class GenericClass with a type
parameter with a method foo that takes an argument of type T.

We get an instance of MyObj, lock on that instance to get the permissions for the field n, set
n to an arbitrary value and unlock to release the permissions. We call the foo method on an
instance of GenericClass and fail to assert that the value of n has not changed. This is due
to the usage of the lock as foo can acquire the lock and change the value of n. This could be
solved by ensuring (in the postcondition of foo) that the value of n has not changed, however
that postcondition cannot be stated for the generic method since the type parameter T has no
fields.

It is possible to support generic methods by supporting type parameters with fields (discussed
in Section 10.5). The problem above can be solved this way by having a postcondition on the
foo method stating that the field T.n has not changed.

99

1 class MyObj {
2 int n;
3
4 resource lock_invariant() = Perm(this.n, 1);
5
6 MyObj() {}
7 }
8 class GenericClass<T> {
9 void foo(T bar) {}

10 }
11 class NormalClass {
12 void main() {
13 GenericClass<MyObj> genericObj = new GenericClass<MyObj>();
14 MyObj myObj = new MyObj();
15 lock myObj;
16 myObj.n = 2;
17 unlock myObj;
18 genericObj.foo(myObj);
19 lock myObj;
20 assert myObj.n == 2;
21 unlock myObj;
22 }
23 }

Listing 10.3: An example of a permission issue in a generic method

10.4.2 No static functions in generic classes
Static functions in generic classes are not allowed. This decision is based on the fact that the
type parameters of the generic class are not visible to the function, this is similar to Java.

10.5 Future Improvements
This section goes into possible future improvements. These improvements were originally
planned, however due to their complexity and time constraints they are not part of this the-
sis.

An extension on the type parameters

Currently, type parameters cannot have fields. This has the consequence that no permissions
can be inhaled or exhaled on those fields. This limits the functionality that can be expressed in
the functions.

This can be improved by allowing Java-like interfaces for type parameters. These interfaces
state which fields the type parameter has. During the passes, it can be checked if the class in the
concrete case matches the interface. It is also possible to allow inheritance for type parameters.
For example, if some type parameter T has to be a subclass of a superclass SuperClass, we can
say that T extends SuperClass to allow only subclasses of SuperClass.

In Section 10.2, it was stated that type parameters are translated into Silver as empty do-
mains. This idea can be extended by generating uninterpreted functions that return the value
of the field.

The encoding of these improvements is possible by combining the notion of abstract predicate
families to encode the type parameters with all its fields and encoding generic types as unin-
terpreted constants and have axioms describe the hierarchy of the classes (as OpenJML does).

100

However, these topics need more research for a definitive solution (both in the design part as in
the implementation in VerCors).

Allow mapping type parameters to other mapping types

Type parameters have to be mapped to concrete cases (e.g. using a generic class inside of
another generic class). The difficulty of this task is that for any type parameter you need to
find all possible mappings. Listing 10.4 shows a simple example of the complexity. We have two
generic classes A and B with both two type parameters. The class Normal has two fields of type B
with concrete instances for the type parameters. B has a field of type A. This should result in two
monomorphized instances of B (for the two mappings) and two monomorphized instances for A.

This example is for a (relatively) simple hierarchy where the class Normal uses class B which
uses class A. When other common mechanisms such as inheritance are introduced, this problem
becomes complex. Again, this topic needs more research for a definitive solution (both in its
design as in its implementation in VerCors).

1 class A<T,R>{}
2
3 class B<Q,S>{
4 A<Q,S> f;
5 }
6
7 class Normal {
8 B<int,boolean> b1;
9 B<boolean,int> b2;

10 }

Listing 10.4: An example of the complexity of type parameters instantiated by other type
parameters

10.6 Examples using Generics
The example in Listing 10.5 shows an example where generic classes and functions are used.
We have a class NormalClass with its main method. This method instantiates an instance of
the abstract class MyAbstractClass. Next, a sequence is constructed with values from 1 to 6.
The first 2 elements are taken from these sequences using two functions take and Take. take
is a generic function and Take is an instance of this function (taken from the VerCors examples
directory). Using the same arguments, it is shown that the concrete instance of take and Take
are equivalent.

101

1 class MyAbstractClass<L,R> {
2 int myField1;
3 L myField2;
4 R myField3;
5
6 requires Perm(myField2, write);
7 pure L getL() = myField2;
8
9 }

10
11 class NormalClass {
12 requires 0 <= i && i <= |xs|;
13 ensures (0 < i) ==> (\result == seq<R> {head(xs)} + take(tail(xs),i-1));
14 ensures !(0 < i) ==> (\result == seq<R>{});
15 pure static <R> seq<R> take(seq<R> xs, int i) =
16 0 < i ? seq<R> {head(xs)} + take(tail(xs),i-1) : seq<R>{};
17
18
19 requires 0 <= n && n <= |xs|;
20 ensures (0 < n) ==> (\result == seq<int> { head(xs) } + Take(tail(xs), n - 1));
21 ensures !(0 < n) ==> (\result == seq<int> {});
22 static pure seq<int> Take(seq<int> xs, int n) =
23 0 < n ? seq<int> { head(xs) } + Take(tail(xs), n - 1) : seq<int> { };
24
25 void main() {
26 MyAbstractClass<boolean,int> mac2 = new MyAbstractClass<boolean,int>();
27 mac2.myField2 = true;
28 boolean LofMac2 = mac2.getL();
29 assert mac2.getL();
30
31 seq<int> xs = seq<int> {1, 2, 3, 4, 5, 6};
32 int i = 2;
33 assert NormalClass.take(xs, i) == NormalClass.Take(xs, i);
34 }
35 }

Listing 10.5: An example using a generic class and generic function in PVL

102

Chapter 11

Conclusion

This chapter concludes this thesis. We started with two general questions RQ1 on what features
regarding ADTs were desired by users and RQ2 on how to support those features (see Figure
11.1). RQ1 has been answered by conducting a survey and consulting different documentation
on VerCors resulting in the following list of features to support:

1. Appending and prepending values to sequences.

2. Taking ranges/subsequences from a sequence.

3. Removing elements from a sequence.

4. Simple syntax for sequence, set and bag creation.

5. Subset notation for sets and bags.

6. Set comprehension.

7. Maps with basic operations.

8. Generic classes and functions.

RQ2 has been answered by presenting an implementation-level view of VerCors in Chapter 5
and identifying the following five (general) approaches to implement a feature in Chapter 6:

1. Pure syntactic sugar

2. Transformed syntactic sugar

3. Mapping directly to back end

4. Function generation

5. Domains

RQ2 has been specified in Chapter 4 based on the answer of RQ1 resulting in RQ3 to RQ6
(see Figure 11.1). RQ3 covers the first five features. These features have been grouped since they
are (relatively) simple in their design and implementation. Their definition and implementation
are discussed with a focus on their implementation in Chapter 7.

The other three features are more complex in design and discussed separately with a focus on
their design. Chapter 8 answers RQ4 by defining set comprehension (RQ4.1) and discussing its
encoding using function generation (RQ4.2). Chapter 9 answers RQ5 by defining maps (RQ5.1).
A list of the supported functions is presented based on the Dafny map axiomatization, thereby
answering RQ5.2 and RQ5.3. Chapter 10 answers RQ6 by defining generic classes and functions

103

(RQ5.1). It is discussed how generic classes and functions are monomorphized, thereby answering
RQ6.3 and how type checking works for generics with a focus on finding the generic function
corresponding to its invokation, thereby answering RQ6.2.

