
Master Thesis

Design of a development platform to monitor and

manage Low Power, Wide Area WSNs

J.J. Schutte, University of Twente
j.j.schutte@student.utwente.nl

June 27, 2019



Abstract

The recent explosion of Low Power Wide Area (LPWA) WSN devices has raised
interest in perceiving the Quality of Service (QoS) provided to and by such ap-
plications. Current QoS solutions do not respect LPWA-specific considerations,
such as limited resources and extreme scale. This study has set out to research
an appropriate solution to QoS monitoring and management that does concern
these considerations. This is achieved by establishing a development platform
focused on LPWA QoS. The platform consists of two chief concepts. The first
of which is a distributed stream processing architecture. The architecture back-
bone is based on Apache Storm and provides scaffolding for different classes of
stream transformations, which guides users in implementing their monitoring
applications. The second artefact is a model capable of captivating resources
and calculating the performance of a system, considering different modes of
operation of that system. The proposed development platform is validated by
implementing an instantiation of it, based on an actual, commercial on-street
parking application. Though the study shows some deficiencies still present in
the solution, its results demonstrate it as an applicable and feasible aid in con-
structing scalable applications capable of QoS monitoring in LPWA WSNs.
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1. Introduction

1.1 Domain overview

Wireless Sensor Networks (WSNs) have received large amounts of research the
past decades. However, this mainly resulted in isolated ad hoc networks. With
both the size of WSN’s and the amount of networks increasing, the deployment
of multiple networks in the same geographical area for different applications
seemed increasingly illogical. Therefore, recent endeavours have attempted de-
sign networks and protocols in order to create a general, ubiquitous internet for
automated devices and sensors: the Internet of Things (IoT). A specific recent
development in IoT has focussed on the field of Low Power Wide Area networks
(LPWA). These networks serve devices that communicate over large distances
with very limited computational and communication resources [1]. They there-
fore entail low data rates, low radio frequencies and raw unprocessed data.

These extremely restrictive requirements entail that a regular wireless inter-
net connection does not suffice, as it is not optimized for the extreme resource
limitations of LPWA WSN applications. Multiple corporations are developing
and deploying exclusive wide area networks for low powered devices. Examples
of these networks are Narrow-Band IoT [2], LoRaWAN [3] and Sigfox [4]. These
networks are deployed and operated by telecom providers and allow instant con-
nectivity by incorporating a SIM or proprietary network connectivity module.
As a consequence large-scale LPWA applications are moving from node-hopping
and mesh network strategies to operated cell networks [5, 6]. Because of the
aforementioned reasons the number of connected devices has exploded in the re-
cent years. Estimations vary but a consensus established from multiple sources
predict about 15-30 billion connected devices in 2020 [7, 8, 9, 10]. This would im-
ply that by 2020 the number of connected IoT/WSN devices will have surpassed
the number of consumer electronic devices (e.g. PC’s, laptops and phones) [10].

Both the explosion of devices, entailing explosion of data, and the shift to
shared operated cell networks implies a great stress on monitoring sensor ap-
plications. While relatively small sized applications on proprietary networks
allow for a best-effort approach, the convolution of many large applications on
a shared network requires knowledge of the performance provided by the appli-
cation. The term coined for this is Quality of Service (QoS). QoS parameters
such as application throughput, service availability and message drop allow the
description of the performance state of a system or application [11]. It is there-
fore paramount for a commercial application to have its QoS metrics observed.

The notion of QoS in a networked application is not a novel concept. It has
been a research and industry paradigm for as long as commercial applications
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have existed. Consequently, many forms of QoS monitoring and management
exist for regular internet and networking applications. However, these methods
do not transfer well to the field of WSN and IoT, as will become apparent in this
section. This presents a vacancy that requires exploration. Access to such QoS
solutions will improve the maturity and operational feasibility of commercial,
large-scale IoT applications.

The remainder of this introductory chapter will determine some of the key
challenges which differentiate QoS monitoring of regular networks and wireless
sensor networks. The next section will deliberate some key obstacles in the
current state of art of monitoring Quality of Service in LPWA Wireless Sensor
Networks. Subsequently, it will be deliberated why existing solutions cannot
provide for the QoS monitoring needs of LPWA applications. After which the
succeeding section will introduce the proposed approach to design a development
platform for applications to deal with these challenges and capture the QoS in
WSN’s.

1.2 Challenges in monitoring QoS in LPWA

Three key challenges were identified that fundamentally complicate QoS mea-
surement and management in LPWA networks and applications. These chal-
lenges affect the applicability of conventional QoS mechanisms to the field of
IoT and WSN.

Technical limitations of end-devices

The first challenge of LPWA applications are the previously mentioned extreme
resource constraints [1, 12]. For example, LPWA devices are expected to com-
municate on a network shared by a vast amount of nodes, diminishing the
individual connectivity resources. As a consequence, uplink communication is
regularly aggregated over time and transmitted opportunistically. Therefore,
back-end applications are required to facilitate irregular and infrequent report-
ing intervals from sensor nodes. Additionally, an LPWA device is required to
perform for a certain amount of time, typically at least 10 years [13, 14, 15],
on a finite battery energy supply. Therefore, there are no resources to spare for
expensive auxiliary processes [16]. Consequently, devices usually send low-level
auxiliary data, instead of intelligently derived values. The burden of calculat-
ing high level information is then deferred to be computed in-network (edge
computing) or at the back-end application server.

Additionally, evolution of sensor device software is far more restrictive then
evolution of back-end application’s software. Firstly, because of the long life-
time of devices, it can occur that services based on modern day requirements
need to be performed by decade old technology. Secondly, most LPWA network-
ing protocols do not require devices to retain a constant connection in order to
save energy (duty cycling) [13, 14, 16, 17]. Instead, the devices connect peri-
odically or when an event/interrupt occurs. This entails that devices are not
updated en masse, but individually when a device wakes up. As this requires
additional resends of the updated code it consumes more connectivity resources
in the network.

For these reasons LPWA sensor applications often employ a ”dumb sensor,
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smart back-end” philosophy. Consequently, the computations are deferred to
the network, back-end or cloud [18, 19]. The problem however with deferring
the computations further to the back-end is that more and more computations
have to be performed centralized. This requires the back-end to be extremely
scalable because more tasks need to be performed as more devices are added to
the application [20, 21, 22].

IoT QoS is different

Aside from the low-level information sent by the large amount of devices, QoS
in WSNs is distinctly different from classical client-server QoS. Often QoS in
a client-server application can be measured at the server. QoS monitoring in
a cloud environment may require some aggregation of data, but even then the
number of data sources is relatively limited. Large WSN applications require
data aggregation by default. As the Quality of Service provided by the appli-
cation can only be ascertained by calculations based on auxiliary data collected
from a huge number of devices. This concept is known as Collective QoS [23]
and comprises parameters such as collective bandwidth, average throughput and
the number of devices requiring replacement. As this information eventually re-
quires accumulation on a single machine in order to determine concrete values,
aggregation of expansive volumes of auxiliary sensor data must be performed
intelligently as not to form a congestion point or single point of failure.

However, device level information is still required alongside of collective QoS
[24]. If a device is not performing according to expectations of a predetermined
strategy, it is required that this is mitigated or informed. This introduces a
second distinction to classical QoS: multi-level monitoring and reporting. Con-
ventionally, only the QoS provided by the server(s) running an application is of
interest. However, in a wireless sensor environment, monitoring of parameters
on different levels is required. Examples of these monitoring levels are single
sensor, the application as a whole or analysis per IoT cell tower or geographic
area. This requirement entails data points of different levels of enrichment,
calculated from the same raw sensor data.

The final distinction in IoT monitoring is the dynamic nature of WSN ap-
plications [18]. Firstly, an IoT monitoring application needs to be prepared for
devices added to the network and dropping out of the application [25]. As a
collective QoS parameter is based on a selection of devices, the monitoring appli-
cation must support adding and remove devices from the equation. Additionally,
diverse deployment of nodes causes them to behave differently. Therefore, QoS
procedures should account for the heterogeneity exhibited throughout the WSN
[16].

In conclusion, IoT QoS management will require a flexible and dynamic
method of resource parameter modelling. Additionally, this process should be
able to be applied to a high influx of sensor date. This monitoring technique
should be able to calculate both lower level (single sensor) and higher level
(application) resource distribution.

Movement to operated cell network

A final challenge in contemporary QoS monitoring of LPWA applications is the
earlier recognised increasing trend of shared, telecom-operated cell networks [13,
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14]. Though it makes IoT connectivity more efficient because many applications
can be served by a single network infrastructure, it effects complications to the
QoS. Firstly, Many applications will be competing for a shared scarce amount
of network resources. When other applications consume a large portion of the
resources, due to poor rationing or event-bursts, your application suffers and
cannot provide the expected QoS.

Secondly, by out-sourcing the network infrastructure, control over the net-
work is lost. Though beneficiary to the required effort, some important capa-
bilities are conceded. For example the network can no longer be easily altered
in order to suit the needs of the application. Additionally, auxiliary data can
not be extracted from the network and edge computing is not an option, again
deferring the burden of aggregating QoS data entirely to the back-end.

Finally, the telecom operator will require adherence to a Service Level Agree-
ment (SLA). Though this ensures a certain service provided to an application
and prevents other applications of consuming extraneous resources, it also re-
quires close monitoring of applications. A breach of the SLA may cause fines or
dissolving of a contract. Therefore, strict adherence to the SLA parameters is
necessary and timely proactive intervention is required, if the limits of the SLA
are threatened to be exceeded [26].

To summarize, outsourcing the management of the network infrastructure
to a professional telecom provider aggravates the need for exact and real-time
curtailment of digital resources, while simultaneously impeding the ability to do
so in the network itself. This will need to be remedied by adapting the parts
of the WSN architecture within the domain of control, i.e. the sensor devices
and the back-end application. Because of the earlier proposed concerns and
challenges this increased responsibility will be mostly attributed to the back-
end application.

1.3 Current State of the Art

The previous section illustrated some key challenges in measuring and determin-
ing QoS in WSNs. This section will deliberate on some known QoS protocols
and existing monitoring solutions. It will conclude by arguing why the current
state of the art does not provide a suitable solution for the previously identified
challenges.

1.3.1 QoS protocols

The first well known protocol often employed for QoS monitoring is SNMP [27].
SNMP provides a formalized, device-independent addressing scheme to request
key device and networking data points. Additionally, it allows application de-
velopers to specify custom addressable data points. Though SNMP does not
feature command and control capabilities, the information obtained by it can
be used to configure and control an application by other means.

A protocol that does feature such command & control capabilities is Inte-
grated Services (IntServ) [28]. This protocol negotiates a resource allocation
in the network per data flow. This allocation is then permeated throughout
the network domain and retained until the data flow has ended. It provides
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hard QoS guarantees within the network, but at a severe preparation cost and
overhead.

A more cost-efficient QoS protocol is Differentiated Services (DiffServ) [28].
This protocol does not require resource negotiation and instead identifies differ-
entiating traffic classes. Depending on the determined class, the data will enjoy
specific benefits such as priority handling or increased network resources allo-
cation. Though the QoS guarantees provided by this protocol are softer than
that of IntServ, it also generates vastly less overhead.

The former protocols are all general application networking protocols. Though
there are proposals for IoT-specific QoS monitoring frameworks. A promising
solution is presented by R. Duan et al [29]. This framework aims for an au-
tomated negotiation procedure between node, network and back-end layers in
order to deliberate a reporting level that compromises the monitoring needs
with the available resources and device capabilities. In this manner it can offer
the greatest benefit to QoS without considerably impacting it negatively.

1.3.2 QoS platforms

Aside from protocols managing QoS there also exist some IoT platforms that
are capable of (or enable) some form of QoS monitoring. This section will detail
three of them and how they curtail the posed challenges or are invalidated by
them.

PTC ThingWorx

PTC ThingWorx [30] is a proprietary IoT PaaS solution developed by PTC. It
is a full-scale cloud platform offering many prepackaged IoT support services.
The focus of this platform is on rapid application design, development and de-
ployment. The aim of the ThingWorx team is to offer the ability to develop
IoT applications without coding and instead device an application by only us-
ing the ThingWorx application interface. This simplifies the development cycle
and shortens time-to-market [31]. Though it is capable of monitoring the perfor-
mance of an application, the focus of the platform is on application development
and data management. Therefore, employing it for performance monitoring only
might be a disproportionate approach, especially considering that ThingWorx is
a paid platform. Additionally, only using a small section of the platform’s func-
tions might lead to installing bulky, cumbersome agents in sensor devices. This
will potentially unnecessarily consume resources of a constraint device. Aside
from the previously mentioned extravagances, sources report that ThingWorx
has scalability problems [32].

Cisco Jasper Control Center

Cisco has extended its Jasper cloud platform and has optimized it for several
IoT markets. This extension includes a product specifically designed for LPWA
IoT applications named the Control Center for NB-IoT [33]. It is specifically
designed for SIM-connected (LTE) device connectivity management [34]. It ac-
complishes this through Cisco’s proprietary network hardware and partnerships
with mobile operators that incorporate data extraction end-points in their de-
vices. Jasper therefore focuses on data and information obtained from network
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nodes and edge computation instead of communicating with actual end-devices.
This decreases the burden on resource constraint devices and alleviates the chal-
lenge posed by the movement to provider operated cell networks. However, in
doing so it neglects information that can only be acquired by node inspection.

Jasper Control Center allows the usage of business rules for information
extraction and actuation, and can employ outbound communication channels
(e.g. email or SMS) for alerting purposes. In addition it includes API’s for more
complex further analyses. Jasper Control Center is a proprietary SaaS solution
which can be procured in packages. However, the basic packages seems to
only include minimal functionality and more advanced functions such as rule-
based automation and third-party API access are sold in separate additional
packages [33]. Finally, Jasper Control Center can report on a few Collective
QoS parameters (e.g. data usage, number of reports received), but it has been
reported that Jasper lacks in analytic functionality [34].

Nimbits

Nimbits [35] is an open-source cloud data logger and analysis PaaS. It employs
a rule-based engine to filter, log and process incoming data. Additionally, rules
can be defined to instruct the engine to report alerts via external communication
channels. It operates by defining data points to which sensors and servers can
write and read data [31, 36]. Devices can do so by employing a Nimbits client
or via HTTP API’s. It has been reported that Nimbits can communicate via
the light-weight MQTT protocol [36], but documentation demonstrating this is
lacking. It therefore appears that Nimbits lacks the considerations required for
resource constraint LPWA devices.

Nimbits is not primarily intended as a QoS monitoring platform, but can be
configured as such by regarding auxiliary QoS data as primary data of a ded-
icated QoS monitoring application. However, after analysing Nimbits’s design
of data points, Nimbits seems to be most appropriate for applications with a
small pool of distinct sensor types. Establishing and managing data points for
a colossal amount of devices of equivalent data types, as a monitoring job will
often encompass, rapidly becomes a cumbersome effort to automate.

1.3.3 Deficiencies in current state of art

QoS protocols

The protocols described in Section 1.3.1 are unfortunately not applicable to
the LPWA WSN domain. Firstly, SNMP generally operates according to a
master-slave architecture [37] which requires slaves (sensor nodes) to remain
on-line permanently, or at least regularly [38]. This demand is invalidated by
the resource restriction complication featured in LPWA applications [12]. This
can be partly alleviated by proxying the sensor devices by a proxy that is less
resource constrained. This would however come at the cost of a lack of real-
time data or delayed response times [39]. Therefore, a more appropriate solution
would be to employ a client-initiated approach. Furthermore, SNMP and related
protocols consider end-to-end QoS. As discussed in Section 1.2, WSN application
monitoring must consider both end-to-end and Collective QoS. Therefore, even
if SNMP is employed, further processing is required.
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ThingWorx Cisco Jasper Nimbits
Control Center

LPWA specific1 5 3 5

QoS monitoring focus 5 5 5

Open-source 5 5 3

Device-level inspection 3 5 3

Extreme scalability 5 3 5

Table 1.1: Comparative analysis of IoT QoS monitoring platforms

Though IntServ’s hard QoS guarantees are powerful, the overhead required
to establish these flows is far too imposing [40, 41]. Since LPWA only sends
small message payloads, the heavy per flow negotiation data will easily exceed
the payload data. With LPWA’s limited resources in mind this cannot be
considered as an efficient solution. Conversely, DiffServ does not feature this
immense overhead cost. However, application of the protocol is complicated by
the movement to commercial network operators, as it would require them to
implement a class-based allocation system in their networks. The previously
mentioned inhibitions are potentially aggravated by local net neutrality laws.
Though this was not a concern in privately operated proprietary networks, in
universal Internet of Things extreme networks severe net neutrality laws may
prohibit priority treatment of data flows based on their source, destination or
content [42]. This implies that the required QoS guarantees cannot feasibly or
legally be (fully) provided by a commercial Internet of Things network provider
and in-network protocols.

Furthermore, both IntServ and DiffServ consider only network QoS, there-
fore they lack the level of inspection to report or consider the state of limited
resources in end-devices. This deficiency also troubles IoT-specific QoS pro-
tocols. Most efforts are focussed towards efficient and effective networking in
order to facilitate increasing data-rates. These protocols disregard important
device metrics, such as node lifetime and sensor measurement accuracy, which
are paramount to determining the health and performance of an IoT applica-
tion. Finally, though the protocol of R. Duan et al [29] does feature this level
of inspection, the details require further implementation to fully complete the
protocol. Since the field of IoT is relatively young, no such IoT-specific QoS
procedures have matured to a uniform and universal internet standard. From
the preceding it is concluded that contemporary general purpose or IoT-specific
QoS protocols cannot provide for an adequate in-network solution. Instead, this
obligation is imposed on the back-end and the end-devices.

QoS platforms

An assessment of the discussed platforms and their applicability to the field of
LPWA is depicted in table 1.3.3. It shows that these platforms are all lacking in
some important considerations. These platforms are either not conceived with
a focus on LPWA’s severe resource constraints, a primary focus on resource
and QoS monitoring or the extreme scale of contemporary WSN applications
[31, 32, 34, 43].

1I.e. constrained by resource limitations
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These deficiencies make the existing monitoring platforms insufficient solu-
tions for monitoring and controlling large-scale LPWA IoT applications. This
implies that the technologies are either inapplicable or require a composition of
these technologies. This complication of the technology stack could be accept-
able for a key function of an application, but not for an auxiliary monitoring
processes. As not to complicate a software product which does not enjoy the
main focus of development efforts it would be beneficiary to have a versatile
platform which enables development of a single monitoring and management
application [44]. The preceding concludes a vacancy in the current state of
the art. The remainder of this chapter will be devoted to how this vacancy is
proposed to be absolved.

1.4 Contribution of this Thesis

The preceding sections have demonstrated that LPWA-specific challenges leave
a deficiency in WSN QoS monitoring and management which contemporary
QoS management solutions cannot absolve. This section will proposition how
the deficiency in the current state of affairs is aimed to be abridged. First,
the overall goal of this thesis will be clearly stated. After which, the goal will
be explicated into distinct research questions. Finally, the general approach to
absolve this deficiency will be covered shortly.

1.4.1 Goal

The goal of this study is to research and develop a development platform provid-
ing capabilities of measuring and monitoring QoS parameters of LPWA WSN
applications. This platform will be devised to overcome the challenges identified
in Section 1.2. To reiterate, these core challenges are: the deference of processing
to the back-end due to restricted processor capabilities and obscuration of the
network, and the unique QoS challenges in WSN networks such as multi-level
abstractions and aggregation of massive amounts of multi-sourced snapshots.
The platform to be designed will enable development of support applications
that process auxiliary IoT data. This data is raw and low-level, but is enriched
by the platform by associating streaming data with data obtained from relevant
data sources and aggregating streaming data to infer higher-level information.
This information can be exported for reporting and visualization purposes, can
alter the state of a system (single sensor, group of sensors, entire application,
etc.) and can cause alerts to be dispatched for immediate intervention.

1.4.2 Research questions

To accomplish the goal set out for this study the following question require
answering.

RQ1 What are the key data transformations and operations that are performed
to process and enrich (auxiliary) data streams produced by WSNs?

RQ2 How to design a platform that facilitates the identified WSN data streams,
transactions and operations?
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RQ3 What is the appropriate level of abstraction for a WSN monitoring plat-
form, such that

• the platform is applicable to monitoring a large domain of WSNs,

• provides for minimal development effort, and

• supports evolution of the application.

RQ4 What are the challenges regarding scalability in a WSN data stream pro-
cessing platform?

RQ5 How can these challenges be overcome?

RQ6 What are the key concepts regarding modelling and calculation of QoS
parameters?

