
Translating AWN networks
to the mCRL2 model-checker

En route to formal routing protocol development

Djurre van der Wal

MASTER THESIS, UNIVERSITY OF TWENTE, NETHERLANDS

HTTP://HOEFNER-ONLINE.DE/IFM18/

This research was done under the supervision of Dr. Peter Höfner and Dr. Rob van Glabbeek
with the financial support of Data61 (CSIRO) in Australia and the Twente Mobility Fund within
a total of 7 months (excluding 2 months for preliminary research).

First release, June 2018

Word of thanksWord of thanks

As may be inferred from the photographs used in this report, I did the bulk of the work for my
master thesis in Sydney, Australia. The amazing offer to go to the other side of the world for
an extended period of time was made by Peter when he gave a course on verifying network
protocols at the University of Twente, and I am very grateful to him for the opportunity that this
gave me.

In Australia, working on my project with Peter and Rob felt more like cooperation than supervi-
sion, which was a wonderful experience. I loved our long discussions, including the times when
they accelerated with enthusiasm beyond my comprehension – this was the sort of moment in
which I could see a glimpse of ‘their world’ towards which my work has only been a modest
contribution.

I made several friends in Australia; mostly among colleagues, but there were also those I met
only briefly during my many small trips into Sydney. Everyone was very hospitable, even when
political differences resulted in long, passionate conversations, and I wish them all the best.

Finally, a word of thanks to university staff, family, long-time friends, and house mates back
home. All have been extremely accommodating, which made the entire enterprise as smooth as I
could have hoped for.

Thanks to you all.

Djurre

ContentsContents

Introduction . 13

1 Motivation . 15

1 Why mCRL2? 15

2 Why MDE? 17

2 Formal translation . 19

1 AWN semantics 19
1.1 Sequential process level . 20
1.2 Parallel process level . 22
1.3 Node level . 22
1.4 Network level . 24
1.5 AWN examples . 26

2 mCRL2 semantics 28
2.1 Grammar . 28
2.2 Inference rules . 28
2.3 Special operators . 31
2.4 mCRL2 data language . 33
2.5 mCRL2 examples . 34

3 Translation function 36
3.1 Translating sequential process expressions . 36
3.2 Translating higher-level process expressions . 41
3.3 Totalness . 44
3.4 Translation relation . 45
3.5 Action relation . 45

4 Correctness proof 46
4.1 Representative derivations . 48
4.2 Data congruence . 50
4.3 Auxiliary lemmas . 53
4.4 Proof for strong warped bisimulation . 54
4.5 Proof for strong bisimulation modulo renaming . 66

3 AWN input language . 69

1 Files 69
1.1 Header . 69
1.2 Body . 70

2 Type declarations 70
2.1 Primitive types . 71
2.2 Enumerable types . 71
2.3 Range types . 71
2.4 List types . 71
2.5 Set types . 71
2.6 Struct types . 72
2.7 Function types . 72

3 Data expressions 73
3.1 Literals . 74
3.2 Variables . 74
3.3 Function calls . 74
3.4 Casting . 74
3.5 Operations . 75
3.6 Partial function construction . 75
3.7 Predefined functions . 75
3.8 Lambda functions . 76
3.9 Collection expressions . 76
3.10 Struct construction . 76
3.11 Conditional expression . 76
3.12 Quantified expressions . 77
3.13 Ifexists expression . 77
3.14 With expression . 77
3.15 With-init expression . 78
3.16 Undefined expression . 78
3.17 Arbitrary expression . 79

4 Constants 79

5 Functions 79

6 Sequential processes 80

7 Parallel processes 81

8 Networks 81

4 Implementation . 83

1 Translation framework 83

2 AWN-to-mCRL2 translation 84
2.1 Compiling AWN . 86
2.2 Transformation from Raw-AWN to AWN . 86
2.3 Transformation from AWN to mCRL2 . 87
2.4 mCRL2 to text . 88

5 Use cases . 89

1 Leader protocol 89

2 AODV protocol 90

6 Conclusions . 91

1 Results summary 91

2 Discussion 91

3 Future work 93

A Appendix Proof of Theorem 4.1 . 99

B Appendix Complete proof of Lemma 4.6 103

1 Base case 103
Translation rule T8 . 103

2 Induction step 104
Translation rule T1 . 104
Translation rule T2 . 104
Translation rule T3 . 105
Translation rule T4 . 105
Translation rule T5 . 105
Translation rule T6 . 106
Translation rule T7 . 107
Translation rule T9 . 108
Translation rule T10 . 108

C Appendix Complete proof of Lemma 4.7 109

1 Base cases 109
Broadcast (T1) . 109
Groupcast (T1) . 110
Unicast (T1-1) . 111
Unicast (T1-2) . 111
Send (T1) . 112
Deliver (T1) . 112
Receive (T1) . 113

Assignment (T1) . 114
Guard (T1) . 115
Arrive (T3-2) . 116
Connect (T3-1) . 117
Connect (T3-2) . 117
Connect (T3-3) . 118
Disconnect (T3-1) . 118
Disconnect (T3-2) . 118
Disconnect (T3-3) . 118

2 Induction step 119
Recursion (T1) . 119
Choice (T1-1) . 120
Choice (T1-2) . 120
Parallel (T2-1) . 121
Parallel (T2-2) . 122
Parallel (T2-3) . 123
Broadcast (T3) . 124
Groupcast (T3) . 125
Unicast (T3-1) . 126
Unicast (T3-2) . 127
Deliver (T3) . 128
Internal (T3) . 129
Arrive (T3-1) . 129
Cast (T4-1) . 131
Cast (T4-2) . 131
Cast (T4-3) . 132
Cast (T4-4) . 133
Deliver (T4-1) . 134
Deliver (T4-2) . 134
Deliver (T4-3) . 135
Internal (T4-1) . 135
Internal (T4-2) . 135
Internal (T4-3) . 135
Connect (T4-1) . 136
Connect (T4-2) . 137
Disconnect (T4-1) . 137
Disconnect (T4-2) . 137
Newpkt (T4) . 137

D Appendix Complete proof of Lemma 4.8 139

1 Base cases 140
Translation rule T1 . 140
Translation rule T2 . 141
Translation rule T3 . 142
Translation rule T4 . 143
Translation rule T5 . 144
Translation rule T6 . 145
Translation rule T7 . 146
Translation rule T10 . 147

11

2 Induction step 148
Translation rule T8 . 148
Translation rule T9 . 149

E Appendix Complete proof of Lemma 4.9 151

1 Base cases 152
Translation rule T11 . 152
Translation rule T12 . 152

2 Induction step 153
Translation rule T13 . 153
Translation rule T14 . 158
Translation rule T15 . 162
Translation rule T16 . 168

F Appendix Operators of the AWN input language 173

G Appendix Source files for leader election protocol 175

1 leader.awn 175

H Appendix Source files for AODV protocol 177

1 main.awn 177

2 aodv.awn 177

3 qmsg.awn 178

4 data.awn 179

I Appendix TxtGen language . 181

1 Files 181

2 Metamodels 181

3 Rules 181

4 Rule expressions 182
4.1 Literals . 182
4.2 Primitive types . 182
4.3 Non-primitive types . 183
4.4 Whitespace . 183
4.5 Directories and files . 183
4.6 Alternatives . 184
4.7 Kleene operators . 184

5 Data expressions 185

IntroductionIntroduction

Nowadays, there is little overlap between the formal analysis of systems and the development of
routing protocols. Typically, it is only a long development time and a large number of contributors
that give us confidence in a particular routing protocol [1]. If issues with a protocol are eventually
discovered when the protocol has already become a standard and has been implemented on a
large scale, the consequences are considerable.
The Border Gateway Protocol (BGP), for example, is one of the protocols used to establish

routes between internet service providers. It was discovered that routers in this protocol could
cycle rapidly through a list of possible routes for a particular destination, meaning that the
network does not converge and becomes less efficient. The protocol was therefore extended in
1998 with a mechanism known as route flap damping [2]. There are indications, however, that
this mechanism has negative side-effects of its own [3], and that the increased performance of
modern routers makes the originally undesirable behavior of BGP preferable.
Another example is the Ad hoc On-Demand Distance Vector (AODV) protocol, a popular proto-

col designed for WMNs (Wireless Mesh Networks) and MANETs (Mobile Ad-hoc Networks)
[4]. This protocol does not have certain properties that are often taken for granted, such as loop
freedom [5] or packet delivery [6].
Formal analysis of routing protocols increases the likelihood that problems such as the ones

mentioned above to be discovered during development, which would enable proper structural
solutions. Formal analysis of routing protocols would also require those protocols to be formally
specified – this itself would be an improvement to protocol development, since ambiguous
or incomplete segments are far from uncommon in informal protocol specifications. The
specification of the AODV protocol, for example, was found to be open to 5184 different
interpretations [7]!
However, routing protocol developers often prioritize code writing over theoretical work, and

they also may not have the knowledge required to use model-checking tools to analyze their
product automatically. It would therefore be useful to develop tools that make the formal
specification and analysis of routing protocols more accessible from their point of view.