RQ1 What ADTs or functionality on ADTs is desired from VerCors/PVL?

RQ2 How can the architecture of VerCors and the back end Viper support the functionality
of RQ1?

RQ3 For features number 1 to 5:

RQ3.1 What is the definition of the functionality?

RQ3.2 Which of the five approaches in Chapter 6 can be applied to implement the
functionality?

RQ4 For set comprehension:

RQ4.1 What is the definition of set comprehension?

RQ4.2 How is set comprehension encoded into Viper?

RQ5 For maps:

RQ5.1 What is the definition of a map?

RQ5.2 What operations are defined on maps?

RQ5.3 How can Viper Domains be used to implement a map?

RQ6 For generic classes/functions:

RQ6.1 What is the definition of generic classes/functions?

RQ6.2 How should type checking work for generics classes/functions?

RQ6.3 How does the verification of generic classes/functions work?

Figure 11.1: All research questions

These features were all implemented in a fork of VerCors. This fork can be found at https://
github.com/OmerSakar/vercors with links to the specific features at the start of their respective
chapters. Not all features are currently in the latest release of VerCors yet. The features that are
currently part of VerCors are features 1, 3 and 4. Features 5, 6, 7 and 8 are planned to be merged
in the near future once their implementation is reviewed and accepted. There is one exception
which is feature 2 (taking ranges from sequences). This feature was implemented by another
developer in parallel to this thesis. That implementation used the Viper range operators instead
of our approach (of generating a function). A small discussion was held and it was decided that
the former implementation would be merged into VerCors, due to its simplicity.

104

https://github.com/OmerSakar/vercors
https://github.com/OmerSakar/vercors

11.1 Summary of Contributions
Altogether, this thesis contributes in two ways. First, documenting the process of implementing
features and identifying general approaches to implement a feature in VerCors. Second, the
result of those processes are the implemented features/the encodings of the ADTs in VerCors.

The documentation of the process should help both future VerCors developers in implement-
ing features into VerCors specifically and developers of other tools that use Viper as its back
end. The implemented features should help the user (both experts and new users) to write more
expressive code, especially set comprehension, maps and generic classes and function.

To sum up the contributions:

• A detailed explanation of the VerCors architecture from an implementation-level view
(Chapter 5).

• A detailed explanation on general approaches to implement a feature in VerCors (Chapter
6).

• Concrete examples of implemented features in VerCors (Chapter 7).

• A discussion of the encoding of set comprehension in Viper and the behavior of Z3 in
solving problems using set comprehension (Chapter 8).

• A discussion of the map axiomatizations in Viper (based on the Dafny axiomatization), an
evaluation of the chosen triggers and the behavior of Z3 in solving problems using maps
(Chapter 9).

• A discussion on the encoding of generics in Viper with a basis that can be used by future
work (Chapter 10).

Implemented features
In addition to the contributions mentioned above, the actual implementations of the features in
VerCors are also contributions. All features implemented for this thesis are listed below:

• The isEmpty function that checks if its argument is empty (Section 7.1). The argument
can be a sequence, set, bag or map and can be extended for other ADTs by implementing
the size operator for those ADTs. This feature is implemented using pure syntactic sugar.

• The append and prepend operators (Section 7.2). These operators respectively append and
prepend a value to a sequence. This feature is implemented using transformed syntactic
sugar.

• The take, drop and range functions and their respectively operators (Section 7.3). These
functions take a range of elements from a sequence where take takes the first n elements,
drop drops the first n elements and range takes a range from a lowerbound to an upper-
bound. Not merged into VerCors as explained above. This feature is implemented using
function generation.

• The remove function that removes an element from a sequence by its index (Section 7.4).
This feature is implemented using function generation.

• Simple constructors for sequences, sets and bags which do not need a user-provided type if
it has values (Section 7.5). This feature is implemented using transformed syntactic sugar.

• The <= and < operators defined on sets and bags as a subset notation (Section 7.6). This
feature is implemented by mapping directly to the back end operator.

105

• A construct for set comprehension (Chapter 8). Set comprehension is modeled using a
bodyless function returning a set with the specified elements. This feature is implemented
using function generation.

• A map ADT with basic operations (Chapter 9). The axiomatization is based on the Dafny
map axiomatization written in BPL (Boogie Programming Language) and are translated
into Silver (see Appendix C). This feature is implemented using a domain.

• Generic classes and functions (Chapter 10). Generic classes and functions are monomor-
phized (i.e. copied and the type parameters substituted with the concrete types). This
idea was taken from the Master’s thesis of Matthias Erdin [32]. This idea was extended
to also verify the generic classes and functions themselves (instead of only verifying the
monomorphized versions) by introducing the type parameters as actual classes. This fea-
ture is implemented using a combination of approaches.

11.2 Future Work
Besides the future improvements mentioned in Section 10.5, there are three more ways to follow
up on this thesis. The first is a user study to evaluate the results of this thesis (as mentioned in
Chapter 1). This user study can either compare a version of VerCors with the new features to
an older version. VerCors could also be compared to other tools that have a similar feature set.
With the current set of new features, the user study would not be enough for a master’s thesis.
It could be enough if it is combined with a larger set of features.

The second future work would be supporting higher-order functions. There were several fea-
tures requested in the survey that can be defined using higher-order functions, such as min/max
functions and sorting functions. It would be interesting to support these. Both examples require
their arguments (either sequences, sets and bags) to have an order. In VerCors, integers are
ordered, however self-defined types do not have an order. This order could be defined using a
higher-order function. It was considered to implement this feature as part of this thesis, however
the estimated time for this feature did not fit in the planning.

It was found later that Benjamin Weber has tackled this problem in his Master’s thesis [34]
and implemented his solution in Nagini, an automated verifier for concurrent Python programs
that uses Viper as its back end [35]. It would be interesting to see if the same idea can be
implemented in VerCors to support lambda functions in Java.

The third future work is a proof of the soundness of the map axiomatization in Appendix
C. The map axiomatization has been based on Dafny’s map axiomatization. It has been used
by different tools and for this thesis, it is assumed to be sound. However, no proof could be
found whether the set of axioms was sound. This could be proven using a theorem prover such
as Isabelle/HOL.

106

Appendix A

Survey Results

The results can be found in Table A.11. To anonymize the results and have a readable overview,
the results are summarized. To fit the results into a single table, the questions have been
separated from the table. The questions are repeated below and their numbers correspond to
the question numbers in Table A.1.

Questions

1. Have you used PVL before?

2. Which of the currently supported ADTs have you used before?

3. Were there any auxiliary functions you wrote for those ADTs which could be used in
general?

4. Was there ever a point where you were looking for a specific ADT which was not supported?
Did you instead model the problem using a supported ADT? If so, could you explain what
you wanted to model and how you solved it?

5. What new functionality/ADT would help you with your software verification in PVL?

1A single result has been omitted since the result did not have any usable information. The person did not
use PVL and for those who did not use PVL, the question was phrased differently to What is a must for any
verification tool. The answer listed features that were already part of PVL.

107

Question 1 Question 2 Question 3 Question 4 Question 5

Yes Sequences

A get function for
sequences since accessing an
element by its index is not
possible in some constructs.

Always use sequences and
sequences of sequences. See previous question.