RQ7 How can the state of a system with variable behaviour be modelled?

RQ8 How can the optimal system behaviour be determined, in accordance with
its state?

The listed research questions feature a focus that is twofold. The first point of
focus is the design and development of an abstract, scalable streaming platform
for IoT data enrichment. The associated questions are RQ1–5. It concerns the
appropriate abstraction of a platform combatting the challenges in iteratively
refining low-level sensor data to high-level information with business value and
scalability due to the vast amount of data generated by the WSN. The second
focal point concerns the representation and processing of information depicting
the state of a system under investigation. This entails capturing some data
points produced by sensor devices or intermediary processes, calculating the
derived parameters from those measurements and producing a decision in ac-
cordance with the model’s values and set rules. This focal point is represented
by research questions RQ6–8.

1.4.3 Approach

With the goal and research questions defined, The general method intended to
accomplish this goal will be clarified.

As the previous section mentioned, the research questions can be divided
into two categories: The design of the platform and modelling the distribution
of resource and QoS parameters. The approach is therefore to research these
individually before integrating the efforts into one resulting software develop-
ment platform. First, the design of a processing platform architecture will be
explored. This platform endeavours to compete the challenge of immense influx
of data. Additionally, it will feature multi-stage calculation and enrichment
in order to provide for the need of multi-level QoS processing and reporting.
Subsequently, a modelling method capable of captivating the distribution of re-
sources and interconnectivity of QoS will be researched. This model will again
take into account the multi-level modelling needs in accordance with the iden-
tified challenge. Additionally, it will combat the challenge of enriching deferred
low-level data to high level usable information by allowing transformations of
resource parameters.

Both individual points of focus — i.e. the processing platform and the
resource model — will be devised, designed and developed according to the fol-
lowing schedule. First, the problem domain of the to be designed artefact will
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be explored. This will be performed with a commonality/variability analysis
(Section 2.2). This analysis allows the determination of the appropriate level of
abstraction. This analysis will result in a list of requirements for the solution
to adhere to. With the requirements defined, the state of the art of the solution
domain will be explored to identify viable technologies and their deficiencies, be-
fore selecting the best applicable technologies. With these technologies identified
they will be adapted and the intended artefact will be designed and developed.
To concretize the application of the designed artefacts, an instantiation based
on a hypothetical use case will be provided. This instantiation will assist in
comprehending the abstract concepts offered by both the platform and the re-
source model. Ultimately, the devised solution will be evaluated and discussed
by paralleling them to the set requirements and some additional concepts and
criteria.

Finally, the conceived model will be incorporated in the larger context of the
developed platform architecture. Once the two concepts have been compounded
into a single solution, the challenges it claims to combat will need verifying. A
proof-of-concept validation study will be performed by applying the platform to
a real-world commercial LPWA WSN on-street parking application developed
and operated by the Dutch company Nedap N.V. This will be achieved by pro-
viding a prototype implementation of the constructed platform. By examining
the development process and the resulting solution, the validity of the designed
artefact(s) will be investigated. The three metrics the implementation will be
evaluated on are the applicability, ease of implementation and adaptability of
the implementation. The first is validated by whether a satisfactory implemen-
tation for the case can be instantiated. Should such an instantiation be achiev-
able, the level of abstraction and utility offered will be evaluated according to
the code required to realize that instantiation. Finally, should the development
platform provide adequate means for separation of concerns, evolution of the
instantiation should prove facile. This capacity for evolution will be validated
by hypothesizing three simple adaptations to the context or requirements of the
applications. If the asserted flexibility is provided, these changes should be able
to facilitated with minimal, localized changes in the application. Ultimately,
the validation study will be concluded with a summation of the obtained results
and conclusions, and their implications to future development and research.

1.5 Thesis organization

The remainder of this thesis is structured as follows. Chapter 2 will briefly elab-
orate on some background concepts required for the understanding of this thesis.
Chapter 3 will depict the design of the proposed distributed architecture for the
QoS monitoring platform. In Chapter 4 the proposed model capable of calcu-
lating the state and optimal performance of a system will be discussed. The two
aforementioned artefacts will enjoy preliminary validation in a proof-of-concept
study in Chapter 5. Finally, the thesis will be concluded in Chapter 6, which
will discuss the efforts and results of this study, and will provide suggestions for
continued research.
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2. Background

2.1 Context of the project

First, this section will scope the efforts the project. This will be achieved by
two analyses. Firstly, the set of target applications will be described in abstract
concepts. Secondly, the efforts will be focussed be defining the stakeholders that
are affected be an implementation of the intended monitoring platform.

Defining the set of applications

As stated before, the concrete group of target applications for the QoS monitor-
ing platform is WSN and IoT applications. However, the group of applications
can be defined more conceptually by specifying and parametrizing the data
emitted by them and expected after processing. For the purpose of scoping,
an implementation-agnostic view will be taken regarding the intended platform.
This brings the focus to intended inputs, expected outputs and their contrasts,
without assumptions of the internals of the platform.

Firstly, there is the issue of individual information capacity. Individual mes-
sages presented to the platform contain very little individual capacity for in-
formation. Some information can be extrapolated from it, but only about the
device that emitted it and at the exact moment the measurements were taken.
Though, for example, detection of failure of a single node is an important task,
it has little impact on the application at large if this application concerns thou-
sands of sensors. This immediately identifies a second feature of the emitted
data, in that it is extremely multi-source. The data originates from an incredi-
ble amount of distributed devices. This entails that, though the measured data
points from similar devices describe similar data, the aggregation of data from
these sources is not a trivial task [21]. Not only is a series of data temporally
relevant, it is also related across the plain of geographically distributed sensor
devices. Finally, the huge amount of devices and the dynamic nature of sensor
networks and IoT induces a high variety of scale. Therefore, any back-end appli-
cation — main or auxiliary — should anticipate and provide a sufficient potential
for scalability. Conversely, the outcomes of the platform are considered. The
platform is expected to output a relatively small amount of high-information
actions, alerts and reports. The high-information consequences are contrary
to the low-information capacity of individual device messages. Likewise, the
moderately small number of output responses/events contradicts the immense
influx of data-messages into the platform. This entails that somewhere in the
application the data is transformed and condensed.
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The transformation from low individual information capacity to high infor-
mation messages can be achieved through three means. The first is enrichment,
which uses outside sources to annotate and amend the data in a device measure-
ment message (e.g. device location data extracted from a server-side database)
[45]. The second is transformation, which takes raw low-level data points and
performs calculations on them to transpose it to higher-level information (e.g.
combining location data and time to calculate the speed of an object) [46].
The third method is data aggregation and reduction. This method joins and
merges related data points across several — and often vast amounts of — input
messages to formulate a single output message containing a few data points,
depicting some collective parameters of the domain [46]. Again, the reach of
this domain can be temporally, geographically, etcetera. The first two meth-
ods operate on individual data entries emitted by sensors. Hence, they can be
easily parallellized and are thus incredibly scalable [47]. However, the aggrega-
tion implies an eventual reduction into a single snapshot on a single machine.
This introduces possible single points of failures or congestion, and if adequate
precautions are not taken scalability is lost.

To summarize, the input data is characterized by low individual information
value, multi-source and extremely high volumes. Conversely, the output is char-
acterized by a finite number of high information value whose data processing
will require scalable data enrichment and aggregation. These will be the param-
eters of the scope of applications observed by the platform and the successive
applications the platform will serve.

Stakeholder analysis

Another approach to scope the efforts is by identifying the stakeholders of the
platform. This will be performed by analogy of the Onion Stakeholder Model
[48]. This model divides stakeholders in consecutive layers, ordered by the de-
gree of interaction and benefits received from the product. For this stakeholder
division both the platform to be developed and potential future implementa-
tions of it will be considered as the Product. Intuitively, this project definition
would result in a two level product in the model, with the platform as core and
the group of all instantiations as the first layer around it. However, since this
analysis focusses on human stakeholders, it will be treated as a single instance
in the application of the model. A visual representation of the application of
the onion model is given in Figure 2.1.

The first layer of the model directly encasing the product is Our System.
It encompasses the designed and developed product (i.e. the platform and its
instances) and the human parties that directly interface with the product. The
first group of these stakeholders is the Employee Developing and Maintaining
implementations of the platform. They interact directly with scaffolding and
frameworks provided by the core platform. Some explanations of the onion
model place developers in the outer layer of the model (the wider environment),
since after development they no longer interface with the product unless they
remain involved in a maintenance capacity. However, developers of a platform
instantiation interact with the framework directly provided by the core platform.
Therefore, their importance will be emphasized by placing them in the system
layer of the model. The second role in the system layer is the Normal Operator.
These operators receive information from the product directly and interact with
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subsequent systems and operational support employees to effect change. More
specifically, this entails changes to the application under investigation or reports
regarding the long-term performance of the application intended for managers
and employees higher up in the organization.

The second layer of the model is the Containing System. It contains
stakeholders that are heavily invested in the performance and benefits of the
product, but do not interact with it directly on a regular basis. Two such
stakeholder roles were identified. The first is the Support and Maintenance
Operator of the application observed by the platform. A stakeholder analysis of
the application under investigation would place these operators in the first layer
of the model. However, since they do not (necessarily) directly interface with
the support platform, they are placed in the second layer of the model for this
analysis. They are however heavily invested in the performance and results of
the platform, since identified problems and deficiencies can direct their efforts
toward maintaining and improving their own application. The second role in
this layer is the Sales Person of the application under investigation. Again,
this regards a sales person of the application under investigation, not of the
support platform. The task of a sales person is to convince potential clients to
employ a developed product. Performance guarantees are an important part of
a sales pitch held by this stakeholder. Therefore, employees of sales departments
benefit hugely from known, concrete and stable QoS metrics.

The third layer of the model is the Wider Environment. This final layer
contains stakeholders that do not sentiently interface with the product and are
not heavily or conscientiously interested in its execution or performance, but are
affected by it to some degree. The first stakeholder role in this category is the
Financial Benefactor. This entity is not heavily invested in the development and
daily routine of the system, but does benefit financially from it. This role applies
to investors, companies and other business units that are not concerned with
the technical upkeep of the product, but do benefit from the gained revenue or
cost-efficient measures provided by the product. Closely related with this is the
Political Benefactor. This benefactor does not directly reap monetary benefit
from the solution, but does gain political benefit from it. This can apply to both
stakeholders in public office or private business by improving their position in
their respective markets. The final stakeholder is the General Public. Members
of the public do not interface with the platform in any capacity, but can benefit
heavily from it. For example, many WSN and IoT applications are deployed
in smart city management [49] and industry4.0 [50]. Though deployment of
dependable IoT technologies in these fields require initial investments, in the
long term these technologies can improve efficiency, reducing costs and prizes.
Therefore, guaranteed uptime and low resource usage can benefit the consumer,
without them realizing it. Though the benefit to singular consumers is relatively
small, due to the huge size of the public at large this amounts to an incredible
benefit.

2.2 Commonality/variability analysis

In order to design for the problem domain it will require conceptualization. The
problem domain(s) will be conceptualized by means of a commonality/variabil-
ity analysis (C/V analysis). Whereas this analysis is usually performed during

16



Figure 2.1: Visual depiction of application of onion stakeholder model

the process of system decomposition in product line engineering, it can also be
employed to identify common and varying concepts in a problem domain. This
analysis identifies the commonalities (invariants) that may be assumed fixed
and may be depended upon and the variations in the problem domain which
will need to be accounted for by the solution.

J. Coplien et al [51] describes the process of a commonality/variability anal-
ysis in five steps.

1. Establish the scope: the collection of objects under consideration.

2. Identify the commonalities and variabilities.

3. Bound the variabilities by placing specific on each variability.

4. Exploit the commonalities.

5. Accommodate the variabilities.

The performed conceptualization of the problem domain will mostly focus
on step 2 in which a list of common definitions, shared commonalities and vari-
abilities will be provided. Also, steps 4 and 5 will be combined by formulating a
list of requirements for intended solution, based on the identified commonalities
and accounting for the found variabilities.

2.3 Distributed computation technologies

This section will discuss some distributed technologies and concepts that will
be evaluated and used during the design of the development platform (Chapter
3).

2.3.1 Monolith vs. micro-component

The first decision to make is the high-level architecture to adopt. The first option
for which is to implement the platform as a monolithic software system. The
benefit of such a system is that it keeps the solution as simple as can be. This is
reflected by a famous proverb of Edsger Dijkstra: “Simplicity is a prerequisite

17



for reliability” [52]. This simplicity entails a better understanding of the product
by any future contributor or user, without the need to consult complex, detailed
documentation. However, monolithic software products have been known to be
difficult to maintain. The reason for this is that code evolution becomes more
difficult as development progresses and changes and additions are made to the
code base. Additionally, monolithic software systems are notoriously difficult to
scale and balance [53].

Converse to the monolith is the micro-component architecture. It consists of
a multitude of smaller components that are functionally distinct. These compo-
nents communicate to one another through a underlying message distribution
system. By functionally encapsulating the application into distinct modules, an
inherent separation of concerns is achieved. This in turn reduces entanglement
and improves the application’s capacity for evolution. Micro-components are
more flexible than monoliths, allow for better functional composition, are easier
to maintain and are much more scalable [53]. Additionally, distributed cloud
computing solves some of the tenacious obstacles in IoT’s, such as the constraint
computational and storage capacity [54].

2.3.2 Apache Storm

Apache Storm is a micro-component streaming library especially designed for
scalability and separation of concerns. It achieves distributed computation by
partitioning the stages of computation. It separates stages of computation in
distinct processors performing a portion of the global process. These proces-
sors are composed into a topology. This topology specifies which processors
communicate to which other processors using Storm’s inherent message broker.
By breaking up the computation, different stages can be distributed among
machines and duplicated if required. Processors are specified and executed
completely separately and communicate to one another with messages. This
messaging is provided by an internalized messaging system and handles are
provided by the platform in order to emit and receive messages.

The Storm platform consists of three chief concepts.

Spouts
Nodes that introduce data in the system,

Bolts
Nodes that perform some computation or transformation on data, and

Topology
An application-level specification of how nodes are connected and mes-
sages distributed.

A topology can be configured such that a spout/bolt can emit messages to any
other bolt. However, some remarks must be made. Firstly, though spouts/bolts
can be connected to multiple bolts, each connection must be specified as an ex-
plicit one-to-one mapping. This is converse to many other distributed messaging
architectures, in which components subscribe or produce to an addressed chan-
nel (topic) that acts as a shared message buffer. Secondly, though the topology
is distributed among a cluster, the application is initiated as a single program
on the master node. Consequently, the entire application topology must be
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specified before run-time and the topology cannot be altered or attributed dur-
ing execution. Such alteration will require a redeployment of the topology and
reexecution of the application.

2.3.3 Message brokers

By employing a micro-component architecture (without an inherent messaging
system), a communication technology for components to communicate to each
other is required. This approach employs a service to which producers write
messages to a certain topic. Consumers can subscribe to a topic and subse-
quently read from it. This obscures host discovery, since a producer need not
know its consumers or vice versa. The routing is instead performed by the
message service. The following will explore the two widely used message broker
services in the industry.

RabbitMQ

RabbitMQ [55] is a distributed open-source message broker implementation
based on the Advance Message Queue Protocol. It performs topic routing by
sending a message to an exchange server. This exchange reroutes the message
to a server that contains the queue for that topic. A consumer subscribed to
that topic can then retrieve it by popping it from the queue. Finally, an ACK
is returned to the producer indicating that the message was consumed. The
decoupling of exchange routers and message queues allows for custom routing
protocols, making it a versatile solution. RabbitMQ operates on the compet-
ing consumers principle, which entails that only the first consumer to pop the
message from the queue will be able to consume it. This results in an exactly
once guarantee for message consumption. This makes it ideal for load-balanced
micro-component applications, because it guarantees that a deployment of iden-
tical services will only process the message once. It does however make multi-
casting a message to multiple consumers difficult.

Apache Kafka

Conversely, Apache Kafka [56] distributes the queues itself. Each host in the
cluster hosts any number of partitions of a topic. Producers then write to a par-
ticular partition of the topic, while consumers will receive the messages from all
partitions of a topic. Because a topic is not required to reside on a single host,
it allows load balancing of individual topics. This does however cause some QoS
guarantees to be dropped. For instance, message order retention can no longer
be guaranteed for the entire topic, but only for individual partitions. Kafka,
in contrast to RabbitMQ’s competing consumers, operates on the co-operating
consumers principle. It performs this by, instead of popping the head of the
queue, a pointer is retained for each individual consumer. This allows multiple
consumers to read the same message from a queue, even at different rates. The
topic partition retains a message for some time or maximum number of messages
in the topic, allowing consumers to read a message more then once. Ensuring
that load-balanced processes only process a message once is also imposed on
the consumer by introducing the notion of consumer groups. These groups
share a common topic pointer, which ensures that the group collectively only
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Figure 2.2: The overall MapReduce word count process [58]

consumes a message once. This process does not require an exchange service,
so Kafka does not employ one. This removes some customization of the plat-
form, but does reduce some latency. Lastly, Kafka does not feature application
level acknowledgement, meaning that the producer cannot perceive whether its
messages are consumed.

2.3.4 Distributed processing

MapReduce

MapReduce [57] is a distributed computing framework. It operates by calling
a mapper function on each element in the dataset, outputting a set of key-
value tuples for each entry. All tuples are then reordered and grouped as sets
of tuples with a common key. The key-value sets are then distributed across
machines and a reduce function is called to reduce the many individual values
into some accumulated data points. The benefit of this framework is that the
user need only implement the map and reduce functions. All other procedures,
including tuple distribution and calling the mapper and reducer, are handled
by the framework. An example of the algorithm on the WordCount problem is
illustrated in Figure 2.2.

Though the ease of implementation is very high and the technology is very
useful, the algorithm has proved to be comparatively slow. The reason for this is
that before and after both the map and reduce phase the data has to be written
to a distributed file system. Therefore, though highly scalable, the approach
suffers from slow disk writes [59]. Finally, MapReduce works on large finite
datasets. Therefore, the data streams must be processed into batches in order
for MapReduce to be applicable.

Apache Spark (Streaming)

Apache spark [60] is an implementation of the Resilient Distributed Dataset
(RDD) paradigm. It employs a master node which partitions large datasets and
distributes it among its slave nodes, along with instructions to be performed on
individual data entries. Operations resemble the functions and methods of the
Java Stream package [61]
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Three sort of operations exist: narrow transformations, wide transforma-
tions and actions. Narrow transformations are parallel operations that effect
individual entries in the dataset and result in a new RDD, with the original
RDD and target RDD partitioned equally. Examples of such functions are map
and filter. Because these transformations are applied in parallel and partitioning
remains identical, many of these transformations can be performed sequentially
without data redistribution or recalling the data to the master. Wide trans-
formations similarly are applied on individual dataset entries, but the target
RDD may not be partitioned equal to the original RDD. An example of such a
transformation is groupByKey. Since elements with he same key must reside in
the same partition, the RDD might require reshuffling in order for computation
to complete. Finally, Actions, such as collect and count require the data to
be recalled to the master and final calculation is performed locally, resulting
in a concrete return value of the process. RDD’s provide efficient distributed
processing of large datasets, that is easy to write and read. However, careful
consideration must be given to the operations and execution chain in order to
avoid superfluous dataset redistribution [62].

Additionally, the framework does not require disk writes as MapReduce does.
Instead, it runs distributed calculations in-memory, thereby vastly improving
the overall calculation speed. This does however raises a reliability issue, because
if a slave node fails, its state cannot be recovered. Such occurrences are resolved
by the master by replicating the part of the dataset from the intermediate result
it retained and distributing it among the remaining slave nodes. Because the
sequence of transformations is deterministically applied to each individual entry
in the dataset any new slave node can continue calculations from the last point
the state was persisted [63].

Finally however, Apache Spark suffers the same deficit as MapReduce and is
performed on finite datasets. Therefore, streams need to be divided in batches
in order to perform calculations. Fortunately, such a library exists: Apache
Spark Streaming [64]. It batches input from streams on regular intervals and
supplies it to a Spark RDD environment. The time windows can be as small
as a millisecond. Therefore, it is not formally real-time, but can achieve near
real-time stream processing [65].

2.4 Quality of Information of WSN data

In WSNs and IoT applications there is the concept of Quality of Information
(QoI). QoI describes parameters depicting quality attributes of information pre-
sented by and derived from a system. It is especially applicable to WSNs as
they present raw low-level data which is then highly processed by subsequent
applications. Therefore, the concept of QoI will be employed to validate and
evaluate the processing architecture presented in chapter 3. V. Sachidananda
et al [66] identify the following attributes describing Quality of Information.