14

This report describes a 7 month project with this goal. One of the products of this project is a
development environment in Eclipse1 for a formal language for wireless network protocols, AWN.
AWN (Algebra for Wireless Network protocols) is a process algebra that has been developed
as a contribution to the formalization of wireless network protocols. It was proposed in 2012
[6] for the purpose of specifying WMN and MANET protocols unambiguously and evaluating
and validating them exhaustively. The ultimate goal of AWN is to reduce development time of
(modifications of) WMN and MANET protocols and to increase their reliability and performance.
AWN’s first use was demonstrated by modeling several interpretations of the AODV protocol

[8], revealing, for instance, that not all of these interpretations guarantee loop freedom [5] or
packet delivery [6]. One of the ambitions for AWN is that it will be possible to automatically
model and verify AWN specifications with existing model checking toolsets via translations of
AWN to input that these toolsets accept.
AWN distinguishes itself from existing formalisms by disregarding packet loss as a possibility –

that is, a message transmitted in AWN is received by all intended recipients within range. This
abstraction allows the verification of the property of a network that a packet inserted by a client
into the network is eventually delivered to the destination. AWN also features a conditional
unicast operator and imperative ‘mid-process’ variable assignments.
In 2016, T-AWN was proposed [9], a timed process algebra reusing the existing AWN syntax. It

was used to continue the investigation of the AODV protocol, and it was shown that without time
abstraction the unambiguous interpretations of the AODV protocol always fail the loop freedom
property.
For this project, a plain-text input language for AWN was developed, including data expressions.

This made it possible to implement a development environment for AWN in Eclipse, providing
syntax highlighting, code completion, refactoring facilities, and more. The environment also
serves as a front end for a translation to mCRL2, a generic process algebra with an accompa-
nying modeling and verification toolset [10]. This translation is implemented as a module in a
translation framework – the idea is that more translations can easily be added in the future.
Another prospect for the environment is to use it for code generation; this way, routing protocol

developers could reap double benefits from using the software, and be more inclined to divert
attention to formal analysis. Furthermore, properties of protocols cannot yet be specified in the
Eclipse environment, and the analysis of properties must therefore still be done by hand. The
implementation can also only be used to analyze given topologies. Working on these ideas and
shortcomings are only some of the future work that remains.
The project was also used as the foundation of a paper published at the International Conference

of integrated Formal Methods [11]. It can be found online2.

1https://www.eclipse.org/
2http://hoefner-online.de/ifm18/

https://www.eclipse.org/
http://hoefner-online.de/ifm18/

1. Motivation1. Motivation

The early stage of the project focused on two important questions:

• Which model-checker should be used to analyze AWN specifications?
• Which approach should be taken for developing the accompanying software?

This chapter gives the arguments for the decisions that were made, namely using mCRL2 as the
model-checker and applying model-driven engineering techniques to the software design.

1 Why mCRL2?

In the first stage of the research mCRL2 was chosen as the target model checking toolset for
the translation from AWN. This was done by choosing several criteria that the target toolset
should satisfy. These criteria were used to make a selection of model checking toolsets found
in internet databases [12] [13] [14]. In general, this selection process has suffered from a time
constraint that was self-imposed to prevent the comparison of existing toolsets from being taken
further than what is beneficial to this graduation project. Searching for unambiguous information
about a certain model checking toolset was therefore stopped after approximately 1.5 hours. As
a consequence, information might have been missed, and a toolset might have been dismissed
unjustly.

Furthermore, there are multiple model checking toolsets that are based on their own particular
algebra or logic. A comparison of these toolsets would require much more in-depth study of
and experience with these toolsets, which would consume valuable project time. It is therefore
possible that relevant information was misunderstood or incorrectly considered to be ambiguous.

Finally, it should be noted that the databases where model checking toolsets were found cannot
be expected to contain all model checking toolsets, and it is an assumption made by the author
that the toolsets that were found are at least representative of the state-of-the-art functionality.

16 Part 1. Motivation

Toolset Failed criteria
ECW 4
IVy 6

Mobility Workbench 4
PEP 3, 6

Spot 2.0 2
TAPAs 4
TLA+ 6

UCLID 3 4
UPPAAL (An AWN-to-UPPAAL translation is already in development.)

ZING 2

Table 1.1: Toolsets that were rejected and why.

The chosen criteria for the model checking toolset to be targeted by the translation from AWN
are these:

1. A toolset should have clear support for generic model checking, and not be specifically
aimed at, for instance, code verification or probabilistic model checking.

2. A toolset should have accessible, complete, and up-to-date formal semantics. This is
required to prove the validity of the translation later in the research.

3. A toolset should have sufficient online documentation, including examples, tutorials, and
possibly active user forums. This makes the toolset easier to learn, which facilitates more
advanced use of that toolset as a back end for AWN.

4. A toolset must have been updated since 2012 (in the previous 5 years). This criteria aims
to exclude tools that are no longer being developed and improved without having to rely
on that information being publicly available (which it may not be), and to exclude tools
with very slow release cycles.

5. A toolset should have a text-based, sufficiently expressive modeling language, so that the
result of a translation is easily readable by users and manual adjustments can be made if
desired. This implies the presence of a framework for modeling concurrent systems, for
example, but also more basic features, such as data types, functions, arithmetical operators,
and so on.

6. A toolset should have a sufficiently expressive property language, so that a maximum
number of different types of properties of a protocol can be analyzed. Toolsets with more
expressive property languages are preferred over those with less expressive ones.

Criteria 1 has been used as an initial filter to reduce the number of model checking toolsets.
Table 1.1 lists the toolsets that failed one or more of the other criteria. From the toolsets that
remained, listed in Table 1.2, mCRL2 was chosen because of prior experience with mCRL2 of
the author as well as the similarity between AWN and mCRL2 (they are both process algebra
languages). Additionally, there exists a LTSmin [15] back-end for mCRL2, so translating to
mCRL2 yields two supporting tools ‘for the price of one’.

2 Why MDE? 17

Toolset Modelling language(s) Reference
ARC AltaRica [16]

CADP LOTOS, FSP, LOTOS NT [17]
FDR CSPM [18]

LTSmin Promela, µCRL, mCRL2 [15]
mCRL2 mCRL2 [19]
nuXmv SMV [20]

SPIN Promela [21]

Table 1.2: Selected toolsets.

2 Why MDE?
The translation from AWN to mCRL2 has been implemented using model-driven engineering
techniques. This means that rather than object-focused, the implementation is model-focused,
where ‘models’ are essentially groups of related classes.
Model-driven engineering (MDE) has been chosen because they provide tools to construct new

models from existing models via transformations. This means that if an AWN specification
is stored in an input model and an mCRL2 specification can be stored in an mCRL2 model, a
transformation can be created that goes from the former to the latter – the transformation being
the implementation of the AWN-to-mCRL2 translation, of course. In short, the basic MDE
architecture precisely matches the structure needed by a translation framework for AWN.
Models conform to the structure defined by metamodels, which conform to a metametamodel.

Frameworks can be built around such a metametamodel so that software can be generated that
accepts models conforming to a customized metamodel as input. Transformation languages such
as ATL and QVTO are such frameworks. Xtext is a framework that can be used to generate
the core of an Eclipse plug-in, which means that it is easy to create an editor with the features
expected by average users.
Another advantage of MDE is that it automatically sets a high standard for the degree at which

the different aspects of an implementation are separated, similar to aspect-oriented techniques
[22]. Other approaches in software engineering are often more prone to situations in which
multiple concerns are addressed in one place, reducing code maintainability.
The disadvantage of the MDE approach is that it requires developers to know 1 general-purpose

language (Java or another language supported by MDE tools) and at least 4 DSLs (there exist
different DSLs for the same purpose in MDE) instead of only 1 language:
• One for specifying the AWN metamodel, and potentially the mCRL2 metamodel;
• One for specifying the grammar of the AWN input language;
• One for specifying the transformation from AWN to mCRL2;
• One for specifying how an mCRL2 model is converted to text.