Yes Sequences,
Bags

Summing over sequences,
min and max functions
over bags

I’m always thinking about
simple structured data in
terms of sum (aka
union-types), product and
recursion. Product and
recursion are there (I model
it by making an object,
Java-style) and sum can be
hacked by using null values
(and the invariant that at
most one of the fields is
non-null).

Higher-order functions: a
map function, a fold
function, a traverse
function (generalizes the
map and fold functions,
although less important if
map and fold exit).

Yes Sequences,
Sets

Checking if a sequence is
a permutation of another.

Maps (used an array
instead)

Maps and subset notation
would be helpful.

Yes Sequences,
Bags, Sets

See the VerCors example
directory

Pairs/Tuples. Modelled
using sequences. Mappings
(for example, the maps of
Scala).

Custom ADT’s such as in
Viper. Pairs, Triples or
Tuples

Yes Sequences - Pointers Maps could be useful

Yes Sequences No

A sequence with per
element permissions,
implemented using a
domain.

Sequence with per element
permissions. A way to
specify a method is run by
multiple threads.
Functionality to simulate
OpenCL Barriers.

Yes Sequences,
Bags, Sets

Comparison of all objects
in a seq/bag/set with
another object.

No Simple sequence, set and
bag constructors. Maps.

Yes Sequences,
Bags, Sets No. -

Futures and histories have
to be specified in a process
algebra. Ability to use (a
subset of) mcrl2 and
importing mcrl2 ADT

Yes Sequences - - Multidimensional arrays

Table A.1: The results of the survey

108

Appendix B

Isabelle Proof for the Proper Subset
Operator

The automated theorem prover Isabelle has been used to show that the rewrite rule for the
proper SubSet operator is correct. Listing B.1 shows the proof. xs and ys are sets and since sets
in Viper are finite, it is assumed that they are finite by using the finite function. Then it is
shown that (|xs| < |ys| ∧ xs ⊆ ys) =⇒ xs ⊂ ys.

1 theory SubSet
2 imports Main
3 begin
4
5 lemma SubSetinSubSetEq:

6 "(finite xs ∧ finite ys ∧ card xs < card ys ∧ xs ⊆ ys) ==> xs ⊂ ys"

7 by blast
8
9 end

Listing B.1: The new proper subset expressed with existing Viper operators

109

Appendix C

Axiomatization of Maps

The entire Dafny Map axiomatization has been translated into Viper/Silver (see List-
ing C.2 below). The specific version of the DafnyPrelude.bpl file can be found at
https://github.com/dafny-lang/dafny/blob/14d0af1074f12981a32b43313fefe3cc2483d4e8/
Binaries/DafnyPrelude.bpl. All functions in DafnyPrelude.bpl have been translated into
Silver with the exception of the function Glue (see Listing C.1). This function is related to a
Boogie map and a type Ty which is used internally by Dafny. This function is omitted from our
translation since it serves no purpose for the Map domain itself.

For future reference, the Boogie code corresponding to the Silver code has been added as a
comment above each function/axiom. Also, the triggers that are generated by Viper have been
added as a comment. These triggers have been generated by Viper using the VSCode plugin
(version 2.2.2).

1 function Map#Glue<U, V>([U] bool, [U]V, Ty): Map U V;
2 axiom (forall<U, V> a: [U] bool, b:[U]V, t:Ty ::
3 { Map#Domain(Map#Glue(a, b, t)) }
4 Map#Domain(Map#Glue(a, b, t)) == a);
5 axiom (forall<U, V> a: [U] bool, b:[U]V, t:Ty ::
6 { Map#Elements(Map#Glue(a, b, t)) }
7 Map#Elements(Map#Glue(a, b, t)) == b);
8 axiom (forall<U, V> a: [U] bool, b:[U]V, t:Ty ::
9 { $Is(Map#Glue(a, b, t), t) }

10 $Is(Map#Glue(a, b, t), t));

Listing C.1: The Map#Glue function

Listing C.2: The Silver translation of the Map axiomatization in DafnyPrelude.bpl

1 domain VCTTuple[F,S] {
2 function vcttuple_tuple(f:F, s:S): VCTTuple[F,S]
3
4 // function _System.Tuple2._0(DatatypeType) : Box;
5 function vcttuple_fst(t:VCTTuple[F,S]): F
6
7 // function _System.Tuple2._1(DatatypeType) : Box;
8 function vcttuple_snd(t:VCTTuple[F,S]): S
9

10 axiom vctTupleFstAx {
11 forall f1:F, s1:S :: {vcttuple_tuple(f1,s1)} vcttuple_fst(vcttuple_tuple(f1,s1)) == f1
12 }
13

110

https://github.com/dafny-lang/dafny/blob/14d0af1074f12981a32b43313fefe3cc2483d4e8/Binaries/DafnyPrelude.bpl
https://github.com/dafny-lang/dafny/blob/14d0af1074f12981a32b43313fefe3cc2483d4e8/Binaries/DafnyPrelude.bpl

14 axiom vctTupleSndAx {
15 forall f1:F, s1:S :: {vcttuple_tuple(f1,s1)} vcttuple_snd(vcttuple_tuple(f1,s1)) == s1
16 }
17 }
18
19 //////////////////////////// DAFNY ////////////////////////////
20 // type Map U V;
21 domain VCTMap[K,V] {
22
23 //
24 //////////// AXIOMS THAT ARE NOT INCLUDED ////////////
25 //
26 // function Map#Glue<U, V>([U] bool, [U]V, Ty): Map U V;
27 // axiom (forall<U, V> a: [U] bool, b:[U]V, t:Ty ::
28 // { Map#Domain(Map#Glue(a, b, t)) }
29 // Map#Domain(Map#Glue(a, b, t)) == a);
30 // axiom (forall<U, V> a: [U] bool, b:[U]V, t:Ty ::
31 // { Map#Elements(Map#Glue(a, b, t)) }
32 // Map#Elements(Map#Glue(a, b, t)) == b);
33 // axiom (forall<U, V> a: [U] bool, b:[U]V, t:Ty ::
34 // { $Is(Map#Glue(a, b, t), t) }
35 // $Is(Map#Glue(a, b, t), t));
36 //
37 //
38 //
39
40 // function Map#Domain<U,V>(Map U V) : Set U;
41 function vctmap_keys(m:VCTMap[K,V]): Set[K]
42
43 // function Map#Card<U,V>(Map U V) : int;
44 function vctmap_card(m:VCTMap[K,V]): Int
45
46 // function Map#Values<U,V>(Map U V) : Set V;
47 function vctmap_values(m: VCTMap[K,V]): Set[V]
48
49 // function Map#Elements<U,V>(Map U V) : [U]V;
50 function vctmap_get(m:VCTMap[K,V], k: K): V
51
52 // function Map#Items<U,V>(Map U V) : Set Box;
53 function vctmap_items(m: VCTMap[K,V]): Set[VCTTuple[K,V]]
54
55 // function Map#Empty<U, V>(): Map U V;
56 function vctmap_empty(): VCTMap[K,V]
57
58 // function Map#Build<U, V>(Map U V, U, V): Map U V;
59 function vctmap_build(m: VCTMap[K,V], k: K, v: V): VCTMap[K,V]
60
61 // function Map#Equal<U, V>(Map U V, Map U V): bool;
62 function vctmap_equals(m1: VCTMap[K,V], m2: VCTMap[K,V]): Bool
63
64 // function Map#Disjoint<U, V>(Map U V, Map U V): bool;
65 function vctmap_disjoint(m1: VCTMap[K,V], m2: VCTMap[K,V]): Bool
66
67
68 ///////////////// Trigger generated by Viper //////////////////
69 // {vctmap_card(m1)}
70 //////////////////////////// DAFNY ////////////////////////////
71 // axiom (forall<U,V> m: Map U V :: { Map#Card(m) } 0 <= Map#Card(m));
72 axiom vctMapCardAx1 {
73 forall m1: VCTMap[K,V] :: {vctmap_card(m1)} vctmap_card(m1) >= 0
74 }
75