Accuracy The degree of correctness which provides the level of detail in the
deployed network. It is the value which is the close imitation of the real-
world value.

Precision The degree of reproducibility of measured values which may or may
not be close (accurate) to real-world value.
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Completeness The characteristic of information which provides all required
facts for user during the construction of information.

Timeliness An indicator for the time needed when the first data sample is
generated in the network till the information reaches the target application
for decision making.

Throughput The maximum information rate at which information is provided
to the user after raw data collection.

Reliability The characteristic of information, in which information is free from
change or no variation of information from the source to the end applica-
tion.

Usability The ease of use of information that is available after raw data col-
lection has undergone processing and can be applied to the application
based on user’s evolvable requirements.

Certainty The characteristic of information from the source to the sink with
desired level of confidence helping the user for decision making.

Tunability The characteristic of information, where the information can be
modified and undergo processing based on user’s evolvable requirements.

Affordability The characteristic of information to know the cost for measur-
ing, collecting and transporting the data/information. It is the expensive-
ness of information

Reusability The characteristic of information, where the information is reusable
during its lifetime or as long as it is relevant.

2.5 Constraint programming and solving

Chapter 4 will employ the concept of constraint programming and constraint
solvers. The concept of constraint programming encompasses modelling a prob-
lem by means of a collection of correlated variables and associated value do-
mains. The relations between variables are captured in a list of constraints.
The problem is then solved by finding assignments for each variable with re-
spect to their domains that conform to the specified constraints.

An example of a problem modelled as constraint problem is a Sudoku. The
model will be a list or matrix of integer variables, with each entry having a
domain {Vi|1 ≤ Vi ≤ 9}. The associated constraint would then be V1 6= V2 for
every combination of entries (V1, V2) in the same row, column or 3-by-3 grid.

Several methods exist in order to solve a combinatorial constraint prob-
lem. The first and simplest is to perform a brute force search over the solution
space. This would produce the Cartesian product of the domains of all vari-
ables (

∏
i∈I Di) and test them against the constraints. Candidate solutions are

rejected until a valid composition of variable assignments is found. This is how-
ever a very inefficient procedure as it has to search though the entire search
space without optimization. For large combinatorial problems this search space
grows exponentially. For instance, for the sudoku example with 20 values filled
in, the solution space has a size of 961(≈ 1, 6 · 1058).

A more efficient search algorithm is presented by backtrack-search. Whereas
the brute force approach assigns every variable a value and then checks its
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Backtracking
Input: A constraint network R and an ordering of the variables d = {x1, ..., xn}.
Output: Either a solution if one exists or a decision that the network is incon-
sistent.

0. (Initialize.) cur ← 0.

1. (Step forward.) If xcur is the last variable, then all variables have value
assignments; exit with this solution. Otherwise, cur ← cur + 1. Set
D′cur ← Dcur.

2. (Choose a value.) Select a value a ∈ D′cur that is consistent with all
previously instantiated variables. Do this as follows:

(a) If D′cur = ∅ (xcur is a dead-end), go to Step 3.

(b) Select a from D′cur and remove it from D′cur.

(c) For each constraint defined on x1 through xcur test whether it is
violated by −→a cur−1 and xcur = a. If it is, go to Step 2a.

(d) Instantiate xcur ← a and go to Step 1.

3. (Backtrack step.) If xcur is the first variable, exit with “inconsistent”.
Otherwise,set cur ← cur − 1. Go to Step 2

Listing 2.1: Algorithm for backtrack-search[67]

validity, the backtrack-search algorithm operates on a subset of the variables
assigned. By incrementally assigning values to variables it performs a system-
atic Depth First Search through the search space. If a partial assignment is
determined to violate the set of constraints, the algorithm will reject the en-
tire remainder of that branch of the search tree. In this manner the algorithm
optimizes failing variable assignments by attempting to identify them earlier.
For the example of the sudoku solver this entails that an assignment of a 3
to a position adjacent to another square with a 3 will immediately halt the
exploration of that branch of the search tree, without the need to consider
subsequent variable assignments. It will instead backtrack through the tree by
rolling back assignments and attempt a different assignment. The full algorithm
for backtrack-search is given in listing 2.1.

The backtrack-search algorithm can be improved upon further by implement-
ing constraint propagation. This technique attempts to prune invalid variable
values from the domain before they are assigned by the backtrack-search al-
gorithm. For example if a square in the sudoku is assigned a three, then the
effect of this assignment will be propagated by pruning the number 3 from the
domains of every entry in the same row, column or 3-by-3 grid. This eliminates
inconsistent options that would violate the constraints before they would be
assigned. Additionally, the concept of local inconsistency can be extended to
variable domains without requiring any assignment. For example, given two
variables V1 and V2 with domains D1 = {1, 2, 3} and D2 = {2, 3, 4} and the
constraint V1 ≥ V2, then the values 1 and 4 can be pruned from D1 and D2
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respectively. For they are inconsistent with any of the values in the opposing
domain and can therefore never validate the constraint [67, 68].
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3. Design of WSN monitoring plat-
form architecture

This chapter will detail the process taken in order to device the platform and its
architecture. This will be accomplished by first exploring the general problem
domain. Subsequently, the design of the proposed platform and its implemen-
tation will be deliberated by identifying the available supporting technologies,
clarifying the adaptations made to those technologies and explaining further
implementation details. The chapter will be concluded by discussing the advan-
tages, limitations and considerations of the proposed solution.

3.1 Objective of this chapter

Large sensor applications send immense amounts of low-level raw monitoring
data that requires capturing, enriching and processing. Individual snapshots
of raw data will contain very little information. However, when accumulated,
these snapshots contain the potential from which meaningful conclusions can be
derived. These decisions range from single sensor scale to the sensor application
as a whole. The raw data is enriched by combining and analysing datasets of
similar, related data, in order to achieve a higher degree of information.

The objective of the efforts described in this chapter is to conceive a software
platform that enables software developers to construct their own sensor appli-
cation monitoring system. The intention to achieve this is by devising a generic
application backbone and base building blocks for developers to compose and
extend.

3.2 Conceptualization of the problem domain

In this section the problem domain will be investigated in order to eventually
determine the requirements for the model. This will achieved by performing
a commonality/variability analysis (C/V analysis) of the problem domain, as
described in Section 2.2. The analysis consists of three concepts:

• The definitions that will be used in the analysis and the remainder of this
chapter,

• the common features shared by all elements in the problem domain and
which may be assumed as established concepts, and
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• the variations that appear between aspects of the problem domain for
which must be accounted for in the proposed solution.

Definitions

Firstly, some key terms will be defined that will be used in the analysis and the
remainder of this chapter.

Platform
The monitoring platform to be designed.

Application
The application that is being investigated by the platform.

Snapshot
A message containing a collection of data points indicating the state of a
system on a certain instant.

Source
An entity emitting a snapshot. This can be a physical end-device, external
service or an process internal to the platform.

Consequence
An action effected by the platform based on the analysis of one or more
snapshots.

Commonalities

With the definitions established some common features shared by each applica-
tion in the problem domain will be identified next. These commonalities may
be presumed during the design of the platform and grants a scope to the design
efforts.

C1.1 The group of target applications involves an enormous amount of sensors,
which entails a high throughput of snapshots requiring analysis by the
platform.

C1.2 As mentioned in the definitions, data is captured in snapshots. These
represent the (partial) state of the application as measured or determined
at a certain point in time. These snapshots can be used for both input of
the platform as for representing intermediary computation states.

C1.3 The parameters and values of a snapshot, and therefore consecutive de-
rived values, may be considered fixed. Parameters can only change by
outputting a new snapshot, not during evaluation of the current one.

Variabilities

Finally, the variety within the problem domain will be explored. As the pur-
pose of the solution is to process information, the analysis will mostly focus
on the variations in the domain of data and information produced by applica-
tions. The solution should provide proficient adaptability in order to account
for these variabilities. This will be ensured by captivating these variations in
requirements.
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V1.1 The first variety encountered is the variation in Quality of Information
(QoI). As described in the Background chapter (section 2.4), there are
many parameters characterizing the QoI of data. A snapshot or collection
of snapshots can vary on any combination of them.

V1.2 Secondly, there is the information base on which conclusions are made.
The first conclusion basis is elementary:

(a) Single snapshot. (e.g. a sensor requiring maintenance)

The second identified analysis is based on a large amount of low-information
snapshots [69], of which two types are identified:

(b) Multiple sequentially relevant snapshots from a single source (lon-
gitudinal), used to analyse tendency of parameters. (e.g. a sharp
continuous increase in bandwidth used may indicate future capacity
issues.)

(c) Many multi-source snapshots without individual significance (lat-
eral). E.g: while the individual bandwidth usage of sensors may
be of little interest, knowledge of the average and total bandwidth
usage of the system may be warranted.

V1.3 The possible consequences by the platform have a large range of imple-
mentations and cannot be fully anticipated. However, though the exact
implementation of consequences can never be anticipated exactly, some
groups of consequences can be identified.

(a) Build a model for reporting purposes. In order to generate reports
some high-level information data points need to be calculated based
on large datasets. These data points are then exposed either by an in-
memory component with an API or by persisting it to intermediary
permanent storage.

(b) Analyses which invoke immediate responses to the application or a
command & control service administrating the application.

(c) Alerting or reporting according to a specified rule. When this user
defined rule is met or violated an alert is sent to a maintenance
operator or auxiliary system.

The final variety is the scale of the application. It has already been established
that the platform will operate on applications of very large-scale, i.e. thousands
of sensors. However, given a thousand as lower bound, the upper bound is still
uncertain. Therefore, the size of the application is still uncertain and differing
degrees of size require different computational needs.

V1.4 The scale of large wireless sensor applications varies wildly. This yields
for both the number of devices in the application and the rate at which a
device emits snapshots.

3.3 Requirements for the proposed software plat-
form

In this section the requirements of the proposed platform will be described, in
accordance with the variability identified in the previous section.
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R1.1 The platform should enable the capture and transformation of snapshots.

R1.2 The platform should enable processing of a single snapshot.

R1.3 The platform should enable processing of a window of homogeneous snap-
shots.

R1.4 The platform should enable processing and aggregation of an enormous
amount of snapshots.

R1.5 The platform should enable implementation of a wide range of conse-
quences. It should at least provide for these anticipated types of conse-
quence:

• report building,

• application feedback, and

• alerts of behavioural violations

R1.6 The platform should be scalable in order to support any large amount of
inputs

Justification

This section will be concluded by justifying the identified requirements according
to the earlier performed C/V analysis. The formal traceability between the
requirements, commonalities and variability is listed in table 3.1

Requirement Variability Commonality
R1.1 V1.1 C1.2, C1.3
R1.2 V1.2a
R1.3 V1.2b
R1.4 V1.2c
R1.5 V1.3
R1.6 V1.4 C1.1

Table 3.1: traceability table for justification of requirements

The first requirement (R1.1) regards the definition and concepts of snapshots
and is based on the commonalities and the variation in Quality of Information
(Section 2.4). As illustrated by the traceability table, the following three re-
quirements (R1.2–R1.4) closely correlate with the three varieties identified in
V1.2. Requirement R1.5 attempts to captivate the variability described in V1.3.
This variation is captured in a single requirement as opposed to differentiating
them as for V1.2. This is because the possible consequences are not limited
to the identified consequence groups. Therefore, they are grouped into one ab-
stract requirement. Lastly, the final requirement considers the scale of the target
applications. This regards both the amount of devices in the target application
as the frequency they send their snapshots.

3.4 Evaluation of the solution domain

This section will explore the solutions and supporting technologies that are of-
fered. These technologies have been described in Section 2.3. First, the base
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RabbitMQ Kafka
Speed + ++
Scalable + ++
Multi-cast 5 3

Multiple reads 5 3

Acknowledged 3 5

Delivery guarantee 3 5

Consumer groups 3 3

Order retention Topic-level Partition-level
Consumer model Competing Cooperating

Table 3.2: Summary comparison of RabbitMQ and Kafka

architecture type will be considered of the platform, as it is the most fundamen-
tal decision to be made. Continuing, options for supporting technologies will be
explored. The section will be concluded by examining some distributed comput-
ing technologies. These technologies should enable data-intensive computations
by distributing them over a cluster, as to provide the required scalability.

Architecture and execution platform

Though a monolith presents the simplest software solution, it severely lacks the
flexibility which enables software evolution and scalability of input capacity.
Since this would invalidate requirement R1.6, a distributed micro-component
architecture will be employed instead. Storm is especially suited for the purpose
of this study since it was designed for interconnected micro-components. By
employing Apache Storm, both the distributed computation environment as
the means of data distribution are obtained, simplifying the technology stack.

However, the built-in messaging mechanism is completely internalized, com-
plicating integration with auxiliary processes. Tasks such as data injection,
platform monitoring and data extraction for debugging, processing or reporting
by third-party programs and stakeholders will require an exposing mechanism.
Additionally, Storm requires bolt connections to be explicitly defined at start-
up. This causes two disadvantages: Firstly, a single process cannot be updated
or reconfigured without restarting the entire topology. Considerations should
therefore be made on when to update the system and when to delay rolling-out
an updated version. Secondly, the bolts are connected pair-wise. This is in con-
trast to most conventional publish/subscribe communication platforms (such as
Kafka and RabbitMQ). These systems decouple the producer and consumers
and instead write and read to addressable communication channels (topics).
Storm allows reading and listening on streams of a certain topic, but the con-
nection still needs to be explicitly specified. This is cumbersome, but should be
able to be overcome.

Message brokers

A comparative summery of both discussed message broker technologies is given
in table 3.2. From this comparison the first apparent difference is the approach
taken to consumer strategies. Kafka allows messages to be read multiple times,
both by different consumers or the same consumer, whereas RabbitMQ allows
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messages to be consumed only once. Secondly, Kafka’s lower-level replication
provides increased scalability and speed [70]. However, it does so at the cost of
some functional benefits such as order retention, guaranteed delivery.

Distributed computing

As specified by requirement R1.4, a means of processing large volumes of data is
required. This is accomplished by aggregating a large number of snapshots into
a distinct smaller amount of snapshots (often singular) with a higher-degree of
information. In order to accomplish this a scalable means of computation is
required (requirement R1.6)

Firstly, the MapReduce paradigm and platform seem very useful to the plat-
form. In the early exploration phase it quickly became apparent that there were
many use cases where one might want to extract accumulated snapshots per indi-
vidual sensor or grouped by cell tower. This approach also allows to compensate
for devices sending at different rates. These devices would be overrepresented
in the population if they were not normalized. By first grouping and averaging
the messages per device, it can assured that every device has the same weight
in the analysis.

1 // assumes initial RDD with lines of words = lines
2 JavaRDD<String[]> wrdArr = lines .map(l−>l.split(” ”));
3 JavaRDD<String> words = wrdArr.flatMap(arr −> Arrays.toList(arr));
4 JavaRDD<String, Integer> pairs = words.mapToPair(x−>(x,1));
5 JavaRDD<String, Integer> counts = pairs .reduceByKey((a,b) −> a+b);
6 Map<String, Integer> result = counts.collectAsMap();

Listing 3.1: MapReduce example of Figure 2.2 in Spark RDD.

It is interesting to note that the MapReduce framework can easily be repro-
duced in Spark. This is achieved by calling the mapToPair and reduceByKey
routines subsequently. To illustrate this the MapReduce procedure of Figure
2.2 is implemented using Apache Spark in Listing 3.1. Please note that the
intermediate assignments of the RDD are not required. RDD operations can
be chained after one another, but intermediate assignments have been used to
better illustrate the steps taken. Also note that the first three steps are be
performed fully parallized since they are all narrow transformations. Only line
5 (wide transformation) and 6 (action) require RDD redistribution.

Finally, the preceding has shown the two platforms to be functionally similar.
However studies have shown Apache Spark to perform better on non-functional
metrics, such as execution speed and scalability [59]. Additionally, by employ-
ing Apache Spark Streaming, a means of batching input streams is innately
provided.

3.4.1 Solution decisions

Apache Storm was chosen for a distributed component environment and messag-
ing system. The reason for this was primarily that Storm was conceived with
this type of real-time streaming micro-component application in mind. The
spouts and bolts provide the perfect building blocks to design an iterative in-
formation refinement application with separation of concerns in mind, while the
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built-in streaming mechanism provides for the distribution needs. However, the
lack of exposure for third-party integration and the tedious process of specifying
each and every component connection will have to be accounted for.

Though Storm contains the means for large-scale snapshot aggregation, it
will not be employed for it. Instead, the data aggregation will be supported
by Apache Spark Streaming. The reason for this is that studies have shown
Apache Spark to be upto 5 times faster than both MapReduce [59] and Storm
[71]. Spark does however have a larger latency, due to collecting batches of
data instead of processing them real-time. This however should not cause a
significant problem since the envisioned use case is for timed analysis jobs on
very large amounts of input data, in order to detect collective tendencies of the
system under investigation. For this scope of application the latency issues of
Apache Spark do not impose a large deficiency.

Apache Kafka will be employed to facilitate external communication of the
platform. The reason for this is its speed and greater scalability. Additionally,
but to a a smaller degree, this was chosen because of Kafka’s ability to mul-
ticast messages. This will allow multiple auxiliary processes to eavesdrop on
the proceedings of the platform. With the decision for Kafka comes another
benefit, as the Spark Streaming library contains adapters for Kafka allowing
direct connection to it. Therefore, data can simply be emitted to a Kafka topic
and consumed by a Spark Streaming process. The greatest deficiency of Kafka,
being the lack of topic-level order guarantee, is not of grave importance. The
hindrance can be overcome by including timestamps or sequence numbers in the
passed messages. Moreover, the Spark calculations most likely will not require
order retention. The reason for this is that most computations will contain of a
reduce step, which requires the reduction operation to be both associative and
commutative. Therefore, the message order is disregarded.

3.5 Design of the software platform

The preceding technologies will be adopted by composing them using adapters
and abstracting the solutions. The internal implementation details are shielded
by abstracting the technologies, simplifying implementation by the user. Some
scaffolds for bolts will be provided, intended for different types of data flows and
data reductions. Additionally, these technologies are very abstract since they
were intended for many unspecified usages. However, the (to be developed) plat-
form and group of target applications feature some known commonalities, which
were previously considered variations. Therefore, some functions can be imple-
mented which were originally intentionally left unspecified. This will reduce the
implementation effort required, again simplifying usage of the platform.

3.5.1 Micro-component architecture

The remainder of this section will explain what adaptations to the previously
discussed technologies have been made.

31



Apache Storm

The bulk of the processor (micro-component) construction, execution and mes-
saging tasks of the platform will be performed by Apache Storm. However, as
mentioned before, the process of specifying a processor topology in Storm is a
cumbersome process due to the necessity of interconnecting each and every pro-
cess individually. Therefore, cross-connecting M producer components with N
consumers requires M ·N explicitly specified connections. This is contrasted by
technologies that employ topic based channels in which M producers write to a
channel to which N consumers are subscribed, requiring but M +N connections
to be specified. To this end, a topology builder was developed which enables
topic based streaming. The builder will automatically connect the specified
components according to the topics they are subscribed to. In this manner a
component and its connections can be specified with but a few instructions, as
demonstrated in listing 3.2. Note that the complexity of the topology does not
impact the amount of code needed, as the code complexity is solely depended
on the number of components and not how they are interconnected.

1 topo logyBui lde r . d e c l a r e B o l t (new UserDef inedProcessor ( ”pname” ) )
2 . subscribeAsConsumer ( ” s e n s o r i n p u t c h a n n e l ” )
3 . dec lareAsProducer ( ” debug channel ” , ” output channe l ” ) ;

Listing 3.2: Declaration of a processor and communication channels

Since Storm allows processes to be duplicated for load-balancing purposes, it
employs some methods of controlling which duplicated process worker will con-
sume which snapshot. The two chief methods are supported by the platform.
The first method is the shuffle grouping. It is the simplest channel specification
and does not offer any guarantees on which process worker will consume the
snapshot. It is therefore described as receiver-agnostic. However, this lack of
guarantee will not effect most tasks since most will be stateless data processors.
The second supported stream manipulation method is the field grouping. It is
used for processors that do retain a state or somehow require similar snapshots
to always be processed by the exact same worker. A simple example of this is
a processor that counts the number of snapshots received for each sensor in a
WSN. If it cannot be guaranteed that all snapshots of a sensor S are always pro-
cessed by the same worker W, one worker might count 40 snapshots and another
would count 60 of them. This requires another singular processor that accumu-
lates those counts in order to derive an accurate snapshot count. Therefore,
it is possible to specify a set of fields which will consistently determine which
worker will consume a snapshot. In the developed platform this is specified at
topic level. Again, to prevent repeated declarations. Therefore, each snapshot
emitted to such a channel is required to include all fields specified in the field
grouping of that channel.