2. Formal translation2. Formal translation

This section describes:

• the semantics of AWN;
• the semantics of mCRL2;
• the translation function from AWN to mCRL2;
• a proof that shows that the translation function respects strong bisimilarity (up to data

congruence and modulo action renaming).

1 AWN semantics

This first section will give an overview of the semantics of AWN. The corresponding inference
rules can be found in Tables 2.1 to 2.5. The labels that identify the inference rules show a number
in between brackets which refers to the table in [6] from which they were copied. For a full
description of the semantics of AWN, consult that document.

The semantics of AWN are divided into four ‘levels’:

• The sequential process level. The semantics of this level describe how the decision flow
of a single process of a protocol is specified, including guards, variable assignments, and
local broadcasts.
• The parallel process level combines multiple sequential processes into a single parallel

process so that they can run on the same node. Combined sequential processes can only
communicate in one direction.
• The node level gives parallel processes their address and the set of addresses of nodes that

are within their transmission range. It also adds network behavior such as connecting and
disconnecting to parallel processes.
• The network level determines which behavior is ultimately allowed to occur: a node

that tries to transmit a message, for example, will only succeed if a recipient actively
cooperates.

20 Part 2. Formal translation

1.1 Sequential process level
The decision flow of a protocol is determined by a composition of sequential processes. Se-
quential processes have a signature X(var1, . . . ,varn) consisting of a name X and a number of
parameters vari, and their behavior is specified via a sequential process expression SP with the
following grammar:

SP ::= [φ] SP | Jvar := expK SP
| broadcast(msg).SP | groupcast(dests,msg).SP
| unicast(dest,msg).SPI SP | send(msg).SP
| deliver(data).SP | receive(msg).SP
| X(exp1, . . . ,expn)

Clearly, sequential processes have many possibilities to determine the behavior of a protocol:
using guards [φ] SP, they can elect to perform certain actions only under particular circumstances;
variable assignment Jvar := expK SP allows the contents of the internal data structure of the
sequential process to be changed; they can perform a broadcast, groupcast, unicast, send,
deliver, or receive action, which allow processes to exchange messages in specific ways; they
can let another sequential process X(exp1, . . . ,expn) determine their subsequent behavior; and
they can choose non-deterministically between multiple of these possibilities via the + operator.
The different types of message exchanges have distinct purposes: broadcast is used to send

a message to all nodes in the network that are within range; groupcast does the same as long
as nodes are in a specified subset; unicast allows a message to be sent to a specified node,
continuing with its first branch p if that node is within range or continuing with a ¬unicast
action and its second branch q if the transmission failed; and send passes a message to another
sequential process running on the same node (see Section 1.2).
The receive action performs the complementary action: it intercepts a message (regardless of

whether it originated from a broadcast, groupcast, unicast, or send action) and stores it in a
specified variable. Messages (or rather, the relevant data that they contain) can exit the network
via the deliver action.
Inference rules BROADCAST (T1) to GUARD (T1) in Table 2.1 give the semantics of sequential

process expressions ξ , p in AWN. In these expressions, ξ is a variable-to-value mapping and p
the current sequential process expression. Note that inference rules that contain expressions of
the form ξ (exp) are only defined if exp is bound by ξ !

Interpretation of guards
Guards in AWN use the syntax [φ] p. The rule in the original semantics of AWN that allows

guards to be constructed makes use of the notation ξ
φ−→ ζ [6]. Informally, this syntax is defined

to mean that the variable-to-value mapping ζ extends variable-to-value mapping ξ with new
mappings for variables unmapped in ξ in such a way that φ under ζ evaluates to true. This
allows AWN to set variables in guards using a type of pattern matching.
For example, let ip and data be unmapped when the following expression is executed:

receive(msg).[msg= Message(ip,data)] p

The execution will reach p if and only if a message is received that conforms to the structure
Message(ip,data), after which p is executed with ξ (ip) := ip and ξ (data) := data.

1 AWN semantics 21

BROADCAST (T1)
ξ ,broadcast(ms).p

broadcast(ξ (ms))−−−−−−−−−−→ ξ ,p

GROUPCAST (T1)
ξ ,groupcast(dests,ms).p

groupcast(ξ (dests),ξ (ms))−−−−−−−−−−−−−−−→ ξ ,p

UNICAST (T1-1)
ξ ,unicast(dest,ms).pI q

unicast(ξ (dest),ξ (ms))−−−−−−−−−−−−−→ ξ ,p

UNICAST (T1-2)
ξ ,unicast(dest,ms).pI q

¬unicast(ξ (dest),ξ (ms))−−−−−−−−−−−−−→ ξ ,q

SEND (T1)
ξ ,send(ms).p

send(ξ (ms))−−−−−−−→ ξ ,p

DELIVER (T1)
ξ ,deliver(data).p

deliver(ξ (data))−−−−−−−−−→ ξ ,p

∀m∈MSG RECEIVE (T1)
ξ ,receive(msg).p

receive(m)−−−−−−→ ξ [msg := m],p

ASSIGNMENT (T1)
ξ ,Jvar := expKp τ−→ ξ [var := ξ (exp)],p

/0[vari := ξ (expi)]
n
i=1,p

a−→ ζ ,p′ X(var1, · · · ,varn)
def
= p

∀a∈Act RECURSION (T1)
ξ ,X(exp1, · · · ,expn)

a−→ ζ ,p′

ξ ,p a−→ ζ ,p′
∀a∈Act CHOICE (T1-1)

ξ ,p+q a−→ ζ ,p′

ξ ,q a−→ ζ ,q′
∀a∈Act CHOICE (T1-2)

ξ ,p+q a−→ ζ ,q′

ζ = ξ [q1 := e1, · · · ,qn := en]
ζ (φ) = true∧{q1, · · · ,qn}= FV(φ)\DOM(ξ) GUARD (T1)

ξ , [φ]p τ−→ ζ ,p

Table 2.1: AWN inference rules (1/5)

22 Part 2. Formal translation

For the correctness proof of the translation, a formal interpretation of ξ
φ−→ ζ is needed. To this

end, GUARD (T1) uses the following side condition:

ζ (φ) = true∧{q1, · · · ,qn}= FV(φ)\DOM(ξ)

where FV(φ) are the free variables in φ and DOM(ξ) = { x | x := y ∈ ξ } .

P a−→ P′∀a 6= receive(m) PARALLEL (T2-1)
P 〈〈 Q a−→ P′ 〈〈 Q

Q a−→ Q′∀a 6= send(m) PARALLEL (T2-2)
P 〈〈 Q a−→ P 〈〈 Q′

P
receive(m)−−−−−−→ P′ Q

send(m)−−−−→ Q′
∀m∈MSG PARALLEL (T2-3)

P 〈〈 Q τ−→ P′ 〈〈 Q′

Table 2.2: AWN inference rules (2/5)

1.2 Parallel process level
Sequential processes are combined into a single parallel process according to the following
grammar:

PP ::= ξ ,SP | PP 〈〈 PP

The sequential processes form a pipeline for messages: processes can use the send action to
send a message to the process to their left, where the receive action can be used to receive it.
Only the rightmost sequential process can use receive to listen for messages from other nodes in
the network. See inference rules PARALLEL (T2-1) to PARALLEL (T2-3) in Table 2.2 for the
semantics.

1.3 Node level
The rules for the node level, BROADCAST (T3) to DISCONNECT (T3-3), can be found in
Table 2.3. These rules add network behavior to parallel processes: they allow them to connect,
to disconnect, to deliver data objects, and they rewrite actions such as broadcast(m) and
unicast(d,m) in terms of the current state of the network: broadcast(m) will be converted to
R : starcast(m), where R is the set of addresses of all nodes within range, whereas unicast(d,m)
is converted to the action {d} : starcast(m) because only the node with address d should be a
recipient.
The inference rules for the node level make use of the ip : PP : R notation to consistently access

the part of the network state relevant to a node. In this notation PP is a syntactic parallel process
expression, ip is the address of the node that runs PP (as a semantic value), and R is the set of
addresses of nodes that are within range of that node (also as a semantic value).