111

76 ///////////////// Trigger generated by Viper //////////////////
77 // {vctmap_card(m1)}
78 // {|vctmap_keys(m1)|}
79 //////////////////////////// DAFNY ////////////////////////////
80 // axiom (forall<U,V> m: Map U V :: { Set#Card(Map#Domain(m)) }
81 // Set#Card(Map#Domain(m)) == Map#Card(m));
82 axiom vctMapCardAx2 {
83 forall m1: VCTMap[K,V] :: {vctmap_card(m1)} {|vctmap_keys(m1)|}
84 vctmap_card(m1) == |vctmap_keys(m1)|
85 }
86
87 ///////////////// Trigger generated by Viper //////////////////
88 // {v1 in vctmap_values(m1)}
89 //////////////////////////// DAFNY ////////////////////////////
90 // axiom (forall<U,V> m: Map U V, v: V :: { Map#Values(m)[v] }
91 // Map#Values(m)[v] ==
92 // (exists u: U :: { Map#Domain(m)[u] } { Map#Elements(m)[u] }
93 // Map#Domain(m)[u] &&
94 // v == Map#Elements(m)[u]));
95 axiom vctMapValuesAx {
96 forall v1: V, m1: VCTMap[K,V] :: {(v1 in vctmap_values(m1))}
97 v1 in vctmap_values(m1) == (exists k1: K :: k1 in vctmap_keys(m1) && vctmap_get(m1, k1) == v1)
98 }
99

100 ///////////////// Trigger generated by Viper //////////////////
101 // {|vctmap_items(m1)|}
102 // {vctmap_card(m1)}
103 //////////////////////////// DAFNY ////////////////////////////
104 // axiom (forall<U,V> m: Map U V :: { Set#Card(Map#Items(m)) }
105 // Set#Card(Map#Items(m)) == Map#Card(m));
106 axiom vctMapItemsSizeAx {
107 forall m1: VCTMap[K,V] :: {vctmap_card(m1)} {|vctmap_items(m1)|}
108 |vctmap_items(m1)| == vctmap_card(m1)
109 }
110
111 ///////////////// Trigger generated by Viper //////////////////
112 // {t1 in vctmap_items(m1)}
113 //////////////////////////// DAFNY ////////////////////////////
114 // axiom (forall m: Map Box Box, item: Box :: { Map#Items(m)[item] }
115 // Map#Items(m)[item] <==>
116 // Map#Domain(m)[_System.Tuple2._0($Unbox(item))] &&
117 // Map#Elements(m)[_System.Tuple2._0($Unbox(item))] == _System.Tuple2._1($Unbox(item)));
118 axiom vctMapItemsKeysAx {
119 forall t1: VCTTuple[K,V], m1: VCTMap[K,V] ::
120 {vctmap_get(m1, vcttuple_fst(t1))} {(t1 in vctmap_items(m1))}
121 (t1 in vctmap_items(m1)) <==>
122 (vcttuple_fst(t1) in vctmap_keys(m1) && vctmap_get(m1, vcttuple_fst(t1)) == vcttuple_snd(t1))
123 }
124
125 ///////////////// Trigger generated by Viper //////////////////
126 // {k1 in vctmap_keys(vctmap_empty())}
127 //////////////////////////// DAFNY ////////////////////////////
128 // axiom (forall<U, V> u: U ::
129 // { Map#Domain(Map#Empty(): Map U V)[u] }
130 // !Map#Domain(Map#Empty(): Map U V)[u]);
131 axiom vctMapEmptyKeyAx{
132 forall k1: K :: {(k1 in vctmap_keys(vctmap_empty()))}
133 !(k1 in vctmap_keys(vctmap_empty())) && |vctmap_keys(vctmap_empty())| == 0
134 }
135
136 ///////////////// Trigger generated by Viper //////////////////
137 // {v1 in vctmap_values(vctmap_empty())}

112

138 //////////////////////////// DAFNY ////////////////////////////
139 axiom vctMapEmptyValueAx{
140 forall v1: V :: {(v1 in vctmap_values(vctmap_empty()))}
141 !(v1 in vctmap_values(vctmap_empty())) && |vctmap_values(vctmap_empty())| == 0
142 }
143
144 ///////////////// Trigger generated by Viper //////////////////
145 // {vctmap_card(m1)}
146 //////////////////////////// DAFNY ////////////////////////////
147 // Chosen trigger: vctmap_card(m1)
148 axiom vctMapEmptyCardAx1 {
149 forall m1: VCTMap[K,V] :: {vctmap_card(m1)} vctmap_card(m1) == 0 <==> m1 == vctmap_empty()
150 }
151
152 ///////////////// Trigger generated by Viper //////////////////
153 // {vctmap_card(m1)}
154 // {vctmap_keys(m1)}
155 //////////////////////////// DAFNY ////////////////////////////
156 // axiom (forall<U, V> m: Map U V :: { Map#Card(m) }
157 // (Map#Card(m) == 0 <==> m == Map#Empty()) &&
158 // (Map#Card(m) != 0 ==> (exists x: U :: Map#Domain(m)[x])));
159 axiom vctMapEmptyCardAx2 {
160 forall m1: VCTMap[K,V] :: {vctmap_card(m1)}
161 vctmap_card(m1) != 0 ==> (exists k1: K :: k1 in vctmap_keys(m1))
162 }
163
164 ///////////////// Trigger generated by Viper //////////////////
165 // {k1 in vctmap_keys(vctmap_build(m1,k1,v1))}
166 // {vctmap_get(vctmap_build(m1,k1,v1),k1)}
167 //////////////////////////// DAFNY ////////////////////////////
168 // axiom (forall<U, V> m: Map U V, u: U, v: V ::
169 // { Map#Domain(Map#Build(m, u, v))[u] } { Map#Elements(Map#Build(m, u, v))[u] }
170 // Map#Domain(Map#Build(m, u, v))[u] && Map#Elements(Map#Build(m, u, v))[u] == v);
171 axiom vctMapBuildAx0 {
172 forall k1: K, v1: V, m1: VCTMap[K,V] :: {vctmap_build(m1, k1, v1)}
173 k1 in vctmap_keys(vctmap_build(m1, k1, v1)) && vctmap_get(vctmap_build(m1, k1, v1), k1) == v1
174 }
175
176 ///////////////// Trigger generated by Viper //////////////////
177 // {vctmap_keys(vctmap_build(m1,k1,v1)), vctmap_get(vctmap_build(m1,k1,v1), k2)}
178 // {k2 in vctmap_keys(vctmap_build(m1,k1,v1))}
179 // {vctmap_get(vctmap_build(m1,k1,v1),k2)}
180 //////////////////////////// DAFNY ////////////////////////////
181 // axiom (forall<U, V> m: Map U V, u: U, u': U, v: V ::
182 // { Map#Domain(Map#Build(m, u, v))[u'] } { Map#Elements(Map#Build(m, u, v))[u'] }
183 // (u' == u ==> Map#Domain(Map#Build(m, u, v))[u'] &&
184 // Map#Elements(Map#Build(m, u, v))[u'] == v) &&
185 // (u' != u ==> Map#Domain(Map#Build(m, u, v))[u'] == Map#Domain(m)[u'] &&
186 // Map#Elements(Map#Build(m, u, v))[u'] == Map#Elements(m)[u']));
187 axiom vctMapBuildAx1 {
188 forall k1: K, k2: K, v1: V, m1: VCTMap[K,V] ::
189 {k2 in vctmap_keys(vctmap_build(m1, k1, v1))}
190 {vctmap_get(vctmap_build(m1, k1, v1), k2), vctmap_get(m1, k2)}
191 (k1 == k2 ==>
192 (
193 k2 in vctmap_keys(vctmap_build(m1, k1, v1))
194 &&
195
196 vctmap_get(vctmap_build(m1, k1, v1), k2) == v1
197)
198)
199 }