Finally, though the abstractions and encapsulations of the Storm platform
are believed to simplify implementation efforts, it could still be useful to an
implementer to inject their own native Storm bolts or spouts. This might be
due to reusing earlier defined bolts or requiring more control of a process than
the abstraction offers. To this end, the developed topology builder encapsulates
the topology builder provided by the Storm Java library. As a consequence, the
topology builder provided by the platform, upon calling the build() function, will
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Figure 3.1: Graphical depiction of the distributed accumulator process

return an instance of org.apache.storm.topology.TopologyBuilder. This allows
last-minute injection of self-specified native storm processes, before ultimately
generating the Storm topology with that builder.

Incorporation of Apache Spark Streaming

As identified in by requirement R1.4 there is a need to condense the information
of enormous amounts of (individually) low-information snapshots into a dimin-
ished number of high-information snapshots. Additionally, the large amount of
input snapshots and the assertion that the platform should be scalable (require-
ment R1.6) entails that a scalable data accumulator should be made available.

As specified in section 3.4.1 Apache Spark Streaming was chosen for this
task. However, this causes an earlier identified problem: a direct incorporation
of Apache Spark in Apache Storm is difficult. In order to solve this inoperability
of interfaces it was decided to device a process that functions as an adapter
between Storm and Spark. This adapter employs Apache Kafka, for which
Spark does provide interfaces, to pipe snapshots obtained from Storm channels.
Snapshots are then read from a Kafka channel and batches of snapshots are
fed to Spark RDD computations. Once the cloud computations have concluded
the data is returned to the Storm environment and aggregated snapshots are
eventually forwarded to consecutive processes. This is achieved by deploying
two Storm components. Firstly, a specialized Storm bolt named KafkaEmitter is
deployed. This process simply consumes Storm messages and forwards them to a
Kafka channel. Secondly, a Storm spout is deployed which acts as a Spark driver
program. This bolt contains the instructions for the distributed computation of
the Spark cloud and results of the cloud computations will be returned to it. A
graphical representation of this process is depicted in Figure 3.1.

Two interesting remarks should be made, as apparent from Figure 3.1.
Firstly, The KafkaEmmitter can be replicated in order to prevent it being a
point of congestion in the topology. Secondly, the fact that two distinct com-
ponents (KafkaEmitter and SparkDriver) are present is encapsulated by the
topology builder. Developers need only declare an implementation of the dis-
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tributed accumulator processor (acting as Spark driver node) with the appropri-
ate Storm and Kafka channels. The builder will then deploy a KafkaEmitter (or
several) and the specified accumulator. This simplifies deploying the processor
and obscures the internals by appearing as a single component.

3.5.2 Scaffolds for micro-components

With the high-level architecture and technologies established, the component
scaffolds that are provided to application developers by the platform will be
described. First, the base functions shared by all components will be described,
before discussing them more in depth individually.

Common functionality

Firstly, the components contain all functionality and information required to
emit snapshots to subsequent components. A developer need only package the
information in a snapshot consisting of key-value pairs and specify to which
stream a snapshot must be emitted. The component then uses the information
it received during the building of the topology to route the snapshot to all
receivers subscribed to receive it. This not only implies routing the snapshot
towards the correct component but also the correct component worker according
to the defined field grouping.

Secondly, all components contain a base implementation of the prepare()
method. This method can be implemented to instantiate some properties that
cannot be instantiated in the object’s constructor. The reason that some prop-
erties cannot be instantiated in the constructor is that Storm processes (spouts
and bolts) adhere to a prespecified execution order. The component is:

1. created by one of its constructors,

2. transmitted to one of the worker nodes of the Storm cluster,

3. further instantiated using the prepare() method, and

4. executed according to its specification.

The reason for this course of action is that step 1 is performed on the Storm
master node, before distributing the functional object over the cluster. There-
fore, during step 2 the object and its members need to be serializable. Non-
serializable members are consequently instantiated during step 3, after the ob-
ject has been transferred and before functional execution. The prepare() method
thus can be used to instantiate certain non-serializable properties.

Spout

This process mirrors the Apache Storm spout and is the component that intro-
duces snapshots to the network. This component typically contains a handle
to some external data source such as a database, API or auxiliary streaming
technology. The reason for such a specific processor for this is the special ex-
ecution cycle it has compared to a Storm bolt. Bolts execute with interrupts.
They halt their execution until a new snapshot is available. However, a spout
runs on an infinite-loop (until termination), continuously executing the method
nextTuple(). This method polls, retrieves and emits snapshot depending on the
origin of the source.
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SingleMessageProcessor

This component is the most basic scaffold and closely resembles a Storm bolt.
It however contains some additional functionality that improve its usability. It
receives a snapshot and performs computations or analyses on it, before emit-
ting new, enriched snapshots. Its typical use is for transformations of individual
snapshots. As noted before, this component requires implementation of a singu-
lar method: runForMessage(Message m) which will be called for each snapshot
received by the component.

HistoricBufferedProcessor

The HistoricBufferedProcessor resembles the SingleMessageProcessor in that
it consumes single snapshots, but instead it processes or analyses an ordered
series of relevant snapshots, called a window. This is performed by retaining
an in-memory buffer to which new snapshots are amended and is periodically
filtered on relevance. This component can for example be used to determine
recent trends in system parameters. The methods that require implementation
for this component are runForBuffer(List<Message> l), which is run every time
the buffer is updated, and cleanBuffer(List<Message> l) which implements how
and which elements should be pruned from the buffer, should they lose their
relevance.

DatabaseBufferedProcessor

From a processing perspective the DatabaseBufferedProcessor is similar to the
regular HistoricBufferedProcessor. It analyses a buffer of snapshots in order to
emit a snapshot containing accumulated or averaged knowledge based on its in-
put snapshots. However, rather then keeping an in-memory buffer of snapshots
it maintains a connection with an database. This allows for buffered processing
of snapshots that is not performed regularly, thereby not superfluously occupy-
ing memory resources.

To keep the component applicable to many database implementations and
query languages it was chosen not to instil a specific database connection. In-
stead, a developer is offered scaffolds to stepwise implement the intended be-
haviour with an actual database connection. This scaffolding contains the meth-
ods processing the buffer (runForBuffer(List<Message> l)) and purging the
buffer (cleanBuffer(List<Message> l)) as included in the HistoricBufferedPro-
cessor. Aside from those functions it specifies function end-points for storing
a new snapshot into the database and for fetching the relevant buffer from the
database, respectively named persistMessage(Message m) and fetchBuffer(Message
m).

DistributedAccumulatorProcessor

This component aggregates large amounts of laterally relevant snapshots. Lat-
erally relevant entails that the snapshots describe similar data points, but have
little sequential relevance. The input for this process is a large amount of (in-
dividually) low-information snapshots. Conversely, the goal of the processor
is to emit some high-information snapshot. An example of its usage is com-
bining thousands of snapshots from sensors in order to obtain some collective
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application-level performance parameters. To accomplish the aggregation of
these enormous amounts of data the accumulator principle described in section
3.5.1 is employed. By means of the method runForRange(JavaRDD<Message>
rdd) this component offers implementers a reference to the Spark RDD which
contains all the snapshots collected during a prespecified time period. The
implementer can then use this RDD reference to sequentially manipulate and
aggregate the collection of snapshots. Keeping proper parallelization in mind,
this distributed component can perform data enrichment tasks on enormous
batches of streaming data.

AccumulatorProcessor

This component closely resembles the function of the above described Dis-
tributedAccumulatorProcessor, but is executed locally rather than on a cloud
cluster. The purpose of this processor is tasks that would otherwise require the
distributed accumulator, but whose limited scope be run in-memory on a single
worker node. This could be a viable solution for applications that either run the
accumulator task often enough or do not collect excessive amounts of snapshots.
For these class of applications a locally executed accumulator task should prove
sufficient and inclusion of such a components eliminates the base requirement of
a Apache Spark cluster to be deployed in order for the platform to be executed,
since the DistributedAccumulatorProcessor is the only component that employs
it. It should however be noted that not deploying an accumulator in distributed
mode could introduce a bottleneck in a Storm topology since the accumulator
cannot be duplicated or load-balanced.

The processor was modelled after the MapReduce paradigm [57] to guide its
implementation. An implementer need only specify a map, reduce and collect
step. The exact methods to implement for this are:

map(Message m) : String
Computes the key for a key-value snapshots.

reduce(String key, List<Message> l) : Message
Reduces sets of key-value pairs grouped by key determined in the map
step.

collect(Map<String,Message> m) : Map<String,Message>
Collects the key-message pairs emitted by a reduce step. The return value
of this method is a map of snapshots indexed by the Storm topic on which
it should be forwarded.

Please note that the result of the reduce step is a set of snapshots. It is therefore
possible to chain multiple map-reduce steps sequentially, as long as the sequence
is concluded with a single collect step.

ResourceDistributionModelProcessor

The final component is the ResourceDistributionModelProcessor. This pro-
cessor is a special instantiation of the SingleMessageProcessor that analyses
inbound snapshots according to a prespecified Resource Distribution Model
(RDM). This model will be discussed in detail in Chapter 4. In contrast to
all other processors, this processor is not just a scaffold. Instead, it executes
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completely automatically, requiring only an instantiation of an RDM and a
specification of which model variables to output on which Storm channels. The
processor then automatically provisions the input variables of the model, calcu-
lates the derived values and outputs the requested values as specified.

3.6 Demonstration by example case

This section will demonstrate an example of a composition of the specified
components to a hypothetical WSN application. First, the hypothetical example
case used in this chapter (and the next) will be described shortly. Following,
the platform will be explained according to a hypothetical application to that
case.

3.6.1 The example case

Before describing the example case, some context must be given. This case may
sometimes seem oversimplified and nonsensical, but it does provide an elemen-
tary example to illustrate all facets of the solutions without overcomplicating
the case. This case is expressly not intended to demonstrate the validity or
utility of the proposed solutions. For that purpose, an application to a more
complex real-world case will be performed in Section 5

The proposed case encompasses an enormous network of low power devices
sensing for meteorologically anomalous events. These sensors perform measure-
ments on a regular interval and transmit the measurements to a cell tower to
be forward to a back-end application for further processing. For the best re-
sults devices should measure and transmit as much as possible. However, since
these sensors are not very powerful and employ a limited power supply they will
require pacing.

The behaviour of the sensors is typified by two parameters: the sensing in-
terval and transmission interval. Intuitively, it can be stated that shortening
either or both of the intervals will result in more fine grained reporting, but will
increase the power consumption of the device. Additionally, over time several
types of sensors have been deployed with different power sources. Therefore, a
sensor’s power consumption over a given time needs to be restrained in accor-
dance with the specification of its power source and expected life-time. Addi-
tionally, sensors in areas of high interest will require a shorter polling interval,
as instructed by the back-end application, to gain the most precise information.
Finally, given that the sensor performs the adequate amount of measurements
and does not consume more power than it is specified to use, it should measure
and report as much as permitted.

As for what requires monitoring, the most interesting metric is the measure-
ment rate averaged over all sensors. Additionally, it is required to pro-actively
monitor the trend of the total bandwidth used by the sensor application. The
reason for this is that a constant rise in data rates may ultimately violate the
data rate limits agreed upon with network service providers.

To summarize, a sensor must:

• not consume more power then it is allowed according to its battery speci-
fication,
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• measure at least as much as is specified according to the area of interest
it is in, and

• generally try to measure and report as much as is allowed by the previous
two requirements.

Additionally, the following information must be reported by the application:

• The average polling rate, and

• whether the data rate of the sensor application rises consistently for a
certain amount of time.

In order for the server to determine the intended behaviour of the device
and calculate the level of service provided by the application, the following data
regarding a sensor device is provided to the monitoring application:

• the required measurement rate,

• the maximum power provided by the power source,

• the measurement rate of the sensor device, and

• the bandwidth used by the sensor

Each of these data points stipulates the behaviour of a single sensor at a certain
instant. Notice that some data points are normally inferred from raw basic data
by auxiliary processes (e.g. required measurement rate). For simplification
of the demonstrations these processes are omitted and these parameters are
presumed known as a message is introduced into the monitoring application.

3.6.2 Application of the platform

A graphical representation of the topology for the example implementation is
depicted in figure 3.2. As the figure makes apparent, the application encom-
passes a large number of sensor devices. These devices regularly send their
status information to the monitoring application via some external communi-
cation technology (e.g. Apache Kafka). These snapshots are introduced into
the topology by SensorSpouts. These spouts have been duplicated in order to
accommodate the large amount of sensors which might send a sudden burst of
data. The snapshots are then forwarded to the SensorProcessors which have
been provisioned with a Resource Distribution Model. This model consumes
the measured parameters of the input snapshot and uses them to further calcu-
late all the parameters which can be derived from the inputs, according to the
specified model. This model also determines the optimal Resource Utilization
Model (RUM) for this sensor device. Should no valid model composition be
found this is reported to the NoRumActuator which forwards a log message to
the Reporter component. The Reporter will delegate the message to the correct
reporting/alerting mechanism, outside of the topology.

Should the current mode of operation be determined not to be optimal, the
SensorProcessor will report to the ChangeRumActuator. The ChangeRumAc-
tuator will report requests for change to an entity outside of the topology of
the application. The actuator has been implemented as a DatabaseHistoricPro-
cessor. The reason for this is that it will recollect the last few snapshots it
received for this sensor and will only actually change the mode of operation of

38



F
ig

u
re

3.
2:

E
x
am

p
le

to
p

ol
o
g
y

o
f

a
p

la
tf

o
rm

im
p

le
m

en
ta

ti
o
n

a
cc

o
rd

in
g

to
th

e
ex

a
m

p
le

ca
se

39



the sensor if it is consistent with the last few snapshots received. This elim-
inates superfluous communication with the sensor device caused by sporadic
behaviour. Alternatively, this component could have been implemented as a
BufferedHistoricProcessor. However, a sensor is expected to send monitoring
data only a few times per day and changes of operation will occur even less. It
would therefore make little sense to keep a buffer of the last snapshots sent for
each and every sensor in-memory. Additionally, this would have required a field
grouping in case the component were to be load-balanced in order to enforce
that the request for change of a particular sensor always be sent to the correct
worker.

The final transformation to be performed is to infer application-level intel-
ligence from the low-level sensor statuses. This is performed by the Applica-
tionAccumulator which collects data for a certain time period and calculates
some high-level data points, such as the measurement rate of the application
averaged over its sensors, the total throughput and how many devices are per-
forming on which RDM. This information is forwarded to the Reporter which
will make it available for visualization performed outside of the topology. Addi-
tionally, the accumulator sends its aggregated snapshot to a TendencyAnalyser
which keeps a sequence of the total bandwidth used during previous time win-
dows. Should this total consistently rise over a period of time, an alert will be
sent by the reporter, as specified by the alerting requirements listed in section
3.6.1.

3.7 Discussion of the proposed software plat-
form

This section will evaluate the design of the monitoring platform.

Satisfaction of requirements

The first order of business is whether the proposed design satisfies the earlier
stated requirements. The message-passing micro-component architecture pro-
vides the basis for snapshot transferral and transformation as stated in require-
ment R1.1. Furthermore, the requirements R1.2, R1.3 and R1.4 are satisfied by
the inclusion of the SingleMessageProcessor, BufferedProcessors and Accumu-
latorProcessors, respectively. Finally, the last two requirements regarding the
size of the applications in the problem domain and entailing scalability of the
solution have been decisive for certain choices of the supporting technologies.
For example, it is reflected in the employment of cloud processing technology
Apache Spark. From the aforementioned arguments it is concluded that every
requirement is represented and met in the design of the platform.

Completeness with respect to QoI attributes

The goal of the platform is to process and enrich data. It is therefore rational to
evaluate the appropriateness and completeness of the platform by considering
the information processing capabilities it offers. This section thusly evaluates
the platform’s completeness by demonstrating that the platform only positively
impact the Quality of Information (QoI) of the input data. This entails that the
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QoI is improved or retained, but never lost as data passes through a platforms
topology. This will be achieved by arguing the QoI parameters which were
enumerated in Section 2.4 of the Background.

The first consideration of QoI is regarding the processing of data by the
platform and affects the precision, completeness and usability of information.
Firstly, precision and certainty are obtained by employing the HistoricProces-
sors. By averaging measurements, anomalies are mitigated and the reported
value closely approaches the norm of the measurements. Provided that the
accuracy of the measurements is sufficient, this improved precision should con-
sistently yield a measurement near the actual value. Secondly, the Usability
of information is improved as data moves throughout the topology. To illus-
trate this a thought experiment is proposed, using the example topology listed
and described in section 3.6 and a batch of raw data emitted during a certain
time window. Before the data enters the platform it contains the potential to
calculate the average throughput offered by the sensor application during that
time window. However, this data point is not present explicitly. This process
is performed by an implementation of the platform and the resulting informa-
tion is offered for further processing or visualization. This demonstrates that
the platform can facilitate usability for information by calculating and produc-
ing ready-for-use values. It should however be noted that the completeness of
the information is greatly reduced during this process. To illustrate, from the
average application throughput the throughput for individual devices can no
longer be determined. For this reason, and others which will become apparent,
committing the raw data to storage before processing is recommended.

The second class of QoI attributes regards the processing efforts, expressed
in time and costs. As the relevance of information degrades as time progresses,
timely processing is paramount. Timely execution is achieved by providing a
scalable distributed solution. This ensures that, regardless of the intense infor-
mation throughput, the calculations can be performed in near real-time. Notice
that only near real-time is claimed, since Apache Spark collects records during
a time window and performs calculations in batches. However, the time window
of such a batch can be set arbitrarily small for fine-grained processing. Thereby
it does not impact the timeliness significantly. However, adverse to this gained
timeliness is a decreased affordability. In order to incorporate these distributed
cloud technologies a cluster of machines and increased development resources
will need allocation. When the solution does not require this degree of scala-
bility this poses an undue burden. Therefore, locally deployable alternatives to
these distributed processors are also provided. Implementations of the platform
are therefore offered a trade-off between timeliness and cost.

Lastly, are the tuneability and reuseability of the information. Firstly, the
data can be duplicated among different communication channels which allows
differentiating calculations to be performed on the same data. Secondly, in order
to facilitate evolution of end-user demands the platform has been designed with
separation of concerns in mind. This allows continuous reconfiguration of the
platform to be performed with reduced occurrence of concern entanglement.
By redeploying the topology the same raw information can be used to facilitate
updated user demands. This is also another reason to store the raw data before
processing it.

Some final remarks should be made on the analysis. Firstly, the platform
cannot offer any improvement or retention of information accuracy, as it is solely

41



determined by the method and quality of data measurement. Secondly, it should
be noted that the platform does not assure preservation of any of these claim,
since an implementation of the platform can violate any guarantee made. It can
only be claimed that the platform does not impede any of the parameters and
offers the means for developers to develop applications that do guarantee it.

Ease of adoption

A second point of focus is the ease of adoption provided by the platform itself. It
is asserted that low-level implementation details of Apache Storm and Spark are
effectively obscured. This was achieved by offering some abstract components
that require implementation of only a few methods. This obscuration entails
a clearer programming interface to an implementer, as stated by the façade
software design pattern [72]

Secondly, the provided topology builder facilitates easy and fast building of
a Storm topology. It does so by providing context-aware topology and process
instantiation, and topic based communication subscription and emission. As
mentioned before this allows M producers and N consumers connected by a
single topic to be connected with complexity Θ(M + N), instead of the com-
plexity Θ(M ·N) which would be required without the concept of topics. These
assertions will be formally validated in Chapter 5.

Technology stack

Another issue to contemplate is the technology stack required for the platform.
As mentioned in section 3.4.1, Apache Storm was chosen as chief enabling tech-
nology. The main reason for this is that it offered most of the features required
and would reduce the technology stack. However, by employing Apache Spark
for distributed data aggregation, two additional cloud technologies are intro-
duced. Spark itself and Kafka which is required in order to be connected to a
Storm topology. However, the inclusion of a distributed aggregation is neces-
sary in order to keep the computations scalable. Additionally, the speed and
efficiency arguments raised in section 3.4.1 justify the deployment of these addi-
tional technologies. Finally, when this scalability is not required Apache Spark
and Kafka clusters can be executed locally on a single machine. This would
still enjoy benefits from process parallelization, without requiring cluster de-
ployment. Finally, Spark and Kafka may be omitted entirely, if permitted by
the snapshot influx, as a non-distributed accumulator is also included in the
platform.
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4. Resource Distribution Model

4.1 Objective of the model

The aim of the Resource Distribution Model (RDM) is to captivate the dis-
tribution, conversion and restrictions of resource parameters in a system. The
suggested target usage of these models is to allow automated analysis and op-
timization of the system under investigation. Therefore, a detailed model with
explicitly defined entities and relations is required. Only then can the model be
employed by automated tools and algorithms. The research questions related
to this chapter are RQ6–RQ8.