1 AWN semantics 23

P
broadcast(m)−−−−−−−→ P′ BROADCAST (T3)

ip : P : R
R:*cast(m)−−−−−−→ ip : P′ : R

P
groupcast(D,m)−−−−−−−−−→ P′ GROUPCAST (T3)

ip : P : R
R∩D:*cast(m)−−−−−−−−→ ip : P′ : R

P
unicast(dip,m)−−−−−−−−→ P′ dip∈R

UNICAST (T3-1)
ip : P : R

{dip}:*cast(m)−−−−−−−−→ ip : P′ : R

P
¬unicast(dip,m)−−−−−−−−−→ P′ dip /∈ R

UNICAST (T3-2)
ip : P : R τ−→ ip : P′ : R

P
deliver(d)−−−−−→ P′ DELIVER (T3)

ip : P : R
ip:deliver(d)−−−−−−−→ ip : P′ : R

P τ−→ P′ INTERNAL (T3)
ip : P : R τ−→ ip : P′ : R

P
receive(m)−−−−−−→ P′ ARRIVE (T3-1)

ip : P : R
{ip}¬ /0:arrive(m)−−−−−−−−−→ ip : P′ : R

ARRIVE (T3-2)
ip : P : R

/0¬{ip}:arrive(m)−−−−−−−−−→ ip : P : R

CONNECT (T3-1)
ip : P : R

connect(ip,ip′)−−−−−−−−→ ip : P : R∪{ip′}

CONNECT (T3-2)
ip : P : R

connect(ip’,ip)−−−−−−−−→ ip : P : R∪{ip’}

ip /∈ {ip’, ip”}
CONNECT (T3-3)

ip : P : R
connect(ip’,ip”)−−−−−−−−−→ ip : P : R

DISCONNECT (T3-1)
ip : P : R

disconnect(ip,ip’)−−−−−−−−−−→ ip : P : R \{ip’}

DISCONNECT (T3-2)
ip : P : R

disconnect(ip’,ip)−−−−−−−−−−→ ip : P : R \{ip’}

ip /∈ {ip’, ip”}
DISCONNECT (T3-3)

ip : P : R
disconnect(ip’,ip”)−−−−−−−−−−→ ip : P : R

Table 2.3: AWN inference rules (3/5)

24 Part 2. Formal translation

1.4 Network level
A partial network is constructed through parallel composition of nodes (via the || operator):

M ::= ip : PP : R | M ||M

Parallel nodes can exchange messages according to rules CAST (T4-1) to CAST (T4-4)
in Table 2.4. These exchanges occur through synchronization of R : starcast(m) and H¬K :
arrive(m) actions (where ¬ is simply a syntactic separator of the sets H and K). Of these
two actions, H¬K : arrive(m) is where a message m arrives at the nodes in the set H and
where m is ignored by the nodes in the set K (because they are out of range). It is necessary
for synchronization that H ⊆ R and that K∩R = /0 because R in R : starcast(m) is the set of
addresses of the intended recipients within range.
Encapsulation ([_]) allows a partial network M to be converted into a complete network [M].

Encapsulation also restricts the set of actions exposed by a network to τ , connect(ip, ip’) and
disconnect(ip, ip’), ip : newpkt(data,d), and ip : deliver(data).
These actions have the following meanings. As usual in process algebra, τ is an action that is

hidden from the environment of the network. Actions connect(ip, ip’) and disconnect(ip, ip’)
represent events within the network where a node with address ip’ respectively enters or leaves
the range of a node with address ip (note that all nodes must agree on this topology change).
Action ip : newpkt(data,d) is the event where a data object d to be delivered at the node with
address d is injected into the network (wrapped into a message newpkt(data,d)) at the node
with address ip, whereas action ip : deliver(data) is the actual delivery of a data object at the
node with address ip. The accompanying inference rules are DELIVER (T4-1) to NEWPKT (T4)
in Table 2.5.

M
R:*cast(m)−−−−−−→M′ N

H¬K:arrive(m)−−−−−−−−→ N′H⊆ R∧K∩R = /0 CAST (T4-1)
M || N R:*cast(m)−−−−−−→M′ || N′

M
H¬K:arrive(m)−−−−−−−−→M′ N

R:*cast(m)−−−−−−→ N′H⊆ R∧K∩R = /0 CAST (T4-2)
M || N R:*cast(m)−−−−−−→M′ || N′

M
H¬K:arrive(m)−−−−−−−−→M′ N

H’¬K’:arrive(m)−−−−−−−−−→ N′ CAST (T4-3)
M || N (H∪H’)¬(K∪K’):arrive(m)−−−−−−−−−−−−−−−→M′ || N′

M
R:*cast(m)−−−−−−→M′ CAST (T4-4)

[M]
τ−→ [M′]

Table 2.4: AWN inference rules (4/5)

1 AWN semantics 25

M
ip:deliver(d)−−−−−−−→M′ DELIVER (T4-1)

M || N ip:deliver(d)−−−−−−−→M′ || N

N
ip:deliver(d)−−−−−−−→ N′ DELIVER (T4-2)

M || N ip:deliver(d)−−−−−−−→M || N′

M
ip:deliver(d)−−−−−−−→M′ DELIVER (T4-3)

[M]
ip:deliver(d)−−−−−−−→ [M′]

M τ−→M′ INTERNAL (T4-1)
M || N τ−→M′ || N

N τ−→ N′ INTERNAL (T4-2)
M || N τ−→M || N′

M τ−→M′ INTERNAL (T4-3)
[M]

τ−→ [M′]

M
connect(ip,ip’)−−−−−−−−→M′ N

connect(ip,ip’)−−−−−−−−→ N′ CONNECT (T4-1)
M || N connect(ip,ip’)−−−−−−−−→M′ || N′

M
connect(ip,ip′)−−−−−−−−→M′ CONNECT (T4-2)

[M]
connect(ip,ip′)−−−−−−−−→ [M′]

M
disconnect(ip,ip’)−−−−−−−−−−→M′ N

disconnect(ip,ip’)−−−−−−−−−−→ N′ DISCONNECT (T4-1)
M || N disconnect(ip,ip’)−−−−−−−−−−→M′ || N′

M
disconnect(ip,ip’)−−−−−−−−−−→M′ DISCONNECT (T4-2)

[M]
disconnect(ip,ip’)−−−−−−−−−−→ [M′]

M
{ip}¬K:arrive(newpkt(d,dip))−−−−−−−−−−−−−−−−−→M′ NEWPKT (T4)
[M]

ip:newpkt(d,dip)−−−−−−−−−→ [M′]

Table 2.5: AWN inference rules (5/5)

26 Part 2. Formal translation

1.5 AWN examples
Listings 2.1 to 2.4 contain simple examples to illustrate how AWN might be used. The example
of Listing 2.1 defines a radio tower (RadioTower, line 1) that broadcasts messages to radios
(Radio, line 4) within range. Each message contains a value 1 higher than the value of the
preceding message, and radios store the most recently received message. A specific network
related to this example might be defined as in lines 6 through 9: the radio tower has address 1,
there are 3 radios with addresses 2 to 4, and only radios with addresses 2 and 4 are within range
of the radio tower.

1 RadioTower(msgVal: Integer) =

2 broadcast(new Message(msgVal)) . RadioTower(msgVal + 1);

3

4 Radio(lastMsg: Message) = receive(msg) . Radio(msg);

5

6 RadioNetwork = [1 : RadioTower(1) : { 2, 4 } ||

7 2 : Radio(null) : { 1 } ||

8 3 : Radio(null) : /0 ||

9 4 : Radio(null) : { 2 }];

Listing 2.1: AWN radio tower example.

1 ChatClient(lastMsg: Message, sentMsg: Boolean) =

2 receive(msg) . ChatClient(msg, sentMsg)

3 + unicast(1, Message("Hello everyone!")) .

4 ChatClient(lastMsg, true) I ChatClient(lastMsg, false);

5

6 ChatServer() = receive(msg) . broadcast(msg) . ChatServer();

Listing 2.2: AWN ‘chat client’ example.

The second example introduces a ‘chat client’ (ChatClient, line 1) that listens for messages
similar to the Radio process. However, the server (ChatServer, line 6) only forwards messages
that it receives from clients within range. These messages are non-deterministically sent by
clients to a node within range that has address 1, which is assumed to be the chat server. Clients
always send the same message.
Listing 2.3 defines a simple flooding protocol. Each node of a network runs the same process

(Flood), line 1). This process injects its message into the network at a non-deterministic
time (similar to ChatClient from the previous example, but now nodes send their message a
maximum of one time). The process also listens for incoming messages: for each node address,
it stores the contents of the first message received from that node.
When analyzed, the example of Listing 2.3 reveals a problem with the protocol: the network

can deadlock when some nodes A and B have just received a message (at the end of line 2) that
is not in their store (line 4) and when either A or B needs to forward its message to node B in
order for it to complete its broadcast action. The other node is essentially ‘not ready to receive’,
also described as not being input-enabled.