113

200 ///////////////// Trigger generated by Viper //////////////////
201 // {vctmap_build(m1,k1,v1), k2 in vctmap_keys(m1)}
202 // {vctmap_build(m1,k1,v1), vctmap_get(m1,k2)}
203 // {vctmap_keys(vctmap_build(m1,k1,v1)), k2 in vctmap_keys(m1)}
204 // {vctmap_keys(vctmap_build(m1,k1,v1)), vctmap_get(vctmap_build(m1,k1,v1),k2)}
205 // {vctmap_keys(vctmap_build(m1,k1,v1)), vctmap_get(m1,k2)}
206 // {k2 in vctmap_keys(vctmap_build(m1,k1,v1))}
207 // {vctmap_keys(m1), vctmap_build(m1,k1,v1), vctmap_get(m1,k2)}
208 // {vctmap_keys(m1), vctmap_get(vctmap_build(m1,k1,v1),k2)}
209 // {k2 in vctmap_keys(m1), vctmap_build(m1,k1,v1)}
210 // {k2 in vctmap_keys(m1), vctmap_get(vctmap_build(m1,k1,v1),k2)}
211 // {vctmap_get(vctmap_build(m1,k1,v1),k2)}
212 //////////////////////////// DAFNY ////////////////////////////
213 axiom vctMapBuild1Dot5Ax {
214 forall k1: K, k2: K, v1: V, m1: VCTMap[K,V] ::
215 {k2 in vctmap_keys(vctmap_build(m1, k1, v1))}
216 {vctmap_get(vctmap_build(m1, k1, v1), k1), vctmap_get(m1, k2)}
217 (k1 != k2 ==>
218 (
219 (k2 in vctmap_keys(vctmap_build(m1, k1, v1))) == (k2 in vctmap_keys(m1))
220 &&
221 vctmap_get(vctmap_build(m1, k1, v1), k2) == vctmap_get(m1, k2)
222)
223)
224 }
225
226 ///////////////// Trigger generated by Viper //////////////////
227 // {vctmap_keys(m1), vctmap_card(vctmap_build(m1,k1,v1))}
228 // {k1 in vctmap_keys(m1), vctmap_build(m1,k1,v1)}
229 // {k1 in vctmap_keys(m1), vctmap_card(vctmap_build(m1,k1,v1))}
230 // {vctmap_card(vctmap_build(m1,k1,v1))}
231 //////////////////////////// DAFNY ////////////////////////////
232 // axiom (forall<U, V> m: Map U V, u: U, v: V :: { Map#Card(Map#Build(m, u, v)) }
233 // Map#Domain(m)[u] ==> Map#Card(Map#Build(m, u, v)) == Map#Card(m));
234 axiom vctMapBuildAx2 {
235 forall k1: K, v1: V, m1: VCTMap[K,V] :: {vctmap_card(vctmap_build(m1, k1, v1))}
236 (k1 in vctmap_keys(m1)) ==> (vctmap_card(vctmap_build(m1, k1, v1)) == vctmap_card(m1))
237 }
238
239 ///////////////// Trigger generated by Viper //////////////////
240 // {vctmap_keys(m1), vctmap_card(vctmap_build(m1,k1,v1))}
241 // {k1 in vctmap_keys(m1), vctmap_build(m1,k1,v1)}
242 // {k1 in vctmap_keys(m1), vctmap_card(vctmap_build(m1,k1,v1))}
243 // {vctmap_card(vctmap_build(m1,k1,v1))}
244 //////////////////////////// DAFNY ////////////////////////////
245 // axiom (forall<U, V> m: Map U V, u: U, v: V :: { Map#Card(Map#Build(m, u, v)) }
246 // !Map#Domain(m)[u] ==> Map#Card(Map#Build(m, u, v)) == Map#Card(m) + 1);
247 axiom vctMapBuildAx3 {
248 forall k1: K, v1: V, m1: VCTMap[K,V] :: {vctmap_card(vctmap_build(m1, k1, v1))}
249 !(k1 in vctmap_keys(m1)) ==> (vctmap_card(vctmap_build(m1, k1, v1)) == vctmap_card(m1)+1)
250 }
251
252 ///////////////// Trigger generated by Viper //////////////////
253 // {vctmap_equals(m1,m2)}
254 // {vctmap_keys(m1), vctmap_keys(m2)}
255 // {vctmap_keys(m2), vctmap_keys(m1)}
256 //////////////////////////// DAFNY ////////////////////////////
257 // axiom (forall<U, V> m: Map U V, m': Map U V::
258 // { Map#Equal(m, m') }
259 // Map#Equal(m, m') <==> (forall u : U :: Map#Domain(m)[u] == Map#Domain(m')[u]) &&
260 // (forall u : U :: Map#Domain(m)[u] ==> Map#Elements(m)[u] == Map#Elements(m')[u]));
261 axiom vctMapEqualsAx1 {

114

262 forall m1: VCTMap[K,V], m2: VCTMap[K,V] :: {vctmap_equals(m1, m2)}
263 vctmap_equals(m1, m2) <==>
264 (
265 (
266 vctmap_keys(m1) == vctmap_keys(m2)
267) &&
268 (
269 forall k: K :: k in vctmap_keys(m1) ==> vctmap_get(m1, k) == vctmap_get(m2, k)
270)
271
272)
273 }
274
275 ///////////////// Trigger generated by Viper //////////////////
276 // {vctmap_equals(m1,m2)}
277 //////////////////////////// DAFNY ////////////////////////////
278 // // extensionality
279 // axiom (forall<U, V> m: Map U V, m': Map U V::
280 // { Map#Equal(m, m') }
281 // Map#Equal(m, m') ==> m == m');
282 axiom vctMapEqualsAx2 {
283 forall m1: VCTMap[K,V], m2: VCTMap[K,V] :: {vctmap_equals(m1, m2)}
284 vctmap_equals(m1, m2) <==> (m1 == m2)
285 }
286
287 ///////////////// Trigger generated by Viper //////////////////
288 // {vctmap_disjoint(m1,m2)}
289 // {vctmap_keys(m1), vctmap_keys(m2)}
290 // {vctmap_keys(m2), vctmap_keys(m1)}
291 //////////////////////////// DAFNY ////////////////////////////
292 // axiom (forall<U, V> m: Map U V, m': Map U V ::
293 // { Map#Disjoint(m, m') }
294 // Map#Disjoint(m, m') <==> (forall o: U :: {Map#Domain(m)[o]} {Map#Domain(m')[o]} !Map#Domain(m)[o] ||