This will be performed by first exploring the problem domain. With the
definitions and concepts of the problem domain identified, a list of requirements
for the proposed model will be composed. With these requirements in mind,
the contemporary resource modelling solutions will be explored and evaluated
on the applicability to the requirements. Afterwards, the adaptations to the se-
lected technologies will be explained. Subsequently, the conceived model will be
described in detail. To assist the understanding of the model, it will be exempli-
fied by application to the described example case (Section 3.6.1). This chapter
will be concluded with an evaluation of the proposed modelling technique.

4.2 Conceptualization of the problem domain

This section will investigate the problem domain in order to eventually deter-
mine the requirements for the model. Again, this will be achieved by performing
a commonality/variability analysis (Section 2.2) of the problem domain, deter-
mining the definitions, common features and variations in the problem domain.

Definitions

First, some terms that will be used throughout the C/V analysis and the re-
mainder of this chapter will be stated. Following that, the common features
and variations in the problem domain will be examined.

Resource
A measurable/calculable parameter of a system

Resource constraint
A constraint imposed on a resource due to scarcity.

Component
A physical or hypothetical entity that can consume or produce a resource
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Resource Utilization Model (RUM)
A model depicting how much of a resource is produced or consumed by
a component. Each instance of such a model is internalized by a single
component.

Resource Distribution Model (RDM)
A model depicting how components are interconnectively connected by
resources. This global model encompasses all Resources, Components,
their relations and behaviour

QoS parameter
Particular resource parameters that are indicative of the level of service
provided by a system.

Commonalities

Following the definitions, the commonalities that appear throughout the prob-
lem domain will be asserted. These assumed features allow the efforts to be
focussed and allows a more expressive specification of assumed concepts.

C2.1 A resource can be produced or consumed by multiple components.

C2.2 A component can produce or consume multiple resources.

C2.3 Resources are scarce, i.e. the amount produced must exceed the amount
consumed.

C2.4 Resources are correlated and can be converted into one another (many-
to-many).

C2.5 Resource parameters can be used to objectively compare functionality of
a system.

Variabilities

With the commonalities established, the variabilities in the problem domain
will be considered. These variations cannot be specified expressively in the
model. Instead, they require proper abstraction, to be implemented when a
instantiation of the model is achieved.

V2.1 Though all use cases agree on the above commonalities, not all resources,
components, constraints and interconnection that can occur can be pre-
dicted [41].

V2.2 Resources of a system can be modelled on a micro-scale or macro-scale.

• A micro-scale (e.g. a single sensor device) comprises concrete, pal-
pable parameters.

• A macro-scale (e.g. an entire WSN application) comprises derived,
theoretical parameters.

V2.3 A system can have a variety of resources as QoS indicators [41].

V2.4 Short-term resource usage (e.g. interval of seconds) requires a different
granularity than long term resource usage (e.g. interval of days).
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V2.5 Some resources are directly measurable and thus known at a certain mo-
ment of measurement. However, some resources are derived and calculated
using other resource values.

V2.6 Resource values can differ depending on a system’s measured state.

V2.7 Resource values in a system differ depending on a specific operational.
strategies.

V2.8 Given a system’s state some operational strategies are better suited than
others.

4.3 Requirements for the proposed model

With the common and variable features of the problem domain established, the
following section will formulate a list of requirements that need to be incor-
porated in the solution. First, a full list of the identified requirements will be
provided, before justifying them according to the C/V analysis of the previous
section.

4.3.1 Requirements

R2.1 The model should represent resource distribution in a system

R2.2 Resources should be able to be transformed into other resources (many-
to-many)

R2.3 The model should account for the fact that the value of a resource can
originate from different sources. The identified sources are the following:

constant a predefined value specified on development time (e.g. initial
battery capacity),

measured a value specified as observed on run time (e.g. percentage of
battery capacity left),

calculated derived from measured values (e.g. runtime left),

variable any value or a calculation depending on specific system function
(e.g. power usage).

R2.4 Each model should have one, and only one, resource that is associated
with a heuristic QoS function.

R2.5 The model should contain constraints that describe the limitations of
bounded resources.

R2.6 Given a resource distribution model, constant-valued resources and mea-
surements, for each combination of values for variable resources, a value
should be able to be evaluated for each calculated resource

R2.7 Given a calculable resource distribution model (R2.6), a set of resource
constraints and an optimizer function; an optimal, valid appointment for
each variable resource value should be able to be solved efficiently.
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Variety Requirements
V2.1 R2.1, R2.3, R2.5
V2.2 R2.1, R2.3
V2.3 R2.2, R2.4
V2.5 R2.2, R2.3
V2.6 R2.3
V2.7 R2.3, R2.6
V2.8 R2.4, R2.5, R2.7

Requirement Commonalities
R2.1 C2.1, C2.2
R2.2 C2.4
R2.3
R2.4 C2.4, C2.5
R2.5 C2.3
R2.6 C2.4
R2.7 C2.3, C2.5

Table 4.1: Justification of requirements by variety and commonalities

4.3.2 Justification of identified requirements

Table 4.1 demonstrates how the proposed requirements account for the deter-
mined variety, based on the observed commonalities. Most requirements can
intuitively be traced to the variety it strives to restrain. An exception is re-
quirement R2.4, which states that one resource is used to optimize the QoS.
This is seemingly contradicted by V2.3, which states that multiple resources
can be indicative of the level of QoS. This is however explained with use of
C2.4. This commonality states that resources can be transformed into one an-
other. It can therefore be inferred that it is possible to transform multiple QoS
markers into a single optimizable, derived resource according to some heuristic
QoS indicator function.

Evidently omitted from the justification table is variation V2.4. This is due
to that a this variety has far-reaching consequences for the implementation of
the model. Therefore, a choice has been made to focus on modelling of resource
distribution during large time intervals. This choice will elaborated in section
4.4.3.

4.4 State of the art of the solution domain

This section will explore the current techniques and technologies in the field of
resource modelling. First, state of the art of the field will be identified, before
evaluating their applicability according to the established requirements. Finally,
the choices made before adapting the technologies in the next section will be
declared and defended.

4.4.1 State of the art

Work regarding modelling resource distribution has been performed in several
studies. Elementary examples of such research are the studies of Ammar et al
[73]. Through their efforts they laid the ground work for representing entities
interconnected by shared resources. This UML-based model was one of the
first examples of such a representation using formal models. Another example
of early research is the study performed by Seceleanu et al [74]. This study
focussed on modelling resource utilization in embedded systems using timed
state machines. The transitions in these automata are attributed costs to model
the consumption of resources for transitioning to a state of residing in one.
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Resource consumption and performance over time can then be calculated and
analysed according to the paths taken in this model.

A continuation of this work was performed by Malakuti et al [75]. They
combined the methods of the previous authors by provisioning the modelled
system components with their own state machines. These state machines model
the resources and services that are offered and required by the components. By
analysing these component models as composite state machines, model checking
tools can be used to analyse and evaluate the performance of the investigated
system as a whole.

4.4.2 Evaluation of the solution domain

These efforts have produced methods of representing components connected by
shared resources. Especially the notation of Malakuti et al [75], which is both
intuitive and descriptive. Therefore, this notation will be adopted. However,
the models in these studies focus on components that are self-aware of their
resource usage and performance. Instead, the interest is in off-site analysis of
interconnected resources and accumulated performance of a composite system.
Alternatively, the focus will therefore be more centred around the concept of
resources. It is concerned how production and consumption of a resource is
interconnected. Components serve as secondary elements, merely specifying how
these resources are connected and converted into other resources. Therefore, a
resource-centred adaptation of this framework might be more suitable.

Secondly, there is the issue of how to represent Resource Utilization Models
(RUM), the model for variable behaviour of components. Previous studies have
used timed automata to represent behaviour cycles [74, 75]. This allows for
automated tools to calculate a runtime schedule in high degree of granularity.
However, the high level of granularity comes at the cost of efficiency. When
the time interval for the automata is shortened, entailing higher granularity,
then solvers require additional computational resources and time to execute.
This might enforce a complication on resource constraint devices or applications
that require the solver algorithm to run many times for a multitude of devices.
Additionally, it must be considered that a model contains multiple components
specified by RUMs. A composition of such related automata explodes the search
space for the composite automaton, reducing the feasibility of calculating them
effectively.

An alternate approach is to model the RUM as a set of static parameters.
A component then has multiple RUM’s representing different modes of execu-
tion. This is achieved by averaging the behaviour for that mode of execution,
which would otherwise be modelled by a single timed automaton. This comes
at great cost of granularity, since the RUM’s now only describe a few static, pre-
defined periodical behaviours. However, it significantly reduces the complexity
of the search space. For this approach timed automata are no longer a suitable
technology, since the element of time intervals has been eliminated. Instead,
the problem is a pure decision problem. The problem to be solved is to find a
suitable RUM for each modelled component.

The search space of a decision problem can be explored with a simple brute
force search, exploring all options and compositions. However, more effectively,
combinatorial problems can often be solved with constraint solvers. The prob-
lem is easily transposed to a constraint problem with the RDM as model, re-
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source constraints as constraints and the RUM’s as variables for the components.
With the many solution strategies described in 2.5 available for different types
of problems, a suitable solver should be able to be found or devised.

4.4.3 Choices of employed solutions

With careful consideration the following choices for the solution implementa-
tion have been made. For modelling it was chosen to adapt the framework
of Malakuti et al [75] by emphasizing on resources and introducing some new
features. The components will still exist in the model, but will merely serve
the function of connecting resources to one another. Another adaptation is the
existence of multiple RUM’s for a component, which allows injection of different
methods of operation.

As for how to model the RUM, it was chosen to reduce the complexity of the
system by modelling resource usage with fixed mathematical functions. Mod-
elling changeable behaviour is subsequently achieved by providing a component
with multiple RUM, detailing different operational strategies. The strongest
advocate for this choice is the fact of the focus for this study: large WSN appli-
cations. In a WSN monitoring platform the task of determining optimal device
function will need to be performed repeatedly for many sensor devices. Addi-
tionally, devices in most large-scale LPWA applications only communicate data
a limited amount of times per day (at most a few hundred)[76, 77]. Therefore,
high granularity is not of grave importance because the feedback-control cycle
is not that short.

The fact that a component can have more than one mode of operation and
the choice of static parameters for those functions, makes constraint solvers
most suitable as means to solve the model. However, the search algorithm will
be complemented to conclude not only the valid compositions but the optimal
solution, given some heuristic function.

4.5 Design of the Resource Distribution Model

This section will be dedicated to detailing the resulting model. First, the general
modelling concepts will be described, before focussing on specific modelling
entities. The section will be concluded with an examination of how the optimal
RUM configuration of the model is proposed to be deduced.

As stated, resource distribution is modelled by extending the model by
Malakuti et al [75]. The chief adaptations to the model are:

1. RUM‘s with static resource values,

2. the existence of multiple RUM‘s for a single component,

3. the inclusion of a single explicitly defined optimised resource, and

4. constraints defining valid resource interconnectivity:

(a) implicit constraints enforcing availability: Roffered ≥ Rconsumed

(b) additional explicit constraints specified by developer

A graphic representation of the adapted meta-model is given in figure 4.1.
In essence the model is a collection of Resources and Components. Each of these
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ModelComponent

 RUM_1 
resource1 =  
resource2 = 

... 

RUM_2 
resource1 = 
resource2 = 

... 

Offered 
Resources

Optimized
Resource

Consumed
Resources

Calculated
Resources

Figure 4.1: Notation of an RDM component with RUM’s

resources can be connected to components by means of a ResourceInterface and
a ResourceFunction

Resource

A resource is an entity describing a parameter of a system. This can be a
measured parameter (e.g. battery capacity or throughput), but can also describe
a derived parameter (e.g. service time left). Each resource is identified by it’s
name and has a unit associated with it.

ResourceInterface

Resources are interfaced with through ResourceInterfaces. A ResourceInterface
can be one of three types:

Offer Indicating that the component produces an amount of the resource,

Consume Indicating that the component consumes an amount of the resource,

Calculate A special consume relation. This interface supplies 100% of the
offered resource, without formally consuming any amount. This relation
is used to further calculate with the offered value, without it impacting
the constraints of the resource

Each interface has a value specifying the amount of the resource produced or
consumed by the component. This value is repeatedly set and evaluated at
runtime by executing a ResourceFunction. By aggregating the interfaces of a
resource the amount of the resource produced and consumed can be computed
and analysed.
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ResourceFunction

The value of a ResourceInterface is determined by a ResourceFunction. It con-
sists of a function that takes a double array and an array of resource identifiers
as argument, and has a double as result. Runtime solvers or engines will then
fill the input array, in accordance with the resource identifiers, in order to exe-
cute the function. ResourceFunctions are compactly instantiated using lambda
expressions and VarArgs. E.g.:

1 ResourceFunction tota lSe rv i c eT ime = new ResourceFunction (
2 ( x)−>x [0 ]+ x [ 1 ] , ” yearsServed ” , ” yea r sLe f t ”
3 ) ;

Component

Any entity producing, consuming and converting a resource is represented by
a component. A component can therefore be a physical entity such as a radio
module or a battery, or a hypothetical entity such as a QoS calculator execut-
ing a heuristic function. A component possesses a ResourceFunction of each
Resource it is connected to.

A specific subtype of the Component is the ModelComponent. This class
inherits all functionality of the ordinary Component. However, its Resource-
Functions are specified by its RUM’s. Each RUM describes the parameters
during one mode of operation of the component. This allows runtime analysis
of variable behaviour as effect of different performance strategies.

To model and evaluate the intended behaviour of the model a set of Requirements
and an Optimizer are introduced.

ResouceConstraint

A resource can have a number of constraints that limit the possible values of vari-
ation for that resource. The standard inherent requirement for every resource is
the OfferConsumeGTE requirement which enforces that the amount produced
needs to be greater or equal than the amount consumed. Additional require-
ments OfferConsumeEQ and RangeRequirement are specified, that respectively
require the exact amount offered to be consumed and the amount offered or
consumed to be within certain bounds. Finally, the abstract class Requirement
can be extended by a developer to specify any tailored requirement.

Optimizer

The Optimizer is introduced to ascertain the heuristic score of an RDM with
a valid RUM configuration. The Optimizer is an extended class of Resource of
which exactly one must exist in an RDM. The optimizer takes the evaluated
offered amount of this resource and calculates a score. This score is a value on a
comparative scale on which a higher value implies a more optimal performance.
Specified are the MinMaxOptimizer which evaluates that the amount offered
must have a minimal or maximal value and the ApproxOptimizer which evalu-
ates that the resource must have an amount offered as close to a specified value
as possible. However, custom implementations of the Optimizer can be made.
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RdmMessage

Finally, to supply the model with the state of the system under investigation the
RdmMessage is posed. The RdmMessage is provisioned using values measured
from the system and injected into the model, after which the appropriate re-
source functions are evaluated accordingly. Technically, a simple mapping from
a resource identifier to a measured value would suffice for this purpose, but this
mapping is wrapped in an object to support future evolution of the model.

4.5.1 Demonstration by example case

To illustrate the application of this model, an example of an instantiation of the
model is provided in Figure 4.2. This instantiation is again based on the example
case described in Section 3.6.1. This depiction contains a power supply (battery)
which emits a resource ‘power’, measured in milliwatts. The actual value of
this variable is instantiated based on the input message (illustrated by dotted
arrow). The reason for this is that, as described earlier, specifications of power
supplies vary in the example case. This power is consequently consumed by the
device’s CPU and radio module. This entails an implied resource constraint c1,
which enforces that the joint power consumption of the CPU and radio may
not exceed the power produced by the power supply. Both the CPU and Radio
can run on a high or low performance model, with the high models having
aggravating consequences for the power consumption and the offered number of
measurements and throughput respectively. The amount of measurements per
second offered by the CPU is subsequently consumed in full by the Measurement
requester. This component simulates a resource request on the sensor devices
and imposes a requisite on the minimum amount of measurements performed
and offered by the CPU, as formulated by constraint c2. The requested value is
determined by a parameter supplied by the input message.

Finally, both the amount of measurements and bandwidth provided are sup-
plied to the QoS calculator. It uses these resources to calculate a singular value
depicting the level of QoS provided by the model instantiation. This value is
used to determine the optimal variable composition given a set of valid mod-
els. In closing, emphasis should be given to the interfaces of the QoS calcula-
tor. These interfaces are not regular consume relations but calculate relations.
This entails that the QoS calculator has full knowledge of the amounts offered,
without affecting the consumption of those resources. This ensures that the
behaviour of the QoS calculator has no influence on the validity of the model
by impacting constraint c2.

4.5.2 Computing a valid, optimal model assignment

With the model well established and exemplified, its resolvability requires atten-
tion. Requirement R2.7 yields that solving the model is to find a composition
of RUM’s such that:

1. each ModelComponent has exactly one RUM associated with it,

2. all resource constraints are satisfied, and

3. the optimizer function of the optimized resource has the highest value.
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Power supply 

power = powerBySpecification

CPU  

 
High_cpu

computations = 7
power = 10

Low_cpu 
computations = 3 

power = 5 

High_radio
power = 9

throughput = 10

Low_radio 
power = 4 

throughput = 5 

Power
unit: mW

Thoughput
unit: B/sComputations

unit: nr/s

QoS calculator 

qos = jobs * throughput

QoS
unit: points

RdmMessage
 
computationsMeasured = ... 
powerBySpecification = ...
 

Computation requester 

computations = 
         computationsMeasured

Constraints:
c1 : powerpower supply >= powercpu + powerradio
c2 : measurementscpu >= measurementsmeasurement requester

Optimize:
max(QoS)

Figure 4.2: Example instantiation of the Resource Distribution Model according
to the example case.
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The first and second requirement imply constraint solvers as a highly applicable
technology, since they are effective in finding a valid solution for a constraint
decision problem. However, the third requirement entails that not just any valid
solution is requested, but the optimal valid solution. In order to achieve that,
every valid solution to the problem needs to be considered and compared how
they rank heuristically. This entails an exhaustive search approach through the
entire search space of RUM compositions. However, constraint solver paradigms
can be used to efficiently traverse that search space.

This is performed by employing backtrack-search. A simple brute force
search would calculate all RUM compositions (Cartesian product) and for each
composition the full model is provisioned and evaluated. Instead backtrack-
search iteratively selects a component and one of its models. It will then not
provision the entire model, but inject only the selected model in the chosen
component. Subsequently, given the current state of the model, the variables
which can be resolved are assigned a definite value. After which, the resource
constraints are evaluated. Given a partial model assignment, any constraint can
have one of three statuses:

• satisfaction,

• failure, or

• unresolved

for all subsequent assignments of unprovisioned components.
If a constraint evaluates to satisfied it will be pruned from the constraint set

and will not evaluated for the remainder of this branch of the search tree, for it is
known to always succeed. If a constraint is unresolved it is kept, since its status is
not certain for every future state. If even a single constraint fails the remainder
of that branch of the search tree will never be valid. Therefore, the algorithm
backtracks through the tree by partially rolling back model assignments. A
different model is then selected for the same component or a different component
entirely and the algorithm is repeated. This ensures that validated constraints
are not reevaluated and invalidated search tree traversals are detected early.

By rapidly detecting unsatisfactory options in the search tree, large por-
tions of the tree can possibly be eliminated. An example of the application
of this algorithm on the previously illustrated example (Figure 4.2) is given
in Figure 4.3. This example is executed based on an RdmMessage with val-
ues {measureRateRequired = 5, powerBySpecification = 16}. This appli-
cation demonstrates that using this algorithm eliminates a significant portion
of the search tree. This is due to early detection of constraint failure in the
CPU=high cpu branch of the tree.

4.6 Discussion of the proposed model

This chapter will be concluded by endorsing some of the choices that were made
for the proposed model.