1 AWN semantics 27

1 Flood(msgSent: Boolean, store: IP 7→ Text) =

2 receive(msg) . [msg = Message(ip', text)] (

3 [ip' 7→ text ∈ store] . Flood(msgSent, store)

4 + [ip' 7→ text /∈ store] .

5 J store := store[ip' 7→ text] K
6 broadcast(msg) . Flood(msgSent, store))

7 + [¬ msgSent] broadcast(new Message("Hello everyone!")) .

8 Flood(true, store);

Listing 2.3: AWN flooding example.

1 Queue(queue: Sequence(Message)) =

2 receive(msg) . Queue(queue→append(msg))

3 + [queue→size() > 0] (

4 receive(msg) . Queue(queue→append(msg))

5 + send(queue→at(0)) . Queue(queue→remove(0))

6);

7

8 FloodWithQueue = Flood(false, /0) << Queue(/0);
9

10 FloodNetwork = [1 : FloodWithQueue() : { 2, 3, 4 } ||

11 2 : FloodWithQueue() : { 1, 3 } ||

12 3 : FloodWithQueue() : { 1, 2 } ||

13 4 : FloodWithQueue() : { 1 }];

Listing 2.4: AWN queued flooding example.

The example of Listing 2.4 uses the typical approach to make a protocol specification input-
enabled: in addition to the original Flood process, each node is also running the Queue process
(line 8). Because the Queue process is input-enabled (note the seemingly superfluous receive on
line 4, which makes it possible to receive a message in the process state just after the guard of
line 3 has been evaluated), the Flood process can take more time to handle incoming messages
without causing deadlocks.

28 Part 2. Formal translation

2 mCRL2 semantics
For the translation from AWN to mCRL2, the features of mCRL2 related to time will not be used.
This section will therefore give the untimed fragment of the semantics of mCRL2 (a similar
approach as the one used in [23]). Note that only an overview is provided here; refer to the book
in which mCRL2 is documented [24] for the full semantics.

2.1 Grammar
Similar to sequential processes in AWN, mCRL2 processes have a signature X(var1 : D1, · · · ,varn :
Dn) where X is a name and vari are process parameters of data type Di. All mCRL2 processes
are contained within the set PD. The behavior of mCRL2 processes is specified by expressions
conforming to the following grammar:

p ::= δ | ω | p.p | p+p | c→ p | c→ p�p | ∑x:D p
| p || p | ΓC(p) | ∇V (p) | ∂B(p) | ρR(p) | τI(p)
| X(d1, · · · ,dn)

ω ::= τ | a(d1, · · · ,dn) | ω|ω

In this grammar, δ represents a deadlocked process, meaning that it cannot make any transitions.
To do an action ω , one only has to write it; however, mCRL2 actually uses multi-actions, which
are actions that potentially consist of multiple action labels a that can each carry their own data.
The action τ is the empty multi-action with the property that ω|τ = τ|ω = ω .
Processes can be chained, or choices can be made between them, either by checking a condition

c or non-deterministically – the expression ∑x:D p, in particular, is used to express a non-
deterministic choice between summands for every possible value of x, a variable of data type D.
Expressions p and q can be put in parallel by writing p || q. Finally ΓC, ∇V , ∂B, ρR, and τI are
operators that can influence the behavior of a process in various ways – their descriptions can be
found in 2.3.

2.2 Inference rules
Tables 2.6 and 2.7 list rules in Plotkin style [25] for the structural operational semantics of mCRL2
process expressions. In these rules, several notations are used that require short explanations:
• TheX-predicate is used to indicate the mCRL2 termination state – a process ‘goes here’

when it has no more actions to do;
• The syntax d : D means that variable d is of type D;
• MD refers to the set of all possible semantic values of type D. Furthermore, if e ∈MD then

there exists te, a syntactic symbol for e such that JteK = e (see Definition 15.2.17 in [24]);
• ω denotes a multi-action from which all data has been removed;
• ω{} is the set of all single actions that multi-action ω contains.

2 mCRL2 semantics 29

AXIOM
α

JαK−−→X

p ω−→X
CHOICE 1

p+q ω−→X

p ω−→ p′
CHOICE 2

p+q ω−→ p′

q ω−→X
CHOICE 3

p+q ω−→X

q ω−→ q′
CHOICE 4

p+q ω−→ q′

p ω−→X
SEQ 1

p.q ω−→ q

p ω−→ p′
SEQ 2

p.q ω−→ p′.q

p ω−→X
JcK = true GUARD 1

c→ p ω−→X

p ω−→ p′
JcK = true GUARD 2

c→ p ω−→ p′

p ω−→X
JcK = true GUARD 3

c→ p�q ω−→X

p ω−→ p′
JcK = true GUARD 4

c→ p�q ω−→ p′

q ω−→X
JcK = false GUARD 5

c→ p�q ω−→X

q ω−→ q′
JcK = false GUARD 6

c→ p�q ω−→ q′

q[d1 := t1, · · · ,dn := tn]
ω−→X

P(d1 : D1, · · · ,dn : Dn)
def
= q RECURSION 1

P(t1, · · · , tn)
ω−→X

q[d1 := t1, · · · ,dn := tn]
ω−→ q′

P(d1 : D1, · · · ,dn : Dn)
def
= q RECURSION 2

P(t1, · · · , tn)
ω−→ q′

Table 2.6: mCRL2 inference rules (1/2)

30 Part 2. Formal translation

p[d := te]
ω−→X

e ∈MD SUM 1
∑d:D p ω−→X

p[d := te]
ω−→ p′

e ∈MD SUM 2
∑d:D p ω−→ p′

p ω−→X
PAR 1

p || q ω−→ q

p ω−→ p′
PAR 2

p || q ω−→ p′ || q

p ω−→ p′ q ω−→ q′
PAR 3

p || q ω|ω−−→ p′ || q′

q ω−→X
PAR 4

p || q ω−→ p

q ω−→ q′
PAR 5

p || q ω−→ p || q′

p ω−→X q ω−→X
PAR 6

p || q ω|ω−−→X

p ω−→ p′ q ω−→X
PAR 7

p || q ω|ω−−→ p′

p ω−→X q ω−→ q′
PAR 8

p || q ω|ω−−→ q′

p ω−→X
ω ∈V ∪{τ} ALLOW 1

∇V (p)
ω−→X

p ω−→ p′
ω ∈V ∪{τ} ALLOW 2

∇V (p)
ω−→ ∇V (p′)

p ω−→X
ω{}∩B = /0 BLOCK 1

∂B(p)
ω−→X

p ω−→ p′
ω{}∩B = /0 BLOCK 2

∂B(p)
ω−→ ∂B(p′)

p ω−→X
RENAME 1

ρR(p)
R•ω−−→X

p ω−→ p′
RENAME 2

ρR(p)
R•ω−−→ ρR(p′)

p ω−→X
COMM 1

ΓC(p)
γC(ω)−−−→X

p ω−→ p′
COMM 2

ΓC(p)
γC(ω)−−−→ ΓC(p′)

p ω−→X
HIDE 1

τI(p)
θI(ω)−−−→X

p ω−→ p′
HIDE 2

τI(p)
θI(ω)−−−→ τI(p′)

Table 2.7: mCRL2 inference rules (2/2)

2 mCRL2 semantics 31

Finally, the rules in Tables 2.6 and 2.7 make use of JωK-brackets, which denote the semantic
value of ω . mCRL2 provides rules for how to apply these brackets are applied to expressions;
see Definition 2.1.

Definition 2.1 The following rules apply to JexpK:

JτK = τ

Ja(t1, · · · , tn)K = a(Jt1K, · · · ,JtnK)
Jα|β K = JαK|Jβ K

These rules were obtained from Definition 15.2.12 of the book that documents mCRL2 [24].

2.3 Special operators
The ∇V , ∂B, ΓC, ρR, and τI are special operators that affect the actions that a process can perform.
The following subsections describe these operators in greater detail.

Allow operator
The allow operator ∇V only allows τ and actions and multi-actions that are in the set of multi-
actions V from occurring in the operand. Its behavior follows ALLOW 1 and ALLOW 2 in
Table 2.7.