↪→ !Map#Domain(m')[o]));
295 axiom vctMapDisjointAx1 {
296 forall m1: VCTMap[K,V], m2: VCTMap[K,V] :: {vctmap_disjoint(m1, m2)}
297 vctmap_disjoint(m1, m2) <==>
298 (forall k: K :: {k in vctmap_keys(m1)} {k in vctmap_keys(m2)} !(k in vctmap_keys(m1)) || !(k in

↪→ vctmap_keys(m2)))
299 }
300
301
302 // OWN FUNCTION AND AXIOMS
303 function vctmap_remove(m: VCTMap[K,V], k: K): VCTMap[K,V]
304
305 ///////////////// Trigger generated by Viper //////////////////
306 // {k in vctmap_keys(vctmap_remove(m,k))}
307 axiom vctMapRemoveAx1 {
308 forall m: VCTMap[K,V], k: K :: {vctmap_remove(m, k)} !(k in vctmap_keys(vctmap_remove(m, k)))
309 }
310
311 ///////////////// Trigger generated by Viper //////////////////
312 // {vctmap_keys(m), vctmap_remove(m,k)}
313 // {vctmap_keys(m), vctmap_get(vctmap_remove(m,k), k)}
314 // {vctmap_keys(m), vctmap_get(m,k)}
315 // {k in vctmap_keys(m)}
316 // {vctmap_get(vctmap_remove(m,k), k)}
317 // {vctmap_get(m,k)}
318 axiom vctMapRemoveAx2 {
319 forall m: VCTMap[K, V], k: K :: {vctmap_remove(m, k)}
320 (k in vctmap_keys(m)) ==> vctmap_get(vctmap_remove(m, k), k) != vctmap_get(m, k)
321 }

115

322
323 ///////////////// Trigger generated by Viper //////////////////
324 // {vctmap_remove(m,k1), k2 in vctmap_keys(m)}
325 // {vctmap_remove(m,k1), vctmap_get(m,k2)}
326 // {vctmap_keys(vctmap_remove(m,k1)), k2 in vctmap_keys(m)}
327 // {vctmap_keys(vctmap_remove(m,k1)), vctmap_get(vctmap_remove(m,k1),k2)}
328 // {vctmap_keys(vctmap_remove(m,k1)), vctmap_get(m,k2)}
329 // {k2 in vctmap_keys(vctmap_remove(m,k1))}
330 // {vctmap_keys(m), vctmap_remove(m,k1), vctmap_get(m,k2)}
331 // {vctmap_keys(m), vctmap_get(vctmap_remove(m,k1),k2)}
332 // {k2 in vctmap_keys(m), vctmap_remove(m,k1)}
333 // {k2 in vctmap_keys(m), vctmap_get(vctmap_remove(m,k1),k2)}
334 // {vctmap_get(vctmap_remove(m,k1),k2)}
335 axiom vctMapRemoveAx3 {
336 (forall m: VCTMap[K, V], k1: K, k2: K ::
337 {(k2 in vctmap_keys(vctmap_remove(m, k1)))}
338 {vctmap_get(vctmap_remove(m, k1), k2)}
339 k1 != k2 ==>
340 (k2 in vctmap_keys(vctmap_remove(m, k1)) == k2 in vctmap_keys(m) &&
341 vctmap_get(vctmap_remove(m, k1), k2) == vctmap_get(m, k2)))
342 }
343
344 ///////////////// Trigger generated by Viper //////////////////
345 // {vctmap_keys(m), vctmap_remove(m,k)}
346 // {vctmap_keys(m), vctmap_card(vctmap_remove(m,k))}
347 // {k in vctmap_keys(m)}
348 // {vctmap_card(m), vctmap_remove(m,k)}
349 // {vctmap_card(m), vctmap_card(vctmap_remove(m,k))}
350 // {vctmap_card(vctmap_remove(m,k))}
351 axiom vctMapRemoveAx4 {
352 forall m: VCTMap[K,V], k: K :: {vctmap_remove(m, k)}
353 (k in vctmap_keys(m)) ==> vctmap_card(m)-1 == vctmap_card(vctmap_remove(m, k))
354 }
355
356 ///////////////// Trigger generated by Viper //////////////////
357 // {vctmap_keys(m), vctmap_remove(m,k)}
358 // {vctmap_keys(m), vctmap_card(vctmap_remove(m,k))}
359 // {k in vctmap_keys(m)}
360 // {vctmap_card(m), vctmap_remove(m,k)}
361 // {vctmap_card(m), vctmap_card(vctmap_remove(m,k))}
362 // {vctmap_card(vctmap_remove(m,k))}
363 axiom vctMapRemoveAx5 {
364 forall m: VCTMap[K,V], k: K :: {vctmap_remove(m, k)}
365 !(k in vctmap_keys(m)) ==> vctmap_card(m) == vctmap_card(vctmap_remove(m, k))
366 }
367
368 ///////////////// Trigger generated by Viper //////////////////
369 // {vctmap_keys(m), vctmap_remove(m,k)}
370 // {vctmap_keys(m), vctmap_card(vctmap_remove(m,k))}
371 // {k in vctmap_keys(m)}
372 // {vctmap_card(m), vctmap_remove(m,k)}
373 // {vctmap_card(m), vctmap_card(vctmap_remove(m,k))}
374 // {vctmap_card(vctmap_remove(m,k))}
375 axiom vctMapRemoveAx6 {
376 (forall m: VCTMap[K, V], k: K :: {vctmap_remove(m, k)}
377 !((k in vctmap_keys(m))) ==> vctmap_equals(m, vctmap_remove(m, k)))
378 }
379 }

116

Appendix D

A Large Example using Maps

Listing D.1 shows an example using maps. This example is based on a test in the Dafny repository
and is translated to PVL. The file can be found at https://github.com/dafny-lang/dafny/blob/
213ed90c75bee4f30638c60060dd7ac5971b82a0/Test/dafny0/Maps.dfy.

Listing D.1: An example based on a test in the Dafny repository
1 class Maps {
2
3 void main() {
4 map<int,int> m = map<int,int> {2 -> 3};
5 assert 2 in keysMap(m);
6 assert !(3 in keysMap(m));
7 assert m[2] == 3;
8 assert disjointMap(m, map<int, int> {3 -> 3});
9 assert map<int, int> {2 -> 4} == map<int, int> {2 -> 4};

10 assert equalsMap(m ++ (7, 1), m ++ (2, 3) ++ (7, 1));
11 assert equalsMap(m, m ++ (2, 3));
12 }
13
14 void m() {
15 map<int, int> a = map<int, int> {2 -> 3};
16 map<int, int> b = map<int, int> {3 -> 2};
17 assert a[b[3]] == 3;
18 }
19
20 requires (\forall int i; 0 <= i && i < 100; i in keysMap(a) && i in keysMap(b) && a[i] != b[i]);
21 void m2(map<int, boolean> a, map<int, boolean> b) {
22 assert (\forall int i; 0 <= i && i < 100; a[i] || b[i]);
23 }
24
25 requires (\forall int i; 0 <= i && i < 100; i in keysMap(a) && a[i] == i*i);
26 void m3(map<int, int> a) {
27 assert a[20] == 400;
28 }
29
30 void m4() {
31 map<int, int> a = map<int, int> {3 -> 9};
32 if (a[4] == 4) {
33 m();
34 }
35 }
36
37 requires 20 in keysMap(a);