Behaviour as static RUM’s

As stated before it was chosen to use a static representation of resource utiliza-
tion in Resource Utilization Models. This was chosen in order greatly reduce
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CPU=high cpu
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Radio=high radio
c1 is invalid

backtrack

Radio=low radio
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prune c1
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calculate optimizer score

Legend:
Assignment
Observation
Action

Figure 4.3: Application of backtrack-search on RDM of Figure 4.2

the complexity of the search problem, which allows the model to be evaluated
within a reasonable amount of time. This was decided after early experiments
with timed automata. In this experiment a minimal system with one component
with three RUM’s was modelled. When computing the behaviour of the model
using time intervals of one week over a life span of ten years, it took over one
minute to calculate the optimal traversal of the automaton. Granted, this was
performed on a laptop machine and not a high-powered server. When deployed
on a machine with elevated computational resources the time to calculate will
be reduced. However, this is counteracted by the fact for a WSN application
this calculation needs to be repeated for thousands of sensors. When this per-
formance is compared to that of the static models, which can evaluate more
complex models within seconds, timed automata must be eliminated as viable
solution for real-time analysis. However, this does not eliminate automata en-
tirely. Automata can still be used to model the fine grained runtime behaviour
a system in order to abstract generalized static RUM’s from it.

Solver libraries

When developing this solution a decision was made to implement a custom
constraint solving algorithm, instead of employing existing libraries such as
Choco Solver [78] or OptaPlanner [79]

The Choco Solver is a powerful solver which not only employs backtrack-
search, but also constraint propagation to eliminate failing search paths before
assigning them. However, while powerful, it has only limited support for real
intervals [80]. Additionally, it proved very difficult to convert the user-specified
models and ResourceFunction’s arithmetic expressions to the modelling mecha-
nism of the solver. Requiring a developer to either input the model and calcula-
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tions in the complex modelling mechanism of the Choco Solver or for a translator
to be developed that compiles the user-defined model to Choco Solver code.

Another examined library is the OptaPlanner [79]. The OptaPlanner is a
modelling framework for constraint problems and excels in use cases involving
planning and resource allocation. It also enables object injection which would be
greatly suitable for injecting RUM’s into components. However, the OptaPlan-
ner is strictly a constraint modelling framework and does not employ advanced
solving techniques developed in the field of constraint programming. It performs
a brute force depth-first search over the search space and executes a single code
block which evaluates all constraints. It consequently cannot reduce the search
space by eliminating failing branches and redundant constraints. Therefore, it
lacks the means to solve the problem efficiently.

Finally, developing a custom solver allowed incorporation of domain knowl-
edge into the search algorithm, further reducing overhead. This reduces the
comparative benefit of employing a constraint solver library and eventually led
to the development of a custom solver implementation.

Constraint propagation

A technique in constraint solvers mentioned before is the concept of constraint
propagation [68]. Constraint propagation explores the search space in the same
manner as backtrack-search. However, for each variable assignment V1 all other
variable domains are preventatively reduced by pruning all variable assignments
V2 that are incompatible with V1. For example in the example of Figure 4.2:
if CPU=Low CPU is initially assigned, Radio=High radio is pruned immedi-
ately, because it would require more power than is actually produced. This
eliminates inconsistent variables without the need of assigning them, thereby
reducing the search space even more effectively than native backtrack-search.
This is easily implemented with integer/real variables that are interconnected
with constraints. However, in the model the variables are not integer/real do-
mains, but objects with integer/real variables and functions. This doesn’t make
constraint propagation impossible, but does complicated it.

Secondly, the interconnected nature of resources can impede the benefits
received from constraint propagation. To illustrate this consider the following
complex example: resource R is connected to a set of producers P and a set
of consumers C, for each the amount produced or consumed is variable. The
amount produced or consumed by any component x is denoted by Rx. The avail-
ability constraint (i.e. amount produced must exceed the amount consumed)
on R can then be written as: ∑

p∈P
Rp ≥

∑
c∈C

Rc

Which entails for any consumer c1 ∈ C:

Rc1 ≤

∑
p∈P

Rp −
∑

c2∈(C−c1)

Rc2


In order to be able to prune any value from the domain of consumer c1, all
producers must be assigned. Only then can a concrete upper bound be deter-
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mined2. This requires the search to be already at least |P | levels deep, reducing
the part of the tree possibly eliminated. Even then, only values can be pruned
for which:

Rc1 >
∑
p∈P

Rp

Which might not be many since a single consumer must consume more of a
resource than produced by all producers combined, in order for the constraint
to fail. When other consumers get a value assigned pruning becomes more
effective, but this requires even more variable assignments.

To conclude, the part of the tree that is eliminated with constraint prop-
agation is limited. For any variable to be pruned the algorithm must already
be halfway into the search tree. Furthermore, the chance that a value is elimi-
nated halfway in the tree is very small. Therefore, no further effort was made to
incorporate constraint propagation or other look-ahead strategies in the solver.

2Future assignments of the other consumers may be disregarded since they will never raise
the upper bound for Rc1, only lower it.
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5. Proof-of-concept validation by
case study

This chapter will attempt to validate the applicability of the platform to the field
of LPWA QoS monitoring and management. This will be performed by design-
ing and developing a prototype monitoring application, based on the proposed
platform. This will not be performed on the afore-used hypothetical example
from section 3.6.1. Instead, it will be performed on an actual, commercial car
parking sensor application.

Firstly, some background will be given on the sensor application to be mon-
itored. Next, the goals, claims and methodology of the study will be declared.
With the goal and means stated, the experiment will be performed by realizing
a prototype monitoring application. As the actual implementation details are
auxiliary, they will not be examined in detail. However, the implementation
will be described superficially to contextualize the validation efforts. After im-
plementation, the results of the validation study will be presented and their
implications deliberated. This chapter will be concluded with a discussion on
the results, conclusions and limitations of the study.

5.1 Context of the case study

5.1.1 Background

The case the development platform will be applied to is to the Nedap Iden-
tification Systems smart parking application: SENSIT. Nedap [81] is a Dutch
company based in the city of Groenlo. They produce hardware and software
integrated products for a plethora of industries, such as retail, health-care and
smart city management. The department Identification Systems [82] focusses
on the latter category. They develop solutions for detection, identification and
physical access management of people and vehicles. This is performed by em-
ploying a series of self-produced hardware products such as RFID tags, sensor
devices and cameras, with accompanying software products and platforms.

SENSIT smart parking application

The SENSIT [83] smart parking application is devised by Nedap Identifica-
tion Systems to monitor city on-street parking. It employs a huge amount (up
to thousands per location) of affordable LPWA sensor nodes. Each individual
parking spot is equipped with one of these sensors to determine its occupation.
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To determine changes in occupation, each sensor is equipped with an infra-red
and magnetic induction sensor. Should a change in occupation be detected, a
message containing the measured sensor deltas is sent to the back-end applica-
tion. This granular approach to smart parking allows the SENSIT application
to monitor and visualise the occupation of individual parking spaces in a lot,
garage or even across cities.

In order to communicate with the back-end the sensors employ wireless tech-
nology. Previously, the sensors were connected to sinks using a proprietary net-
work of relay nodes and sinks. However, the recent proliferation of large-scale
cellular IoT networks has caused Nedap to shift towards these technologies.
This allows large numbers of sensors to a single cell tower, without the need
of deploying and managing a network of relay nodes for new sensor deploy-
ments. Additionally, the efforts of managing and maintaining the network are
outsourced to professional operators. To connect the sensors to the internet the
Narrow-band Internet of Things technology was determined to be most suit-
able. New SENSIT sensors are therefore equipped with u-blox [84] NB-IoT
radio modules to connect them to operated cell networks.

5.1.2 Conceptualization of the monitoring application

This section will describe and scope the context of the QoS monitoring appli-
cation to be developed. First, the input for the application, as emitted by the
WSN application under investigation, will be examined. Subsequently, the char-
acteristics of the expected outcomes of the application to be prototyped will be
discussed.

Sensor data signature

The sensor devices send a message with key performance indicator (KPI) data
alongside every data message it sends. Alternatively, it will send one of these
messages periodically if no data messages are sent for 12 hours. When computed
universally, a message rate was determined of about 15 messages per sensor per
day. However, a specific per sensor analysis yields a message rate of between
10 and 50 KPI information messages on average per day, with some outliers for
more active sensors which can reach up to 250 messages per day on a regular
basis.

The data sent by the sensor contains some typical networking data points,
such as source IP address, source port, source device ID, message sequence
number and a timestamp. Additionally, the message contains a hexadecimally
encoded string describing the KPIs collected by the u-blox radio module. The
data collected by the u-blox module contains mostly data points depicting the
signalling functions of the radio module. Such KPIs include the signal-to-noise
ratio (SNR), signal quality (RSSI), Extended Coverage Level (ECL) and more.
Additionally, the KPI information includes some physical attributes of the ra-
dio module. Attributes such as the module’s uptime, number of restarts and
temperature.

The ordinary data plus the u-blox KPI data are contained within 128 Bytes
of data. Considering the messaging rate of a typical sensor yields an imposed
per sensor footprint on bandwidth of ±1–6 KiB/day for the majority of sensors
with outliers of ±KiB/day for extremely active sensors.
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At this moment only a few nodes equipped with the NB-IoT technology have
been deployed. Consequently, a large-scale test bed for the to be prototyped
monitoring application does not exist. Therefore, a simulated sensor environ-
ment has been devised to test the prototype application for contemporary and
near-future smart parking applications. This simulation is based on data signa-
tures and values observed over a half year period emitted by the few nodes that
have been deployed.

QoS monitoring needs

In collaboration with Nedap Identification Systems a list of requirements for the
outcomes of the prototype was compiled. These consequences are to be effected
by the prototype application, based on input from (simulated) sensors. How-
ever, the actual implementation of the prototype is secondary to this chapter,
since the primary goal is to evaluate choices made for the underlying develop-
ment platform. Therefore, a comprehensive, formalized requirements document
has not been included in this thesis. However, the features required of the
monitoring application to be developed will be described shortly, in order to
contextualize the implementation efforts of the prototype.

The consequences the application must effect are classified into three cat-
egories. The first of which is sensor feedback. This entails commands sent
to sensors to alter its execution strategy, based on observations made in the
monitoring application. This can be based on individual sensor data, historic
sensor data or higher-level data snapshots (e.g. sink level). An example of such
feedbacks are to decrease data rates to guarantee a predetermined minimum
sensor lifetime or due to poor cell connectivity. This functionality is currently
not present in the Nedap sensors, but is intended in the future. Therefore, it
will be implemented into the simulation environment to test the command &
control capabilities of the platform.

The second type of effect to be caused by the application is instant alerting.
The primary use case for this kind of consequence is when physical maintenance
is imminently required in the application or its network. Detectable causes of
when this might be warranted have been deliberated with Identification Systems
and examples include:

• A long term drop in coverage level which might indicate permanent ob-
struction of signal.

• Extremely high temperature readings indicating an electrical malfunction.

• Unusually long periods of inactivity or, conversely, extreme data bursts
indicate a rouge node not executing according to a valid strategy.

• Calculations estimating node lifetime determining a node needs replacing.

The last type of consequence is reporting. The goal of this is to inform
technicians, managers or clients on the general operation of the WSN applica-
tion. This comprises two types of reporting. The first is periodical reporting.
Periodical reporting will primarily focus on business goals such as long term
performance metrics, compliance to service level agreements of both service
providers and clients, and prospected short-term maintenance efforts and costs.
The other type of reporting is real-time reporting. This is useful to technicians
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monitoring the performance of an application during its runtime. Use cases in-
clude monitoring the number of incoming events, latencies of sensor devices and
sinks, environmental conditions (such as weather and temperature) and which
sensor strategies currently are deployed. Notice that the real-time aspect of this
type of reporting does not require events to be reported instantaneously since
for such statistics a per second or minute update suffices.

5.2 Validation method

This section will detail the approach taken for this preliminary validation study.
First, the general approach of the study will be listed. After which, the claims
to be examined will be detailed, along with the specific methodology employed
to test them. The section will conclude with a short discussion on the scope
and bounds of the study.

5.2.1 General approach

In order to ascertain whether the level of abstraction of the platform can facili-
tate the needs of the intended monitoring application for SENSIT, a prototype
implementation will be designed and constructed. The expected outcome is an
instantiation of the platform that serves the QoS processing needs of Nedap
Identification Systems.

The possible existence of such an instantiation demonstrates that (at least
for this use case) the level of abstraction is low enough to expose the full func-
tionality that is required (applicability). In order to validate that the level of
abstraction is low enough, but not too low (usability), the program instruc-
tions required for the platform instantiation will be considered. These required
instructions should not be more then the instructions required for a hypothetical
monolithic implementation, supposing the level of abstraction is not too high
(applicability claim). Finally, the adaptability of the platform and its instanti-
ations will be evaluated by introducing some minor changes to the features and
requirements of the monitoring application. It will then be hypothesized what
the consequent changes to the platform implementation are. Should the appro-
priate level of abstraction have been chosen, it should prove uncumbersome to
adapt the topology to these novel conditions.

From a business perspective, the most interesting parameter to express these
these efforts would be the time required to develop. However, this parameter is
extremely subjective as it heavily depends on the level of skill of the developer
and its familiarity with the technology. Therefore, the effort will primarily be
quantified by the code required, expressed in number of instructions required to
construct a monitoring application built by adoption of the platform.

5.2.2 Claims

The cardinal claim investigated is that the appropriate level of abstraction was
chosen in the design of the development platform. This entails that the provided
collection of components can be adapted to suit a plethora of purposes and
target applications. Conversely, the level of abstraction is not that low-level
that implementation requires unnecessarily large development efforts because
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basic procedures require repeated implementation. This claim mirrors research
question RQ3, which asks “What is the appropriate level of abstraction for a
WSN monitoring platform [...]”. This claim is explicated into three sub-claims.

Applicability

Intuitively, the first criterium regarding the level of abstraction is that the plat-
form features a level of abstraction low enough to facilitate the implementation
of the monitoring application for SENSIT. I.e. the platform’s abstraction does
not obfuscate key functionalities which would require reimplementation of for-
merly present features. This seems an obvious and trivial demand, but without
stating it, any subsequent criterium is pointless. More formally, the platform
should enable an instantiation which enables iterative enrichment and aggre-
gation of information. At multiple stages of the consequential iteration the
application should be able to generate outputs such as alerts and reports for
auxiliary processes and systems.

Usability

The second criterium to be validated is that the level of abstraction is not too
low. Though the platform should enable an instantiation according to the needs
of Nedap Identification Systems, it should do so with minimal development
effort. A level of abstraction that is too low requires application developers to
repeatedly implement functionality that, due to their frequent nature, should
have been provided by the platform itself. This criterium seems similar to the
first, but the metrics determining their attainment are measured differently.
Therefore, they will be regarded as two separate claims.

These development efforts will be expressed in the number of code instruc-
tions required to realize the implementation. Since an absolute benchmark was
difficult to ascertain, the upper bound of permissible number of code instructions
is established relative to the amount of instructions necessary for a functionally
similar monolithic implementation. Should a larger code-base be determined,
this entails a level of abstraction that is too low and requires (repeated) imple-
mentation of procedures that should have been provided by the platform itself.
For the construction of the topology it was chosen to allow at most 4 operations
for every component in the platform topology. The criterium of 4 operations
per component originates from an assertion made in Chapter 3.

Adaptability

The final criterium employed to validate the appropriate level of abstraction
is that the platform facilitates convenient adaptation of a realized platform
implementation. This validation will be performed by introducing or changing
a minor feature (e.g. new input type, altered reporting requirement). Should the
appropriate level of abstraction have been chosen, it should prove uncumbersome
to adapt the topology to these novel conditions. For the adaptability of the
application provided by the platform, it was determined that minor new features
and requirements should require not more than:

• a localized rearrangement of the model/topology, and

• introduction or major change of at most two components.
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For all cases, small changes are allowed to the components interfacing with the
altered component(s) in order to produce or consume information supplied to or
emitted by the altered interface. Additionally, very minor, consistent changes
are allowed to be made to other components. The reason for this is that often a
change or introduction of a data point requires that data point to be propagated
throughout the topology.

The rationale for these allowances is that the modularization provided by the
platform should prevent entanglement of concerns and therefore minor changes
should cause localized effects. There is however a possibility that (especially new
features) require a change in several components since its the functionality was
not previously present. Therefore, minor consistent changes are allowed to those
components in order to forward the new functionality. Finally, the reason for the
allowance of a major change in two components is that often computation and
analysis of a data point is separated into distinct components due to separation
of concerns. Therefore, a changed requirement will often require a change in
both components.

5.2.3 Bounds

Before executing the validation study, the bounds and limitations of this valida-
tion study will need to be considered. The first glaring limitation of this study
is that it is extremely limited in scope. The platform will only be implemented
for a specific WSN application and this study will therefore not state the plat-
form to be appropriate for the entire set of applications that was determined in
Section 2.1 of the background chapter. Instead, this study will at most affirm
the platform as a proof-of-concept for WSN application QoS monitoring.

The second limitation worthy of notion is that, aside from only regarding a
single WSN application, it will also run on a simulation of that application. As
mentioned before, this is because the NB-IoT-incorporated sensor devices of the
SENSIT application have only recently started deployment. As a consequence,
a test bed of significant scale is presently not available. However, simulating a
full future deployment of the application enables easy adaptation of the WSN
application under investigation, in terms of both scale and functionality. This
allows to not only test for intended regular behaviour but also for extreme
and niche conditions. Additionally, the simulated environment allows for easy
temporal manipulation, which enables the simulation to be accelerated, halted
and repeated.

5.3 Implementation of the WSN monitoring ap-
plication

5.3.1 Design and Implementation

In this section the design for the platform instantiation for Nedap SENSIT will
be detailed. First, a top-down look at the entire topology will be taken. After
which the functionality of the individual components will be described shortly.
Finally, the instantiation of the Resource Distribution Model used to compute
the state of sensors will be illustrated.
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Application topology

The designed topology is depicted in Figure 5.1. This figure shows the process-
ing to be divided into three stages. In the first stage raw-information snapshots
are enriched and normalized. In doing so it improves the information potential
and accuracy of the data in the snapshot. The second stage concerns sensor
level analysis and management. It calculates the state and resource consump-
tion of the devices, and it includes some services that alert if a sensor exhibits
abnormal behaviour or long term deviations of its ordinary parameter margins.
The final stage concerns snapshot accumulation in order to extract high level in-
formation and adaptations. This stage diverges into three distinct accumulator
paths. The top path performs accumulations of snapshots based on the sen-
sor group ID. It reports on data rate violations (as agreed upon in SLA’s) and
recalculates the share of the data each sensor within a sensor group is allowed
to consume. The middle execution path concerns the cells served by nodes. It
alerts if a node switches cells more then an allowed amount during a period.
The bottom accumulates all snapshots in order to report on the current state
of the application as a whole.

The description of the application topology will be concluded by shortly
describing the functions of the individual components.

Sensit spout
Reads sensor snapshots from a Kafka channel and introduces them into
the topology.

Translator
Translates the sensor information from hexadecimal string to key-value
pairs.

Nuancer
Averages the data points received from a sensor to eliminate abnormalities.
It does so by keeping a record of the last seen messages for each sensor
node in an SQL database.

Attributor
Enriches the snapshot with some data points not present in the sensor but
known by back-end services.

Sensor RDM processor
Processes the enriched information from the snapshot and calculates the
optimal operational device strategy.

Switch RUM buffer
Buffers the switch strategy messages to prevent superfluous, erratic feed-
back to the sensors. Doesn’t switch strategy on first report, only if a
switch is requested over an extended period.

Single message analyser
Calculates whether the sensor parameters, as calculated by the RDM pro-
cessor, are within the allowable margins.

Budget recalculator interface
If the message rate of a sensor is high enough will initiate an immediate
budget recalculation. If message rate is low it is allowed to be accumulated
over some time to reduce the number of database updates.
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Budget recalculator accumulator
Accumulates budget recalculation snapshots and prepares them for batch
update.

Budget recalculator
Executes (batch) budget recalculation.

Group accumulator
Accumulates snapshots by sensor’s group ID. Because this is performed
on a weekly basis, this is performed two-stage as not to cause a large data
build-up over time.

Group share recalculator
Recalculates the share of the sensor group’s resources each sensor is al-
lowed to consume, based on the data used by each node over a one week
period.

Cell switch analyser
Analyses and reports if a node switches between cell towers more then is
allowed.

Application accumulator
Accumulates the information emitted by the application in order to be
presented on an application dashboard.

A final remark on the application design is on the interfaces it provides.
The application’s inputs and outputs are received from and provided to Apache
Kafka channels. This allows actual services to be easily swapped in and out
with test services (even at runtime)

Sensor Resource Distribution Model

The Resource Distribution Model proposed in Chapter 4 is employed to model
the state, behaviour and strategies of the sensor. The resulting model is depicted
in Figure 5.2.