Block operator
The block operator ∂B (see BLOCK 1 and BLOCK 2) prevents actions that are in B from occurring
in the operand (with the exception of τ). Any (multi-)action sharing an action with B is blocked –
the blocked actions are not ‘subtracted’ from their multi-actions!

Communication operator
The communication operator ΓC (see COMM 1 and COMM 2) modifies multi-actions that contain
combinations of action labels by renaming those combinations to a specific action label. To this
end, it requires a set of pairs (a1| . . . |an→ b) where a1| . . . |an is a multi-action without data and
b an action label. This set is passed to an auxiliary function γ , which is defined as follows:

γ /0(α) = α

γC1∪C2(α) = γC1(γC2(α))

γ{a1|...|an→b}(α) =


b(d)|γC(α \ (a1(d)| . . . |an(d)))

if (a1(d)| . . . |an(d))v α for some vector d
α otherwise

where the operators \ and v – although likely intuitively understood – are defined as

τ \α = τ

α \ τ = α

α \ (β |γ) = (α \β)\ γ

(α|a(d1, · · · ,dn))\a(d1, · · · ,dn) = α

(α|a(d1, · · · ,dn))\b(e1, · · · ,en) = (α \b(e1, · · · ,en))|a(d1, · · · ,dn)

if a 6= b∨d1 6= e1∨·· · ∨dn 6= en

32 Part 2. Formal translation

and

τ v α = true
a(d1, · · · ,dn)v τ = false

α|a(d1, · · · ,dn)v β |a(d1, · · · ,dn) = α v β

α|a(d1, · · · ,dn)v β |b(e1, · · · ,en) = (α \b(e1, · · · ,en))|a(d1, · · · ,dn)v β

if a 6= b∨d1 6= e1∨·· · ∨dn 6= en

respectively.

Rename operator
The rename operator ρR renames all actions in the operand with the name a to b for all a→ b ∈ R
(where a 6= τ , b 6= τ). To this end, the following auxiliary function is used in Table 2.7:

ρR(τ) = τ

ρR(a(d1, · · · ,dn)) = b(d1, · · · ,dn) if a→ b ∈ R for some b
ρR(a(d1, · · · ,dn)) = a(d1, · · · ,dn) if a→ b /∈ R for all b

ρR(α|β) = ρR(α)|ρR(β)

hide operator
The hide operator τI replaces all actions in the operand with the name a by τ for all a ∈ I. Due to
the property that ω|τ = τ|ω = ω , the a is simply removed instead if a is part of a multi-action.
The BLOCK 1 and BLOCK 2 inference rules in Table 2.7 describe the behavior of the hide

operator by using a function θ . This function is defined as follows:

θI(τ) = τ

θI(a(d1, · · · ,dn)) = τ if a ∈ I
θI(a(d1, · · · ,dn)) = a(d1, · · · ,dn) if a /∈ I

θI(α|β) = θI(α)|θI(β)

2 mCRL2 semantics 33

2.4 mCRL2 data language
This section gives some details of how the data expression language of mCRL2 works.

Sort declarations
Types are called ‘sorts’ in mCRL2. There are predefined sorts, such as Bool (boolean) and Nat

(natural numbers), but also custom sorts, which must be declared. With regard to this project,
structured sorts are particularly relevant.
Structured sorts are declared as a list of constructors with arguments. Consider the following

grammar:

sort ::= sort sortName = structSort | · · ·
structSort ::= struct structSortConstructor1 | · · · | structSortConstructorn

structSortConstructor ::= constructorName(argName1: argSort1, · · · ,argNamen: argSortn)

For example, the following code snippet declares a binary tree:
1 sort

2 BinTree

3 = struct Leaf | Node(value: Nat, leftChild: BinTree, rightChild: BinTree);

In order to create an instance of a structured sort, simply write one of the constructor with the
appropriate number of parameter values, each of a compatible sort. Below, a binary tree with 3
nodes is defined:

1 Node(1, Node(2, Leaf, Leaf), Node(3, Leaf, Leaf))

To obtain the value of one of the arguments of a specific instance, use the name of the argument
as a ‘getter’ function:

1 value(Node(9, Leaf, Leaf))

The data expression in the example above yields 9.

Mappings and equations
mCRL2’s data language is a functional language. Functions in mCRL2 are defined through a
mapping and a number of equations. The mapping specifies the function sort of the function,
and the equations specify how the function should be evaluated.
The following code snippet defines a function that changes the value in a BinTree to another

value:
1 map

2 updateNodeValues: BinTree # Nat # Nat -> BinTree;

3 eqn

4 updateNodeValues(Leaf, i, j)

5 = Leaf;

6 updateNodeValues(Node(i, left, right), i, j)

7 = Node(j, updateNodeValues(left, i, j), updateNodeValues(right, i, j));

8 updateNodeValues(Node(v, left, right), i, j)

9 = Node(v, updateNodeValues(left, i, j), updateNodeValues(right, i, j));

34 Part 2. Formal translation

The mapping specifies that the function takes a BinTree and two natural numbers as input and
produces a BinTree as output. Three equations define a standard recursive algorithm: the first
equation is the base case of the recursion; the second equation changes the value of the current
node from i to j and then continues with the child nodes; and the third equation does the same
but maintains the value of the current node.

2.5 mCRL2 examples
Listings 2.5 to 2.7 give an example of a system specification in mCRL2. Listing 2.5 first specifies
some of the required actions in the act block (lines 1 to 3). It then defines the two subsystems
that constitute the television system as two separate processes: the Volume subsystem (lines 6 to
8) allows the volume of the television to be turned up or down within the range 0 to 50, and the
Channel subsystem (lines 10 to 12) allows the channel (0 to 99) of the television to be changed
by twice pressing a 0 to 9 button. The two subsystems can be easily composed using parallel
composition (line 14). The init section specifies the first state of the entire television system.

1 act

2 volume_down, volume_up;

3 press: Integer;

4

5 proc

6 Volume(volume: Integer) =

7 volume_down . Volume(if(volume > 0, volume - 1, 0))

8 + volume_up . Volume(if(volume < 50, volume + 1, 50));

9

10 Channel(channel: Integer) =

11 sum n1:{0..9} . press(n1) .

12 sum n2:{0..9} . press(n2) . Channel(n1 * 10 + n2);

13

14 Television = Channel(1) || Volume(25);

15

16 init

17 Television;

Listing 2.5: Simple mCRL2 television example.

2 mCRL2 semantics 35

Listing 2.6 extends the television by adding a mute subsystem. This subsystem allows the user
to turn the volume of the television on or off in its entirety by pressing the ‘mute’ button (line 6).
The volume of the television is also turned back on when the user changes the volume of the
television (line 7 and 8).

1 act

2 mute;

3

4 proc

5 Mute(muted: Boolean) =

6 mute . Mute(!muted)

7 + volume_down . Mute(false)

8 + volume_up . Mute(false);

9

10 Television2 = Channel(1) || Volume(25) || Mute(false);

Listing 2.6: Naive extension of the simple mCRL2 television example.

Naively, one might be tempted to add the new subsystem to the television by using another
parallel composition as in line 10 of Listing 2.6. However, in that case the volume_up and
volume_down actions of the Volume and Mute subsystems would be independent, and it is
therefore possible that the television model changes the volume without unmuting.
Instead, one should make use of the communication operator Γ and the block operator ∂ ,

which are discussed in subsections 2.3 and 2.3, respectively. Listing 2.7 shows how this
can be accomplished: with the communication operator, the volume_up and volume_down

actions of the Volume and Mute subsystems are merged (and renamed to synced_volume_up

and synced_volume_down, respectively) and then prevents any independent occurrences of
volume_up and volume_down with the block operator.

1 act

2 synced_volume_down, synced_volume_up;

3

4 proc

5 Television3 = Channel(1) || ∂{volume_up,volume_down}
6 Γ{volume_up|volume_up→synced_volume_up,volume_down|volume_down→synced_volume_down}
7 (Volume(25) || Mute(false));

Listing 2.7: Intended extension of the simple mCRL2 television example.

36 Part 2. Formal translation

3 Translation function
The project was continued by designing a translation function from AWN to mCRL2. The
function has been defined by a list of translation rules which have been categorized according
to one of two purposes, namely for translating AWN’s sequential process expressions or for
translating higher-level process expressions of AWN. The translation rules for both purposes are
discussed in the following sections.

3.1 Translating sequential process expressions
The rules for translating sequential process expressions can be found in Table 2.8.