117

https://github.com/dafny-lang/dafny/blob/213ed90c75bee4f30638c60060dd7ac5971b82a0/Test/dafny0/Maps.dfy
https://github.com/dafny-lang/dafny/blob/213ed90c75bee4f30638c60060dd7ac5971b82a0/Test/dafny0/Maps.dfy

38 void m5(map<int, int> a) {
39 assert a[20] <= 0 || 0 < a[20];
40 }
41
42 void m6() {
43 map<int,int> a = map<int,int> {3 -> 9};
44 assert map<int, int> {2 -> 4} == map<int, int> {2 -> 4};
45 assert a ++ (3, 5) == map<int, int> {3 -> 5};
46 assert a ++ (2, 5) == map<int, int> {2 -> 5, 3 -> 9};
47 assert a ++ (2, 5) == map<int, int> {2 -> 6, 3 -> 9, 2 -> 5};
48 }
49
50 void m7() {
51 map<int,int> a = map<int,int> {1 -> 1, 2 -> 4, 3 -> 9};
52 assert (\forall int i; i in keysMap(a); a[i] == i*i);
53 assert !(0 in keysMap(a));
54 assert 1 in keysMap(a);
55 assert 2 in keysMap(a);
56 assert 3 in keysMap(a);
57 assert (\forall int i; i < 1 || i > 3; !(i in keysMap(a)));
58 }
59
60 void m8() {
61 map<int,int> a = map<int,int> {};
62 assert (\forall int i; true; !(i in keysMap(a)));
63 int i = 0;
64 int n = 100;
65
66
67 loop_invariant 0 <= i && i <= n;
68 loop_invariant (\forall int j; j in keysMap(a); a[j] == j*j);
69 loop_invariant (\forall int k; true; (0 <= k && k < i) == k in keysMap(a));
70 while (i < n) {
71 a = a ++ (i, (i*i));
72 i = i + 1;
73 }
74
75 assert disjointMap(a, map<int, int>{-1 -> 2});
76 m3(a);
77 }
78
79 void m9() {
80 map<int,int> a = map<int,int> {};
81 map<int,int> b = map<int,int> {};
82 assert disjointMap(a, b);
83
84 b = map<int,int> {2 -> 3, 4 -> 2, 5 -> -6, 6 -> 7};
85 assert disjointMap(a, b);
86 assert !disjointMap(b, map<int,int> {6 -> 3});
87 }
88
89 void m10()
90 {
91 map<int,int> a = map<int,int> {};
92 map<int,int> b = map<int,int> {};
93 assert disjointMap(a, b);
94
95 b = map<int,int> {2 -> 3, 4 -> 2, 5 -> -6, 6 -> 7};
96 assert disjointMap(a, b);
97
98 a = map<int,int> {3 -> 3, 1 -> 2, 9 -> -6, 8 -> 7};
99 assert disjointMap(a, b);

118

100 }
101 }

119

Appendix E

Instantiation Graphs for the
Methods in Listing D.1

Figure E.1: The instantiation graph for the
main method

Figure E.2: The instantiation graph for the m
method

120

Figure E.3: The instantiation graph for the m2 method

Figure E.4: The instantiation graph for the m3
method

Figure E.5: The instantiation graph for the m4
method

Figure E.6: The instantiation graph for the m5
method

Figure E.7: The instantiation graph for the m6
method

121

Figure E.8: The instantiation graph for the m7
method

Figure E.9: The instantiation graph for the m8
method

Figure E.10: The instantiation graph for the m9 method

122

Bibliography

[1] The webpage of Dafny. https://www.microsoft.com/en-us/research/project/
dafny-a-language-and-program-verifier-for-functional-correctness/. Accessed:
16-04-2020.

[2] The webpage of GPUVerify. http://multicore.doc.ic.ac.uk/tools/GPUVerify/. Ac-
cessed: 16-04-2020.

[3] The webpage of Frama-C. https://frama-c.com/. Accessed: 16-04-2020.

[4] The webpage of VerCors. https://vercors.ewi.utwente.nl/. Accessed: 16-04-2020.

[5] The webpage of VeriFast. https://people.cs.kuleuven.be/~bart.jacobs/verifast/. Ac-
cessed: 17-04-2020.

[6] The webpage of Boogie. https://www.microsoft.com/en-us/research/project/
boogie-an-intermediate-verification-language/. Accessed: 17-04-2020.

[7] Stefan Blom and Marieke Huisman. The VerCors tool for verification of concurrent programs.
In International Symposium on Formal Methods, pages 127–131. Springer, 2014.

[8] The main page on Viper. https://www.pm.inf.ethz.ch/research/viper.html. Accessed:
18-09-2019.

[9] The VerCors Verifier. https://utwente-fmt.github.io/vercors/. Accessed: 18-09-2019.

[10] Afshin Amighi, Stefan Blom, Marieke Huisman, and Marina Zaharieva-Stojanovski. The
VerCors project: Setting up basecamp. In Proceedings of the sixth workshop on Programming
languages meets program verification, pages 71–82. ACM, 2012.

[11] Wytse Hendrikus Marinus Oortwijn. Deductive techniques for model-based concurrency ver-
ification. PhD thesis, University of Twente, Netherlands, 12 2019.

[12] Sebastiaan JC Joosten, Wytse Oortwijn, Mohsen Safari, and Marieke Huisman. An ex-
ercise in verifying sequential programs with VerCors. In Companion Proceedings for the
ISSTA/ECOOP 2018 Workshops, pages 40–45. ACM, 2018.

[13] Stefan Blom, Saeed Darabi, Marieke Huisman, and Wytse Oortwijn. The VerCors Tool
Set: Verification of Parallel and Concurrent Software. In Nadia Polikarpova and Steve
Schneider, editors, Integrated Formal Methods, Lecture Notes in Computer Science, pages
102–110. Springer, 2017.

123

https://www.microsoft.com/en-us/research/project/dafny-a-language-and-program-verifier-for-functional-correctness/
https://www.microsoft.com/en-us/research/project/dafny-a-language-and-program-verifier-for-functional-correctness/
http://multicore.doc.ic.ac.uk/tools/GPUVerify/
https://frama-c.com/
https://vercors.ewi.utwente.nl/
https://people.cs.kuleuven.be/~bart.jacobs/verifast/
https://www.microsoft.com/en-us/research/project/boogie-an-intermediate-verification-language/
https://www.microsoft.com/en-us/research/project/boogie-an-intermediate-verification-language/
https://www.pm.inf.ethz.ch/research/viper.html
https://utwente-fmt.github.io/vercors/

[14] Stefan Blom and Marieke Huisman. Witnessing the elimination of magic wands. Number
TR-CTIT-13-22 in CTIT Technical Report Series. Centre for Telematics and Information
Technology (CTIT), Netherlands, 11 2013.

[15] The Github page of ANTLR. https://github.com/antlr/antlr4#antlr-v4. Accessed: 18-
09-2019.

[16] The GitHub page of VerCors. https://github.com/utwente-fmt/vercors#
vercors-verification-toolset. Accessed: 19-09-2019.

[17] The PVL Syntax page. https://github.com/utwente-fmt/vercors/wiki/PVL-Syntax. Ac-
cessed: 15-04-2020.

[18] Peter Müller, Malte Schwerhoff, and Alexander J Summers. Viper: A verification infras-
tructure for permission-based reasoning. In International Conference on Verification, Model
Checking, and Abstract Interpretation, pages 41–62. Springer, 2016.