The model takes a few parameters based on the sensor state measurements,
such as its current ECL and message rate, and its history, such as its runtime,
data already used and messages already sent. Additionally, the model receives
some data points on the availability of resources such as the allowed number of
messages during a time period (called the budget) and the allowed data usage
for that sensor. The model then computes the runtime the sensor has left,
current data and budget consumption and the future message rate.

The variable behaviour of the MessageRateDeterminer is curtailed by two
constraints on the model. The first is that the budgetLeft produced by the
BudgetProvider must exceed the amount that is consumed by the Remaining-
Calculator, which is ultimately derived from the allowed message rate for the
sensor device (messageRateFuture). Similarly, the same holds for the dataLeft
produced by the DataProvider. Should multiple RUM assignments evaluate as
valid, the most optimal one is decided to be the one which provides the highest
message rate.

Preliminary experiments with resource consumption models have shown
that, when a scarce resource is involved, a device will act differently in the
beginning than in the end of its life-cycle. The reason for this is that in the
beginning the models will instruct the device to operate on a strategy that will
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consume less resources then it is allowed on average. Then, when it has saved
up enough of that resource, it is allowed to spend it on a strategy that consumes
more than that average. To mitigate this effect it was decided to recalculate the
available resources on a monthly basis. This way there is still such a cycle, but
its period is far shorter and the effect will be much less and much more regular
overall.

5.3.2 Adapting the application

This section will be concluded by deliberating some hypothetical adaptations in
order to investigate the adaptability of the platform.

Nuancer local

The first change introduced is the constraint for the Nuancer to not require a
database connection. Reason for such a requirement could be to reduce latency
or to eliminate capacity issues caused by employing an SQL database.

This can be achieved by exchanging the current DatabaseBuffered Nuancer
implementation with a SingleMessageProcessor. This processor keeps an in-
memory cache of the last snapshots it has encountered, grouped by node and
ordered by timestamp or sequence number. For each incoming snapshot the
following sequence of actions is taken:

1. determine node by ID,

2. add snapshot to the node’s buffer,

3. prune out-of-scope snapshots from the buffer,

4. calculate average of remaining buffered snapshots, and

5. emit averaged snapshot

This sequence of actions is similar to how the Nuancer operates in the current
topology, but it eliminates the database connection in favour of a local buffer of
snapshots. Unfortunately, by shifting to a local buffer the scaffolding provided
by the BufferedComponent can no longer be employed. The reason for this is
that the component with local buffer (as currently implemented) operates on a
single global buffer, instead of a buffer per node.

Finally, it must be noted that in requiring the snapshots to be cached locally,
a large burden is forced upon the memory of the machine/container running
the component. Should the application serve a large amount of nodes and
snapshots are collected within a large window of interest, the data kept in-
memory can rapidly reach large sizes. This can be alleviated by replicating this
component to the point that individual memory requirements of workers are
within manageable parameters. Alternatively, the memory issue can be evaded
by persisting and reading snapshots to local files. This introduces some latency
due to disk IO — however far less than database communication does — but
can immensely reduce the number of records in the active cache at any time.

New sensor data encoding

As mentioned, the auxiliary performance data of the sensor is received as an
encoded hexadecimal string. For this case, a new a new hypothetical type of
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Figure 5.3: Updated partial topology for new data encoding

sensor is introduced. This sensor equipped with a different radio module, which
encodes its KPI data slightly differently. It is emphasized that the actual data
collected and emitted by the sensors is not changed significantly. As this would
entail a major change in how computations need to be performed. Though
deliberated as a hypothetical, this case simulates a real future scenario. Since
the aim is for a node lifetime of at least 10 years, it is very conceivable that
wireless sensor technologies improve and change during that time frame. Since
physical replacement of the large volumes of deployed nodes is unprofitable for
both Nedap and its clients, this new technology should be supported in tandem
with the old sensor types.

This change in the sensor environment can be accommodated by introducing
a second Translator component specifically intended for the new data format.
This component is executed independently of — and in parallel to — the original
Translator. How to ensure that a snapshot is processed by the correct trans-
lator, will depend on how the new data stream is supplied to the application.
This hypothetical will consider the most complicated input option, where the
old and the new style snapshots are emitted on a single input channel. An inter-
face component is introduced to split the singular input stream into two. This
component performs a superficial inspection of the snapshot and forwards it to
the correct Storm channel based on some discerning feature (e.g. data format or
type identifier). Though technically this inspection could be performed by the
SensorSpout, separation of concerns compels a separate component for this pur-
pose. Ultimately, both translators uniformly emit their translated snapshots to
a common Storm channel for further processing. The resulting partial topology
is illustrated in Figure 5.3

Alert on long-term ECL drop

For the final case, the functionality of the application is extended by introducing
a new outcome for the application. The added requirement is the detection of
long term drop in ECL level. Such a drop could signify a (possibly alleviable)
obstruction placed between the sensor and sensor sink (cell tower). Moreover,
should several geographically related sensors report such a disruption, drastic
actions cannot be ignored. In the topology this can easily be achieved by ex-
tending one of the existing components.

Formally, the CellSwitchAnalyser would be most suited for this purpose,
since it is already historically aware due to retaining a list of cell towers per
sensor. Though the component would obviously require renaming. This func-
tionality is provided by keeping a list of ECLs reported by each sensor node.
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When the sightings are inconsistent or do not feature a drop, the list is pruned.
When the list’s size surpasses a set threshold — i.e. a consistent ECL drop has
occurred — an alert is sent to the alerter. This is easily implemented since the
CellSwitchAnalyser already features alerting functionality. Finally, this change
does not require changes to interfacing components, since the ECL level is al-
ready present in the snapshot emitted by the SensorRdmProcessor.

5.4 Results & Evaluation

The results of the study will be reported in accordance with the three sub-claims
and discussed under their own three headings: applicability, development effort
and adaptability.

Applicability

The sensor model was found to be adequate for modelling the behaviour of
the SENSIT sensors. The modular design proved very useful for expositioning
the different resources and how they were interconnectively calculated and dis-
tributed. Unfortunately (for the purpose of this study), the sensor did not fea-
ture a large variety of resource metrics specifying its configurable behaviour and
therefore the model only featured one configurable component. Additionally,
after accumulation of the application-level parameters by the ApplicationAccu-
mulator the accumulated parameters needed no further transformations and the
WSN application did not feature application-level configuration needs. There-
fore, the Resource Distribution Model was only employed on the sensor-level.

The result of the applicability investigation with regard to the distributed
topology is that the platform suffices as development platform for the purposes
of Nedap Identification Systems. The provided building blocks enable the im-
plementation of a functional application and provide functional abstraction of
the specifics of the underlying technologies. During implementation of the appli-
cation it was noted however that the platform does not provide an efficient way
of buffering and processing snapshots grouped per node, cell tower, etc. This
functionality could easily be provided by implementing the BufferedProcessor
with multiple buffers. A mapper function introduced to the processor will then
determine which buffer a snapshot will be added into. The existing filter, sort
and execution methods will then be performed on these buckets individually,
providing a mechanism of grouped computations.

However, such functionality currently is not present, this absences was easily
compensated for and was found to be only a minor inconvenience. This issue
singularly was not sufficient to invalidate the applicability criterium. Therefore,
it is stated that the applicability criterium holds.

Usability

Specifying the sensor model and application topology could be performed within
the set parameters. As claimed, each component requires but four actions to be
introduced to the topology. These actions are:

1. create component,

2. declare component,
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3. subscribe consumer channels, and

4. declare output channels.

However, the internal code of the topology components, which actually performs
the calculations and computations, required more code that a monolithic alter-
native would. While the actual number of lines of code was only a little higher
than then its monolithic counterpart, the computations and transformations
performed on those lines was far more then would be necessary in a monolithic
application. These discrepancies will be deliberated on further in Section 5.4.

This was also reflected in the time required to develop this prototype. It was
initially expected that the instantiation could be constructed within 40 man-
hours. However, this eventually took twice as many hours. Of that time about
15% was spent designing, 35% developing and 50% debugging the application1.
The breakdown of the time spent yields that it took an enormous amount of
time to debug and adapt the components after its original design and imple-
mentation. The chief reason for this was found to be the loose coupling between
components. The components are completely disjoint and the snapshot variables
they share require custom serialization between components and are accessed
with string identifiers. This entails that it is excessively easy to implement a
component pair with mismatched coupling. This is since inappropriate variable
access due to misspelled identifiers can occur very easily and is not detected by
code checkers and compilers of conventional programming tools. Subsequently,
when the variable is accessed successfully, the value often requires deserializing
into the correct primitive or object type. This again introduces a possible point
of failure due to misparsing and miscasting, since the compiler cannot detect
the actual object type before executing the application.

The introduction of snapshot struct objects (POJOs) is proposed to alle-
viate both above mentioned problems. These objects contain the variables of
the snapshots passed between components. However, in contrast to loosely cou-
pled key-value bindings, these bindings are explicitly defined in both type and
identifier. They can therefore easily be serialized and deserialized by common
serialization mechanisms. This would alleviate the need for developers to con-
tinually specify custom serialization. By providing direct access to the correctly
parsed variables in the snapshots it will reduce the code base by a huge amount.
Additionally, by providing a mechanism to directly access the properly parsed
variables, the number of possible instances where mismatching, misparsing and
miscasting can occur is reduced. Thereby eliminating several points of possible
failure which have proved problematic. Combined, this increased traceability
and automated (de)serialization should have a noticeable, positive effect on the
amount of required code. Consequently, it will reduce the time spent debugging
and reworking the application and thus the development time as a whole.

To illustrate this benefit, two simplified code snippets from the SensorNu-
ancer are presented. One which does not employ structs (Listing 5.1) and one
which does (Listing 5.2). From these examples it is clearly observable that
by employing well-defined, serializable structs, the instructions required are re-
duced. Additionally, it reduces the chance of mismatching variable identifiers
by eliminating string bindings.

1All hours spent after fully constructing and first execution of the application are pooled
into the latter category
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1 public void runForMessagesHistor ic ( LinkedList<IOMessage> h i s t o r y ) {
2 Map<Str ing , Str ing> args = new HashMap<>();
3 long f i r s t = Long . parseLong (
4 h i s t o r y . g e tF i r s t ( ) . getVars ( ) . get ( ”TIMESTAMP” ) ) ;
5 long l a s t = Long . parseLong (
6 h i s t o r y . getLast ( ) . getVars ( ) . get ( ”TIMESTAMP” ) ) ;
7
8 List<Integer> e c l s = new LinkedList <>();
9 for ( IOMessage m : h i s t o r y ){

10 e c l s . add ( In t eg e r . pa r s e In t (m. getVars ( ) . get ( ”ECL LOCAL” ) ) ;
11 }
12 int normal izedEcl = normal i zeEc l ( e c l s ) ;
13
14 args . put ( ”MILLIS ELAPSED” , Long . t oS t r i ng ( l a s t− f i r s t ) ) ;
15 args . put ( ”ECL LOCAL” , h i s t o r y . getLast ( ) . getVars ( )
16 . get ( ”ECL LOCAL” ) ) ;
17 args . put ( ”ECL” , In t eg e r . t oS t r i ng ( normal izedEcl ) ) ;
18 pub l i sh ( ”SENSOR NORMALIZED” , new IOMessage ( args ) ) ;
19 }

Listing 5.1: Simplified fragment of SensorNuancer without structs

1 public void runForMessagesHistor ic ( LinkedList<NStructIn> h i s t o r y ) {
2 NStructOut output = new NStructOut ( ) ;
3 long f i r s t = h i s t o r y . g e tF i r s t ( ) . getTimestamp ( ) ;
4 long l a s t = h i s t o r y . getLast ( ) . getTimestamp ( ) ;
5
6 List<Integer> e c l s = new LinkedList <>();
7 for ( NStructIn s t r u c t : h i s t o r y ){
8 e c l s . add ( s t r u c t . ge tEc lLoca l ( ) ) ;
9 }

10 int normal izedEcl = normal i zeEc l ( e c l s ) ;
11
12 output . s e tM i l l i sE l ap s ed ( l a s t− f i r s t ) ;
13 output . s e tEc lLoca l ( h i s t o r y . getLast ( ) . ge tEc lLoca l ( ) ) ;
14 output . s e tEc l ( normal izedEcl ) ;
15 pub l i sh ( ”SENSOR NORMALIZED” , output ) ;
16 }

Listing 5.2: Simplified fragment of SensorNuancer with structs

Finally, it was noted that after initially specifying the topology and models,
reworking them proved to be frustrating. The difficulty was mainly in locating
the instantiation and declaration of a component in the code that builds the
topology. The reason for this is that it constantly requires a developer to tran-
sition from a two-dimensional graphic image of the model or topology to builder
code which is one-dimensional (lines of code). This mental transition can be
avoided by eventually developing graphic development tools that allows a devel-
oper to conceive a topology by drawing a graphical model of components and
resources. The appropriate computational code can then later be introduced
into the components. By doing so, a developer would only need to concern
themselves with one depiction of the topology instead of two.

Adaptability

Finally, the necessary adaptations to the existing application for each hypothet-
ical case are summarized in Table 5.1. The table depicts that all three scenarios
conform to the set criteria. All minor changes to the requirements context were
incorporable with the existing application by introducing or changing at most
two components. Additionally, the adaptations required either no changes to
the topology or only small, localized changes. Incidentally, these scenarios re-
quired no changes to the components interfacing with the changed or introduced
components.
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Summary Components Topology changes
new changed none only local

Nuancer local 0 1 3

New sensor encoding 2 0 3

Alert ECL drop 0 1 3

Table 5.1: changes required per adaptation scenario

5.5 Conclusion & Discussion

This chapter will be concluded by contemplating the outcomes. Firstly, the con-
clusions drawn from the performed study will be stated. Secondly, the validity
of the study and therefore the conclusions drawn from it will be discussed. This
chapter will be concluded by deliberating the limitations of this preliminary
validation study.

5.5.1 Conclusions

The main conclusion to draw from this initial validation study is that it indi-
cates the development platform to be a practical tool to develop a functional
WSN monitoring application. The distributed application architecture provides
a functional separation of concerns and the provided component scaffolding
provides curtailment of most types of data streams and distributions. Sec-
ondly, the explicit Resource Distribution Model provides a useful exposition
of how resources within a system are interconnected, calculated and utilized.
Additionally, the explicit nature of the model allows unknown variables to be
computed in accordance with the model’s constraints and optimal behaviour.
This study has shown that, for the purpose of the Nedap Identification Systems
SENSIT application, the monitoring solution can be constructed within the set
parameters for required development effort, with the exception of the required
implementation of component’s internals. Additionally, the provided capability
for separation of concern allows for rapid software evolution with respect to mi-
nor changes to the monitoring application’s requirements or context. There are
however some small deficiencies and issues to be solved in order to also make
the platform more practicable.

The first main issue to be resolved is the inclusion of functionality to buffer
snapshots grouped by some parameter(s) of those snapshots. The second issue
regards the inclusion of structs (POJOs) used to communicate between compo-
nents. These structs can be automatically serialized and deserialized and they
increase the traceability of data points between components. This will reduce
the code and time required for development. It might be argued that these
structs themselves will introduce new code to the application. However, these
objects are easily generated by conventional code generators. This approach
will therefore reduce the overall development effort required. As the compo-
nents will no longer be disjunct, but coupled by these objects, it will reduce the
time spent debugging the application significantly.

Secondly, the inclusion of a graphical model/topology editor will remove the
disjoint between graphical design documents and actual implementation. This
will further reduce the development effort as a developer is no longer required

72



Characteristic Value
Message payload <256 Bytes
data rate ±1.6 KiB/day/node2

node lifetime >10 years
node costs <5 USD
Network infrastructure Star topology (cellular)

Table 5.2: Characteristics of typical LPWA WSN applications

to transition constantly between two representations of the developed artefacts.

5.5.2 Discussion

To solidify the validity of this study, some contending issues must be addressed.

Representativeness of the SENSIT application

The first issue of contention is the applicability of the study. For any assertion to
be relevant to the field of LPWA WSN it must be demonstrated that the SENSIT
application is representative and conforms to the characteristics for LPWA WSN
applications. Table 5.2 lists the typical LPWA WSN device characteristics, as
reported by multiple sources [2, 13, 77, 85, 86, 87].

From the table summation and the application parameters stated in Section
5.1.1 it is concluded that the SENSIT application conforms to the typical fea-
tures of LPWA WSN applications. Intuitively, the node costs and lifetime, 5
USD and 10 years respectively, match the parameters typifying LPWA appli-
cations. Additionally, SENSIT’s new NB-IoT network technology features the
typical cellular star topology. More importantly, the LPWA data signatures
encompass the data signatures featured by the SENSIT application. The 128
Bytes per message are well contained within the typical maximum of 256 Bytes.
Finally, supposing a message rate of 15 message per day and a payload of 128
Bytes per message yields a daily average per sensor data rate of about 1.9 KiB.
Though the actual daily message rate of a node can vary wildly, as do the gen-
eral bounds for individual network technologies, the averaged rate conforms to
the approximate per sensor data rate typical of LPWA WSN applications.

Threat of over-abstraction

As mentioned, the current state of the development platform features some defi-
ciencies. Should these deficiencies be absolved and the new functions provided,
the level of abstraction is raised. Therefore, it must be ensured that the level of
abstraction is not raised to the point that the applicability claim (sub-claim 1)
is invalidated. For the inclusion of a MappedBufferedProcessor this concern is
trivial as it provides an abstraction but, as it is extends to the platform, it does
not obfuscate any underlying functionality. In selecting or implementing a se-
rialization mechanism, note should be taken that it can transform every innate
or user-specified datatype. Provided this concern is considered, a higher level of

2Objective message/data rate bounds are difficult to obtain, since different technologies
prioritize varying limiting factors (message rate, data rate, energy consumption, etc.)
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abstraction is provided, but no functionality is lost. Finally, the to be included
graphical modelling/development interface should allow definition, specification
and interconnectivity between all components provided by the platform. To
this end, it is urged that the graphical interface is included in the platform
instead of developed alongside the platform as a separate project. Separate
project development will inherently lead to the development of the graphical
interface trailing the development of the main platform and possible diverging
of goals and requirements. If curtailment of all the above mentioned concerns is
guaranteed, the level of abstraction can be raised to an appropriate level while
safeguarding the applicability claim.

Developer skill level

A final point of contention regarding the validity of this study is the subjectivity
of the executor. The experiment was performed by a subject with full knowl-
edge of the internals of the development platform. Though this allows for rapid
development and exploration of the capabilities of the platform, it possibly un-
dermines the conclusions made on required development effort. Reason for this
is that the actual subject may be over-qualified with regard to a representative
developer of a QoS monitoring application. Therefore, care must be taken that
the general development effort is not underestimated. The likelihood of such an
underestimation will be deliberated in this section.

Firstly, the construction of Resource Distribution Models will be deliberated.
Though this study does not assert bold claims regarding the required effort of
constructing such models, the relative impact of a reduced skill level to the ef-
fort required can be predicted and discussed. Though a model instantiation may
seem daunting, it is actually constructed using only a few concepts. A model
consists of Resources and Components computing, consuming and producing
these resources. Subsequently, components are connected to resources by an in-
terface of type Calculates, Consumes or Produces. The only issue complicating
this depiction is the ModelledComponent, which contains multiple utilization
models with a resource interface for each resource interfaced by the compo-
nent. However, these interfaces are instantiated and act equal to the regular
component-resource interfaces. Therefore, understanding of one carries over to
the other. Finally, specifying the intended model may prove challenging to less
familiar developers. This is due to the nature of the formula specification of
resource interfaces. These formulas are very formalized to enable automated
computation and evaluation of instantiations. These interface formulas take an
array as input containing all input values required to compute its output. Con-
sequently, a list of resource identifiers is provided to the function, specifying the
resources to be inserted at each index of the input array. In doing so it provides
a compact specification for these formulas. However, it also allows for construc-
tion of invalid, incalculable or semantically incorrect models. Therefore, clear
and indubious instructions will be provided to guide future developers.

Continuing, the consequences to the application topology are considered.
Firstly, the internals of the topology components are plain Java code. There-
fore, the level of familiarity has a negligible effect to implementation of the
internals. Secondly, the suggested introduction of a formalized and automated
(de)serialization mechanism will only aid an uninformed developer, since it pro-
vides a clear handle to the implementer, obfuscating the cumbersome details of
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the underlying communication platform. Additionally, the construction of the
application topology with the provided builder was concluded to be specifiable
by four instructions per topology component. The skill level of the application
developer/designer has no impact to this required number of instructions, since
the provided TopologyBuilder contains no actions aside these four instructions
for a component: create component, declare component, subscribe to channels,
declare as producer to channels.