TV (ξ ,broadcast(ms).p) = ∑D:T(Set(IP)) cast(UIP,D,Tξ (ms)).TV (ξ ,p) where D /∈ T(V) T1

TV (ξ ,groupcast(dests,ms).p) = ∑D:T(Set(IP)) cast(Tξ (dests),D,Tξ (ms)).TV (ξ ,p) where D /∈ T(V) T2

TV (ξ ,unicast(dest,ms).pI q) = cast({Tξ (dest)},{Tξ (dest)},Tξ (ms)).TV (ξ ,p) T3

+¬uni({Tξ (dest)}, /0,Tξ (ms)).TV (ξ ,q)

TV (ξ ,send(Tξ (ms)).p) = send(/0, /0,Tξ (ms)).TV (ξ ,p) T4

TV (ξ ,deliver(data).p) = ∑ip:T(IP) del(ip,Tξ (data)).TV (ξ ,p) where ip /∈ T(V) T5

TV (ξ ,receive(msg).p) = ∑D,D':T(Set(IP)),T(msg):T(MSG) receive(D,D',T(msg)).TV∪{msg}(ξ
\msg,p) where D,D' /∈ T(V) T6

TV (ξ ,Jvar := expK p) = ∑tmp:sort(T(var))(tmp= Tξ (exp))→ ∑T(var):sort(T(var))(T(var) = tmp)→ T7

t(/0, /0,msg dummy).TV∪{var}(ξ
\var,p) where tmp /∈ T(V)

TV (ξ ,X(exp1, · · · ,expn)) = X(Tξ (exp1), · · · ,Tξ (expn)) T8

where T(X(var1, · · · ,varn)
def
= p) = X(T(var1) : sort(Tξ (exp1)), · · · ,T(varn) : sort(Tξ (expn)))

def
= T{var1 ,···,varn}(/0,p)

TV (ξ ,p+q) = TV (ξ ,p)+TV (ξ ,q) T9

TV (ξ , [φ]p) = ∑T(FV(φ) \V) Tξ (φ)→ t(/0, /0,msg dummy).TV ∪ FV(φ)(ξ ,p) T10

T(X(var1, · · · ,varn)
def
= p) = X(T(var1) : sort(T(var1)), · · · ,T(varn) : sort(T(varn)))

def
= T{var1 ,···,varn}(/0,p) T11

Table 2.8: Rules for translating AWN’s sequential process expressions

The translation rules in Table 2.8 use TV (ξ ,p) as the signature of the translation function, where
p is the sequential process expression to be translated, ξ is a valuation (a mapping from some
variables to semantic values), and V is a set of AWN variables (those that are assigned up to this
point, to be precise). TV (ξ ,p) is only defined if DOM(ξ)∪FV(p)⊆V where FV(p) are the free
variables in p. Occasionally, the bindings for a specific variable v is removed from ξ by writing
ξ \v which is defined as ξ restricted to DOM(ξ)\{v}.
ξ is carried around exclusively for the benefit of the Tξ (exp) function, which translates data

expressions. The definition of Tξ (exp) is relatively complex:

Tξ (exp) def
= T(exp)

[
T(x) := tU(y)

∣∣ x := y ∈ ξ
]

where the bijective function U(y) translates a semantic value of AWN called y to the correspond-
ing semantics value of mCRL2; where the Axiom of Choice is applied to the selection of tY
(given a particular semantic value Y, the same syntactic representation tY will always be selected,
which holds throughout the translation); and where the function T(exp) translates a syntactic
AWN data expression exp to a syntactic mCRL2 data expression.

3 Translation function 37

In order to abstract from the translation of data expressions at least to some extend, T(exp) is
not further defined but simply assumed to exist with the following properties:

(i) T(exp) is a total function;
(ii) T(exp) behaves in such a way that ∀exp,ξ . ξ (exp) is defined⇒ JTξ (exp)K = U(ξ (exp));

(iii) exp = v⇔ T(exp) = v' where v is an AWN variable and v' is an mCRL2 variable;
(iv) ∀exp . FV(T(exp)) = {T(v) | v ∈ FV(exp)}; and
(v) T(var1) = T(var2)⇔ var1 = var2.

The following subsections will elaborate on each of the translation rules in Table 2.8.

Rule T1: Broadcast

TV (ξ ,broadcast(ms).p) = ∑D:T(Set(IP)) cast(UIP,D,Tξ (ms)).TV (ξ ,p) where D /∈ T(V) T1

This rule defines how a broadcast action is translated to mCRL2. The resulting cast action has
three parameters and is then immediately followed by the translation of p.
The first parameter of the cast action is the set of addresses of nodes that are the intended

recipients of the message ms. Since a broadcast action always attempts to reach all nodes with
range, the value of this parameter is the universe of all node addresses (UIP).
The second parameter is the set of actual recipients. The sequential process does not have direct

access to which nodes are within range, however, and the value of this parameter is therefore
unknown. This has been solved by adding ∑D:T(Set(IP)), the resulting mCRL2 expression produces
a cast action for all possible values – superfluous actions will be eliminated at a later stage. The
side condition of T1 ensures that D is fresh.
The third parameter is the message that is sent translated to an mCRL2 expression by means of

the Tξ (exp) function.

Rule T2: Groupcast

TV (ξ ,groupcast(dests,ms).p) = ∑D:T(Set(IP)) cast(Tξ (dests),D,Tξ (ms)).TV (ξ ,p) where D /∈ T(V) T2

This rule defines how a groupcast action is translated to mCRL2. Just like for the translation of
broadcast, the resulting cast action has three parameters and is then immediately followed by
the translation of p. The second and third parameter are also translated the same as for broadcast
(with the side condition of T2 ensuring that D is fresh), but the first parameter is not: rather than
UIP the set of destinations specified by the user is inserted. The first parameter must contain the
node addresses of the intended recipients, after all.

38 Part 2. Formal translation

Rule T3: Unicast

TV (ξ ,unicast(dest,ms).pI q) = cast({Tξ (dest)},{Tξ (dest)},Tξ (ms)).TV (ξ ,p) T3

+¬uni({Tξ (dest)}, /0,Tξ (ms)).TV (ξ ,q)

The translation of the unicast action produces two possible outcomes: if the destination node is
within range, a cast action can occur, sending message ms to the destination specified by the user
and continuing by executing p; and it the destination node is not within range, a ¬uni action can
occur, followed by the execution of q.

Rule T4: Send

TV (ξ ,send(Tξ (ms)).p) = send(/0, /0,Tξ (ms)).TV (ξ ,p) T4

The translation rule for the send action is the simplest of them all: it produces a single action
by the same name and with three parameters. The first and second parameter of this action are
simply initialized with an empty set of node addresses (these parameters are strictly necessary
because the signature of send must match the signature of the receive action) and the third
parameter carries the message ms that is sent.

Rule T5: Deliver

TV (ξ ,deliver(data).p) = ∑ip:T(IP) del(ip,Tξ (data)).TV (ξ ,p) where ip /∈ T(V) T5

The deliver action allows the contents of messages (data) to ‘leave’ a network. Such an event
involves two items of information in AWN: the data that is leaving the network, and the node
where the data is leaving. Accordingly, the rule above produces a del action with these two items
as its parameters.
However, a sequential process is unaware of the node on which it is running. The chosen

solution for this problem is that a del action is produced for every possible node address ip –
superfluous actions will be eliminated at a later stage. The side condition of the rule ensures that
the variable ip is fresh.

Rule T6: Receive

TV (ξ ,receive(msg).p) = ∑D,D':T(Set(IP)),T(msg):T(MSG) receive(D,D',T(msg)).TV∪{msg}(ξ
\msg,p) where D,D' /∈ T(V) T6

When receiving a message, a node at the level of a sequential process expression is unaware of
three things: the intended recipients of the message, D; the actual recipients of the message, D';
and the contents of the message. A sequential process therefore considers all possible receive
actions that could occur, and relies on the composition with other parts of the specification to
eliminate the superfluous ones.
The process p is translated with the additional information that msg is now assigned, which is of

course because it contains the contents of the received message. At the same time, p receives a ξ

from which msg has been removed – otherwise an old value of msg could continue to exist in p
even though it has been overwritten by the receive!