[19] The Silicon BitBucket page. https://bitbucket.org/viperproject/silicon/. Accessed:
29-12-2019.

[20] The Carbon BitBucket page. https://bitbucket.org/viperproject/carbon/. Accessed:
29-12-2019.

[21] The Silicon ADT axiomatizations. https://bitbucket.org/viperproject/silicon/src/
e96d2ce8fdf5be1bddb47aae0d114c2f9d0d7d8f/src/main/resources/dafny_axioms/?at=
default. Accessed: 31-12-2019.

[22] The Carbon ADT axiomatizations. https://bitbucket.org/viperproject/carbon/src/
1221bd1decd5bf4f23ed5c0c6a9b8d48eb2245b1/src/main/scala/viper/carbon/modules/
impls/sequence_axioms/?at=default. Accessed: 31-12-2019.

[23] K Rustan M Leino and Clément Pit-Claudel. Trigger selection strategies to stabilize pro-
gram verifiers. In International Conference on Computer Aided Verification, pages 361–381.
Springer, 2016.

[24] David Detlefs, Greg Nelson, and James B Saxe. Simplify: a theorem prover for program
checking. Journal of the ACM (JACM), 52(3):365–473, 2005.

[25] Michał Moskal. Programming with triggers. In Proceedings of the 7th International Work-
shop on Satisfiability Modulo Theories, pages 20–29, 2009.

[26] The Viper tutorial. http://viper.ethz.ch/tutorial/. Accessed: 18-09-2019.

[27] Nils Becker, Peter Müller, and Alexander J Summers. The axiom profiler: understanding
and debugging smt quantifier instantiations. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages 99–116. Springer, 2019.

[28] The VerCors ADT documentation. https://github.com/utwente-fmt/vercors/wiki/
Axiomatic-Data-Types#future-enhancements-1. Accessed: 18-09-2019.

[29] The VerCors Examples directory. https://github.com/utwente-fmt/vercors/tree/
master/examples. Accessed: 23-10-2019.

[30] Justin Pombrio, Shriram Krishnamurthi, and Mitchell Wand. Inferring scope through syn-
tactic sugar. Proceedings of the ACM on Programming Languages, 1(ICFP):44, 2017.

124

https://github.com/antlr/antlr4#antlr-v4
https://github.com/utwente-fmt/vercors#vercors-verification-toolset
https://github.com/utwente-fmt/vercors#vercors-verification-toolset
https://github.com/utwente-fmt/vercors/wiki/PVL-Syntax
https://bitbucket.org/viperproject/silicon/
https://bitbucket.org/viperproject/carbon/
https://bitbucket.org/viperproject/silicon/src/e96d2ce8fdf5be1bddb47aae0d114c2f9d0d7d8f/src/main/resources/dafny_axioms/?at=default
https://bitbucket.org/viperproject/silicon/src/e96d2ce8fdf5be1bddb47aae0d114c2f9d0d7d8f/src/main/resources/dafny_axioms/?at=default
https://bitbucket.org/viperproject/silicon/src/e96d2ce8fdf5be1bddb47aae0d114c2f9d0d7d8f/src/main/resources/dafny_axioms/?at=default
https://bitbucket.org/viperproject/carbon/src/1221bd1decd5bf4f23ed5c0c6a9b8d48eb2245b1/src/main/scala/viper/carbon/modules/impls/sequence_axioms/?at=default
https://bitbucket.org/viperproject/carbon/src/1221bd1decd5bf4f23ed5c0c6a9b8d48eb2245b1/src/main/scala/viper/carbon/modules/impls/sequence_axioms/?at=default
https://bitbucket.org/viperproject/carbon/src/1221bd1decd5bf4f23ed5c0c6a9b8d48eb2245b1/src/main/scala/viper/carbon/modules/impls/sequence_axioms/?at=default
http://viper.ethz.ch/tutorial/
https://github.com/utwente-fmt/vercors/wiki/Axiomatic-Data-Types#future-enhancements-1
https://github.com/utwente-fmt/vercors/wiki/Axiomatic-Data-Types#future-enhancements-1
https://github.com/utwente-fmt/vercors/tree/master/examples
https://github.com/utwente-fmt/vercors/tree/master/examples

[31] Dafny Axiomatizations for different collections. https://github.com/dafny-lang/dafny/
blob/master/Binaries/DafnyPrelude.bpl. Accessed: 26-02-2020.

[32] Matthias Erdin, Vytautas Astrauskas, and Federico Poli. Verification of rust generics, type-
states, and traits. 2018.

[33] The formal verifier Prusti. https://www.pm.inf.ethz.ch/research/prusti.html. Accessed:
30-03-2019.

[34] Benjamin WEBER, Peter MÜLLER, Arshavir TER-GABRIELYAN, and Marco EILERS.
Automating modular reasoning about higher-order functions. 2017.

[35] The webpage of Nagini. https://www.pm.inf.ethz.ch/research/nagini.html. Accessed:
20-04-2020.

125

https://github.com/dafny-lang/dafny/blob/master/Binaries/DafnyPrelude.bpl
https://github.com/dafny-lang/dafny/blob/master/Binaries/DafnyPrelude.bpl
https://www.pm.inf.ethz.ch/research/prusti.html
https://www.pm.inf.ethz.ch/research/nagini.html

	Introduction
	Background
	VerCors
	The intermediate language: COL
	The input languages
	The transformations: Passes
	The final transformation: From COL to back end language
	The back end: Viper
	Silver
	Natively supported ADTs in Viper

	Natively Supported ADTs in VerCors
	Sequences
	Sets and bags

	Triggers
	Categorization of trigger
	Axiom Profiler

	Functionality to Add to VerCors/PVL
	Survey Questions
	Survey Results
	List of Features to Implement

	Rephrasing the Research Questions
	Implementation-level View of VerCors
	The Initial Transformation: From Input Language to a COL AST
	COL
	Passes
	COL AST to Viper

	Approaches to Implementing Functionality
	Syntactic Sugar
	Pure syntactic sugar
	Transformed syntactic sugar

	Mapping Directly to Back End
	Function Generation
	Domains

	Implementation-focused Features
	Checking if a Sequence is Empty
	Adding Single Values to Sequences
	Taking Ranges from Sequences
	Removing Values from Sequences by Index
	Simple Collection Constructors
	Subset Notation

	Set Comprehension
	Description and Syntax
	Design
	Implementation
	Limitations and Design Choices
	Difficulties with proving simple properties
	Scoping issues
	Classes must have a domain

	Examples using Set Comprehension

	Maps
	Description and Syntax
	The Silver Equivalent of Dafny's Map Axiomatization
	Implementation
	Evaluation of the Implementation
	The chosen triggers
	Instantiation graphs

	Examples using Maps

	Generics
	Description and Syntax
	Design
	Monomorphizing generic classes and generic functions
	The verification of the generic class
	Concrete example

	Implementation
	Common part of the implementation
	Generic classes
	Generic functions
	Determine mapping for a generic function.

	Limitations
	No support for generic methods
	No static functions in generic classes

	Future Improvements
	Examples using Generics

	Conclusion
	Summary of Contributions
	Future Work

	Survey Results
	Isabelle Proof for the Proper Subset Operator
	Axiomatization of Maps
	A Large Example using Maps
	Instantiation Graphs for the Methods in Listing D.1