Finally, it is argued that an unskilled implementer will gain more from
the platform then the acquainted subject which performed this study. This
is asserted due to the limited number of component types that require under-
standing. The platform only features three different types of components, with
at most two variations per component (e.g. distributed/local computation or
database/local buffer). Additionally, the scaffolding provided will help devel-
opers in specifying more complicated components. For example, the Database-
BufferedComponent requires implementations for abstracted methods that sub-
sequently add to, fetch and filter the buffer managed by the database. This se-
quence specification guides a developer in implementing the intended behaviour
of the buffer. Therefore, it is argued that a less skilled developer will gain more
benefit from the platform, relative to his/her skill level.

5.5.3 Limitations and recommendations

Though this validation study demonstrates the platform to be a useful tool, it
must be regarded as a proof-of-concept. This study only regarded one sensor
application and therefore the results might be accidental and the evidence pro-
vided by them is anecdotal. Though the preliminary results do indicate the
platform to be a useful tool for WSN QoS monitoring, general statements are
not allowed to be asserted unequivocally regarding the general applicability of
this tool to the field of WSN applications. For such conclusions to be asserted,
much more validation on a more varied base of applications is required.

A second shortcoming of this study is that the SENSIT wireless sensor ap-
plication did not feature the complex cases to fully explore the capabilities of
the Resource Distribution Model. Previous chapters have claimed that the Re-
source Distribution Model should be applicable at multiple stages of information
processing (e.g. sensor, per cell, entire application). However, as mentioned be-
fore, there was no case for post-accumulation processing or sensor configuration
based on application-level parameters. Therefore, no RDM was employed in the
latter stage of information processing. Therefore, the model is claimed to be ap-
plicable at sensor level for the SENSIT application. In order to assert the model
as a general solution, more research should be performed on sensor applications
that do feature more complex application-level processing or configuration.

Procedurally, this study also features a large limitation and therefore so
do the conclusions drawn from it. The limitation to the study is that it was
not designed as a blind study. As the application instantiation of the platform
was developed by a developer with full knowledge of the validation criteria and
intimate knowledge of the internals of the development platform. In order to
fully and objectively assert the conclusions of this study the experiment must
be repeated more formally with impartial subjects. These subjects must be
able to repeat the experiment’s process without knowledge of the parameters of
the study, without familiarity of the platforms internals and only the provided
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documentation of the platform and its exposed APIs.
However, this eventual full-scale study should not be performed until the

latter stages of platform development and validation. The reason for this is
that it is far more resource-efficient to discover initial deficiencies and issues
with small case studies, as described in this chapter. Only when these studies
no longer yield suggested improvements to the platform should the scope be
focussed towards more expensive, formalized studies.
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6. Conclusion & Discussion

In this final chapter the thesis will be concluded. This will be performed by first
revisiting the research questions and answering them as well as permitted by
the results of the study. Subsequently, some remaining issues will be debated.
Finally, some areas of exploration will be suggested for continued research.

6.1 Conclusions

This section will endeavour to resolve the research questions posed in Section
1.4.1 in order, each under its own heading. The first five of which, regarding
the development platform detailed in Chapter 3, will be answered in the next
subsection. The remaining three, regarding Resource Distribution Model of
Chapter 4, will be resolved in the following.

6.1.1 Platform architecture

Stream transformation types

From the analyses posed in Section 2.1 of the background and the common-
ality/variability analysis of Chapter 3, it is derived that in broad terms the
input for the QoS determination process is a high influx of low-level, raw data
describing the condition and performance of sensor devices. From this data a
number of high-information output parameters requires derivation in order to
cause concrete effects. From this proposition it is firstly concluded that the
input data is transformed in order to enrich the data from raw to higher-level
information.

Secondly, the data is aggregated to further raise the level of information and
increase the accuracy of the information. This aggregation can be performed
across two dimensions: laterally or longitudinally. Lateral aggregation entails
collecting similar data obtained from different sources to determine high-level
information of a state across a large domain (e.g. geographically). Conversely,
longitudinal aggregation encompasses data from a single source (a device or in-
termediary process), but which is collected over a period of time. Such analyses
can be used to infer higher-level information such as trends or to improve the
accuracy and confidence in measured or computed parameters.

The specified processes can have one or some snapshots as output, whereby
some is defined as a countable, fixed amount which does not increase as the num-
ber of inputs increases. To simplify the abstraction, one will be included into
some. The preceding concludes two types of information processing streams:
one-to-some (transformation) and many-to-some (aggregation).
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The preceding discussion ignores two types of processing streams. The first
of which is the many-to-many relation. It is omitted because it can be simulated
by parallelized one-to-one processes. It therefore only serves as an abstraction
of the actual processing. The second stream type omitted is the one-to-many.
Since the information-potential of data cannot be increased by splitting it apart,
it will only produce copies of the information. Because only actual information
processing streams are of interest, such copying has also been disregarded.

Platform design

The classified types of data streams are accounted for in the development plat-
form by providing a micro-component architecture. This platform allows for
the specification of processors which communicate with one another through
the Apache Storm platform. The developed platform scaffolds processors for
the identified data streams and provided builders enable rapid development of
application topologies. There are three chief types of processors, however vari-
ants exist3. These chief processor types are:

SingleMessageProcessor
Takes a single snapshot and emits one or some snapshots.

AccumulatorProcessor
Takes a large amount of laterally related snapshots emitted by many
sources and computes some high-information snapshot(s).

BufferedProcessor
Takes a sequence of longitudinally related snapshots and averages them
to attain trend information or increase the accuracy of the measurements.

These components are abstract instantiations of the general Apache Storm Bolt
object. This allows them to easily be integrated into a Storm topology while
providing convenient abstract scaffolds that aid application developers.

Level of abstraction

Chapter 5 evaluated the level of abstraction of the platform on three concepts:
applicability, development effort and adaptability. As a prototype monitoring
application for Nedap Identification Systems was able to be designed and de-
veloped, it was concluded that the applicability was sufficient, at least for this
preliminary validation study. The adaptability of the platform was also demon-
strated to be sufficient by efficiently devising three hypothetical adaptation to
the developed system.

However, it was shown that the platform was too low-level, as it did not
provide a convenient communication mechanism. Instead, the mechanism re-
lied too heavily on the innate key-value messaging system of Apache Storm.
Consequently, this required repeated parsing and casting, and did not provide
easy access to data points within snapshot messages. This can be alleviated by
introducing struct-based messaging (POJOs). This would eliminate the need
for casting and provides hard-typed bindings for data points in messages. This
would eliminate many points of failure and improve the time required for devel-
opment and debugging.

3local vs. external storage or local vs. distributed computation
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Threats to scalability of capacity

From the identified stream traffic types, two threats to the scalability of input
capacity are identified. Firstly, should the amount of input devices increase,
every task in the application must be performed more and more often. This will
eventually approach the computational and memory limitations of the hard-
ware executing the application. Therefore, tasks must be able to be distributed
among servers to ensure parallelized execution. If disjunct computations can be
parallelized individually, there is still a second issue. This issue is that aggre-
gation must eventually be performed centralized in order to emit an aggregated
snapshot. Therefore, it must be provided that aggregation can be executed
distributively until the data volume has been reduced sufficiently for a single
machine to finish the aggregation.

The developed monitoring platform attempts to account for these challenges.
However, due to compatibility issues with the chosen cloud execution platform,
no capacity tests or benchmarks could be performed to confirm the scalability.
Therefore, the scalability claims will be defended theoretically in Section 6.2:
Discussion.

6.1.2 Resource Distribution Model

Key concepts of QoS modelling

The model was conceived to capture the key concepts in modelling QoS. The
commonality/variability analysis of Chapter 4 determined these concepts to
be interconnected resource parameters which eventually determine some re-
source(s) indicative of the degree of QoS provided by the system. This is repre-
sented in the model as Resources interconnected by Components. These Com-
ponents determine how one resource is converted into another. Meanwhile, the
Resource object enables the portrayal of the multiplicity of a shared resource.

Modelling variable behaviour

By abstracting the conversion of resources into components, the modelling of
variable behaviour is also facilitated. This is achieved by equipping some com-
ponents with multiple Resource Utilization Models (RUM). These models can
be interchanged to analyse differing modes of operation and evaluate the impli-
cations this has on the state, validity and performance of the system.

Calculating optimal behaviour

The final research question regarding the RDM inquires how the optimal be-
haviour of the system, considering the current state of the system, can be de-
termined. For this purpose the constraint programming paradigm has been
employed. Since the model solution essentially features a constraint model with
some entities with variable behaviour, constraint solving is tremendously ap-
plicable. The provided back-track model solver iteratively attempts to assign
components with RUM’s and systematically searches for valid model compo-
sitions. All valid compositions are subsequently ranked according to the QoS
they provide and the optimal solution is chosen. In order to objectively com-
pare the QoS provided by solutions it was decided that a model should have one
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— and only one — optimizable QoS parameter. If a model features multiple
QoS parameter, this is achieved by applying an all-encompassing heuristic QoS
function to those parameters, netting a universal QoS indicator.

6.2 Discussion

This section will discuss some remaining questions that might have been raised
by this thesis.

Is the platform as scalable as proposed?

As mentioned, due to compatibility issues with the chosen cloud infrastructure,
no tests could be performed validating the scalable capacity of the platform.
However, the scalable capacity can be hypothesized by regarding the features
of the supporting technologies. The requirements for scalability, as identified in
Section 6.1, are:

1. disjunct computations can be parallelized individually, and

2. aggregation can be performed distributively, at least up until a point where
the data volume is reduced sufficiently for a single processor.

The first demand is innately present in Apache Storm. A bolt can be executed
by multiple tasks on multiple workers. This entails that if the processes are
completely disjunct, scalability is attained by assigning more parallel workers
to the process. Furthermore, by employing a field grouping it can be assured
that similar snapshots are always processed by the same worker, which can
ensure dependable parallel execution of stateful processes.

For aggregation the platform also enables scalability. Firstly, as the Dis-
tributedAccumulatorProcessor is implemented as an Apache Spark Streaming
application, it enjoys the scalability guarantees offered by Spark. Furthermore,
even the regular AccumulatorProcessor can be composed in such a manner that
it first accumulates partitions of the input set, before accumulating those inter-
mediary results. This can be achieved by subsequent map-reduce steps, as is
provided for by the AccumulatorProcessor. For the BufferedProcessor scalabil-
ity is less of an issue since it receives its input from a single source. Therefore,
issues only arise when that source increases its emission tremendously. However,
should such an issue arise, the performance of the processor can be increased by
keeping an internal state aside from its buffer. Incoming snapshots are “added”
to this state and out-of-scope snapshots are “subtracted” from it, which elimi-
nates repeated scanning of the entire buffer.

Does Apache Storm need another scaffolding layer?

The the platform was conceived in a specific top-down order:

1. conceptualized the problem domain,

2. decided on micro-component architecture,

3. specified the required micro-components,

4. implemented the components, and finally
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5. integrated the components with Apache Storm.

Originally, the search for a supporting technology was mainly for its core mes-
saging system and execution environment. Therefore, as a byproduct of this
approach, some advanced features of Apache Storm had been overlooked. As a
consequence, the scaffolding layer provided by the platform is very close to the
Storm functionality.

One Storm feature that approximates the added functionality of the plat-
form is stream windowing. This considers a range of input messages of a certain
length or duration. This window is subsequently moved and input in the window
is supplied to a processor. This could provide for the base functionality of the
BufferedProcessor. However, the scaffolding provided for the BufferedProcessor
enables context aware control over the buffer, since the processor can inspect
the entire buffer when pruning values. In contrast, the windowing of Storm
can only prune values based on the timestamp or buffer length. Additionally,
the windowing of Storm keeps the window in-memory, which becomes an issue
for high influx processors or long windows. Therefore, the DistributedAccumu-
latorProcessor and the DatabaseBufferedProcessor attempt to resolve this by
employing Apache Kafka/Spark and databases respectively.

Finally, it might be argued that if the additions of the platform are as bene-
ficial as is claimed, they would have been integrated into Apache Storm already.
However, This is contradicted by the fact that for this application an explicit
scope has been ascertained. Firstly, the platform was designed with a focus
on calculating and monitoring QoS of WSN applications specifically, whereas
Apache Storm is devised for streaming applications in general. Secondly, re-
search regarding the first research question has yielded a specific taxonomy of
the stream and processing types that should be regarded. Finally, a specific
implementation language was chosen for the platform: Java. This allows the
platform to profit from certain language specific benefits that are disregarded in
Apache Storm to become language-independent. To summarize, by regarding
domain knowledge a more specific adaptation of Apache Storm was able to be
constructed.

Why aren’t Apache Storm’s fault tolerant measures incorporated?

The platform enjoys the innate service fault tolerance of Apache Storm, i.e. if
a service fails it will be automatically restarted. However, Storm also features
methods to (partially) ensure fault tolerance on a data level. These features
are not present in the developed platform due to the relatively late decision for
Apache storm, as prescribed in the previous subsection. These measures and
the impact of their deficiency will be deliberated shortly.

The first of these methods is message acknowledgement. Storm tracks mes-
sages throughout the topology. This allows messages to be replayed at the
spout if processing fails somewhere in the topology. While this is a power-
ful function, there are some considerations to be made regarding it. Firstly,
employing this will definitely result in non-sequential streams. This is caused
when a windowed/buffered processor fails processing and every message in its
window/buffer is replayed when the time-out occurs. Though any WSN stream-
ing application should arrange for incidental out-of-sequence messages, a failing
windowed/buffered processors causes a burst of out-of-sequence messages. The
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possibility of replays also changes the conditions of the message delivery system.
Whereas originally it guaranteed at-most-once processing, with replays it guar-
antees at-least-once processing with no upper limit to the number of replays.
This is exacerbated by the fact that in LPWAs the raw data is emitted by a
fallible technology [25]. Most LPWA applications employ a best-effort delivery
guarantee to back-end applications that does not account for messages dropped
in the network [20]. Therefore, formally the entire application will feature no
processing guarantees, as a message can by processed anywhere between zero
and many times.

Another measure is stateful processors and checkpointing. Storm allows
processors that keep an internal state and persist that state to remote storage
periodically. Then if the processor fails, its state can be recovered. This could
be used for a stateful variant of the AccumulatorProcessor. However, for the
BufferedProcessor to persist its state may become very data-intensive. The
reason for this is that, even if it would keep an internal state, it must keep a list
of in-scope input messages. It requires this list in order to “subtract” snapshots
from its internal state when they become out-of-scope. If that list is very large,
periodically persisting it to remote storage may become a problem.

It is important to note that the preceding considerations do not invalidate
acking and checkpointing. However, it does present that these measures alone
do not guarantee fault tolerance. In order to assert such guarantees, careful
considerations must be made regarding the application’s topology and imple-
mentation. However, even with close consideration 100% data fault tolerance
may not be attainable. These features should be incorporated into the platform
eventually. However, for the above-mentioned reasons no priority has been given
to it yet.

Applicable field of applications

The final issue that will be addressed is the general applicability of the platform.
The goal of this study was to design and devise a general platform that would
enable the development of a QoS monitoring and management application for
LPWA WSN applications. Though a concept platform has been developed, its
proof-of-concept validation was only performed on one application. It would
therefore be an overstatement to assert the platform’s general applicability to
LPWA applications based solely on the validation study.

Instead, this assertion is based on the analysis of types of data streams and
reductions present in LPWA QoS determination. It was determined that these
streams can be categorized as one-to-some, lateral many-to-some and longitu-
dinal many-to-one. Furthermore, a system (at an abstract level) was identified
to consist of correlated resources. How these resources are interconnected and
calculated may depend on the current operation strategy of the system under
investigation. Additionally, given the resource parameters of a system, an op-
erational strategy may or may not satisfy the specified resource constraints.
Finally, the performance of a system under certain operational strategies can
be compared according to some resource parameters.

These concepts were all present in the case to which the platform was ap-
plied. Furthermore, all these concepts could be captivated and processed by
the platform implementation. Therefore, it is stated that, under the assump-
tion that the aforementioned concepts are the key identifying features of LPWA
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WSN application QoS, the developed platform is a viable solution for LPWA
WSN QoS monitoring and management. Whether the presumed concepts are
indeed the key identifying features for this class of applications requires further
investigation.

6.3 Future work

Though the platform appears promising, there is further work to be done. In
this conclusive section some envisioned areas that require further exploration
will be suggested.

Obtaining accurate Resource Distribution Models

The proof-of-concept study has shown that the RDM is a powerful tool to calcu-
late the state and performance of a system based on some input measurements.
However, in order to perform these calculations, an instantiation of the model
must first be realized. This can only be done if all the relations, formulas and
adjustable behaviour required to model the behaviour are known. Therefore,
even though the model is powerful, obtaining an accurate realization of it can
prove laborious. Therefore, efforts should be made to research how these hypo-
thetical models can be extracted from genuine systems. Some research areas of
interest would be extraction through formal statistical analysis tools or machine
learning. Examples of such approaches using formal tools has been presented in
the works of S. te Brinke et al [88, 89], which attempt to extract fine-grained,
explicit models (state machines) from actual software and hardware compo-
nents. It is suggested that efforts are made to investigate the application of
such approaches to extract the more coarse models employed by the developed
platform.

Suggested improvements

Chapter 5 identified some deficiencies in the abstraction of the development
platform. The first of which is the introduction of a strongly typed messaging
system. This is required to obfuscate the cumbersome serialization that is re-
quired in distributed systems. By introducing such a scheme it becomes vastly
easier to precisely and adequately access a data point in a snapshot. The second
feature to introduce is a visual representation and editor of the concepts of the
platform. This goes for both the Resource Distribution Model and the platform
topology builder. Such a GUI will integrate the visual representation of the de-
sign process and the programmed representation of the functional artefact into
a single visual and functional entity.

Better incorporation of Apache Storm

A method that can verify the implementation of the platform’s scaffolding layer
is by reperforming a part of this study with a slightly different methodology. The
proposed platform architecture was conceived by a method that subsequently:

1. conceptualized the problem domain,

2. decided on micro-component architecture,
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3. specified the required micro-components,

4. implemented the components, and finally

5. integrated the components with Apache Storm.

An alternate approach could be to retain the conceptualization of the domain,
decisions for a micro-component architecture, functional specification of the
micro-components and choice for Apache Storm (steps 1, 2, 3 & 5). However,
instead of building the components first and then incorporating a Storm’s mes-
saging system, a more bottom-up implementation approach can be employed.
This approach would consider the advanced features provided by Apache Storm
and build the components upon them. The predicted outcome for this study is
a leaner scaffolding layer that better enables the advanced features offered by
Storm.

Another possible outcome for this suggested study is that Apache Storm does
not require a scaffolding layer to better enable the development of an LPWA QoS
monitoring application. Such a conclusion does not trivialize this study however.
For this case, the assumption is that a solely Storm-based approach can simulate
the features of the developed platform. Then, by the transitive property, the
conclusions of the performed validation study also hold for this Storm-based
approach. However, it is presupposed that such a conclusion is highly unlikely,
since the improvements suggested by the validation study (POJO messaging
system, graphical topology editor) are also lacking in Apache Storm.

Further validation

The final recommendation for continued research is to solidify the claims of the
validation study by reperforming it with slight alterations. For this continued
research three sub-directions are identified.

Firstly, the validation study can be performed on a wider base of LPWA
WSN applications. Preferably, this would be performed after the known defi-
ciencies are absolved. Broadening the scope of applications cements the claim
that the platform is an applicable development platform for LPWA QoS moni-
toring in general. Alternatively, it allows for more deficiencies to surface.

The proof-of-concept study shows the conceived Resource Distribution Model
as a functional solution. It was shown to captivate the resource distribution
of a micro-scale system (i.e. sensor device). Additionally, it provided for an
automated mechanism of determining the optimal behaviour of the modelled
configurable system. Furthermore, by employing constraint solver paradigms
the valid instantiations of the system’s behaviour can efficiently be determined.
After which, the optimal operational strategy can be calculated. Though the
model has shown to be practical at micro-level, the validation case did not fea-
ture the complexity that required high-level modelling (e.g. groups of devices
or whole application) or convoluted configurable behaviour (i.e. multiple com-
ponents with varying behaviour). Therefore, the study needs to be performed
on WSN applications that do feature more complicated systems to be modelled
by the Resource Distribution Model. This entails both models with more con-
voluted configurable behaviour and applications that require higher-level mod-
elling of its QoS parameters. Such studies should establish the (un)necessity or
(in)feasibility of the model at such levels.
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The final area of continued research is to have the validation study be carried
out by software engineers with limited familiarity of the proposed development
platform. Such blind studies should give more objective insight into the usability
of the platform with regards to the general population of software developers.
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