3 Translation function 39

Rule T7: Assignment

TV (ξ ,Jvar := expK p) = ∑tmp:sort(T(var))(tmp= Tξ (exp))→ ∑T(var):sort(T(var))(T(var) = tmp)→ T7

t(/0, /0,msg dummy).TV∪{var}(ξ
\var,p) where tmp /∈ T(V)

mCRL2 does not provide its own syntax for assignments other than when parameter values are
assigned when a new process is instantiated. A more improvised solution is used here, namely
one where a ∑-operator and a guard ensure that a specific variable matches the assigned value
(see the innermost/rightmost ∑-operator). The assigned value is fixed beforehand by a similar
construction (see the outermost/leftmost ∑-operator) in order to allow the target variable to be
used in the computation of the assigned value. The variable in which the assigned value is stored,
tmp, is fresh as a result of the side condition of the rule.
One might wonder about the three placeholder parameters of the t, or indeed about the reason

why t was used rather than τ in the first place. The answer to the first riddle is that actions that
do carry three useful parameters will be renamed to t at a later stage, and one of the requirements
of mCRL2 for renaming an action a to b is that the action signatures of a and b are identical.
The answer to the second riddle is that the concurrent behavior of the τ action in mCRL2 does
not match the behavior of the τ action in AWN, and that it is necessary to treat τ as a ‘regular’
action until the network level has been reached.
Finally, process p is translated. It receives the information that in addition to the variables in V

the variable var is assigned. var is removed from ξ so that a potential old value of var cannot
be used in the translation of p.

Rule T8: Process recursion
Process ‘calls’ are simply translated by referencing the mCRL2 counterpart of the named AWN
process that is being ‘called’ and providing it with the translation of each of the parameter values
that were provided in AWN:

TV (ξ ,X(exp1, · · · ,expn)) = X(Tξ (exp1), · · · ,Tξ (expn)) T8

where T(X(var1, · · · ,varn)
def
= p) = X(T(var1) : sort(Tξ (exp1)), · · · ,T(varn) : sort(Tξ (expn)))

def
= T{var1 ,···,varn}(/0,p)

40 Part 2. Formal translation

Rule T9: Choice
A choice between two branches in AWN is translated directly to a choice between two summands
in mCRL2:

TV (ξ ,p+q) = TV (ξ ,p)+TV (ξ ,q) T9

Rule T10: Guard

TV (ξ , [φ]p) = ∑T(FV(φ) \V) Tξ (φ)→ t(/0, /0,msg dummy).TV ∪ FV(φ)(ξ ,p) T10

The exclusive purpose of carrying around the set of assigned variables V is to determine which
variables are assigned as part of a guard action: any variable that is free in the guard condition
φ and not in V (and is therefore unassigned at the moment of execution) will be added as a
quantifier to the ∑-operator. Obviously, this means that the subsequent process p must find
FV(φ) – all free variables in φ – in its index parameter V .
One might wonder about the three placeholder parameters of the t, or indeed about the reason

why t was used rather than τ . The answers to these riddles are given in the description of
translation rule T7.

Rule T11: Process definition

T(X(var1, · · · ,varn)
def
= p) = X(T(var1) : sort(T(var1)), · · · ,T(varn) : sort(T(varn)))

def
= T{var1,···,varn}(/0,p) T11

The translation of an AWN process definition X has the same name in mCRL2. Furthermore,
each parameter of the mCRL2 definition is a translated parameter of X, and the body of the
mCRL2 process definition is the translated body of X. When the body of X is translated, it is
assumed that all process parameters are in the set of assigned variables, V , and that the valuation
ξ is empty (a process definition ‘knows’ that the process parameters are assigned, but not what
the semantic values of the process parameters are – this is established at execution time).

3 Translation function 41

3.2 Translating higher-level process expressions
The rules for translating sequential process expressions can be found in Table 2.9.

T(ξ ,p) = TDOM(ξ)(ξ ,p) T12

T(P 〈〈 Q) = ∇V Γ{r|s→t}(ρ{receive→r}T(P) || ρ{send→s}T(Q)) T13

where V = {t,cast,¬uni,send,del,receive}

T(ip : P : R) = ∇V ΓC(T(P) || G(tU(ip), tU(R))) T14

where V = {t,starcast,arrive,deliver,connect,disconnect}
where C = {cast|cast→ starcast,¬uni|¬uni→ t,del|del→ deliver,receive|receive→ arrive}

where G(ip,R) = ∑D,D':T(Set(IP)),msg:T(MSG)(R∩D= D')→ cast(D,D',msg).G(ip,R)

+∑d:T(IP),msg:T(MSG)(d /∈ R)→¬uni({d}, /0,msg).G(ip,R)

+∑data:DATA del(ip,data).G(ip,R)

+∑D,D':T(Set(IP)),msg:T(MSG)(ip ∈ D')→ receive(D,D',msg).G(ip,R)

+∑D,D':T(Set(IP)),msg:T(MSG)(ip /∈ D')→ arrive(D,D',msg).G(ip,R)

+∑ip':T(IP) connect(ip,ip').G(ip,R∪{ip'})
+∑ip':T(IP) connect(ip',ip).G(ip,R∪{ip'})
+∑ip',ip�:T(IP)(ip /∈ {ip',ip�})→ connect(ip',ip�).G(ip,R)

+∑ip':T(IP) disconnect(ip,ip').G(ip,R\{ip'})
+∑ip':T(IP) disconnect(ip',ip).G(ip,R\{ip'})
+∑ip',ip�:T(IP)(ip /∈ {ip',ip�})→ disconnect(ip',ip�).G(ip,R)

T(M || N) = ρR∇V Γ{arrive|arrive→a}ΓC(T(M) || T(N)) T15

where R = {a→ arrive,c→ connect,d→ disconnect,s→ starcast}
where V = {a,c,d,deliver,s, t}
where C = {starcast|arrive→ s,connect|connect→ c,disconnect|disconnect→ d}

T([M]) = ∇V ρ{starcast→t}ΓC(T(M) || H) T16

where V = {t,newpkt,deliver,connect,disconnect}
where C = {newpkt|arrive→ newpkt}
where H = ∑ip:T(IP),data:T(DATA),dest:T(IP) newpkt({ip},{ip},newpkt(data,dest)).H

Table 2.9: Rules for translating AWN’s higher-level process expressions

42 Part 2. Formal translation

The translation rules in Table 2.9 use T(p) as the signature of the translation function, where p
is the process expression to be translated. Clearly, T(p) no longer has the ξ parameter (ξ ,p in
rule T12 forms a single parameter, the state of a sequential process in AWN to be precise), and it
does not carry a set of assigned variables V anymore. At this level of the AWN specification,
syntactic data expressions have disappeared.
The following subsections will elaborate on each of the translation rules in Table 2.9.

Rule T12: Sequential process
This rule allows the rules from Table 2.9 to make use of the rules in Table 2.8:

T(ξ ,p) = TDOM(ξ)(ξ ,p) T12

Note that ξ ,p forms a single parameter – namely the state of a sequential process in AWN
– and that this state is separated into its two components, the valuation ξ and the process
syntax p. Furthermore, the set of assigned variables V is assigned with the domain of ξ (in the
implementation, this is almost never of any consequence; when proving the correctness of T(p),
however, this becomes a different story).

Rule T13: Parallel processes

T(P 〈〈 Q) = ∇V Γ{r|s→t}(ρ{receive→r}T(P) || ρ{send→s}T(Q)) T13

where V = {t,cast,¬uni,send,del,receive}

Two AWN processes in parallel are translated by applying several mCRL2 operators in sequence:
1. It must be possible in the final mCRL2 operator to differentiate between the receive actions

that occur in T(P) and those that occur in T(Q), as well as between the send actions that
occur in T(P) and those that occur in T(Q). The receive actions of T(P) are therefore
renamed to r and the send actions of T(Q) to s.

2. The resulting processes are put in parallel.
3. Occurrences of r|s action labels are replaced by a t action label (this is why t has been

given three parameters).
4. Only a specific selection of actions is allowed to occur. This blocks all mCRL2 multi-

actions that are impossible in AWN (such as t|t). In addition, all remaining r actions
are blocked (from now on, T(P) can only receive messages if they arrive via T(Q), but
T(Q) can still receive) as well as all remaining s actions (send actions of T(Q) must have
synchronized before now, but T(P) can still send).

3 Translation function 43

Rule T14: Node

T(ip : P : R) = ∇V ΓC(T(P) || G(tU(ip), tU(R))) T14

where V = {t,starcast,arrive,deliver,connect,disconnect}
where C = {cast|cast→ starcast,¬uni|¬uni→ t,del|del→ deliver,receive|receive→ arrive}

where G(ip,R) = ∑D,D':T(Set(IP)),msg:T(MSG)(R∩D= D')→ cast(D,D',msg).G(ip,R)

+∑d:T(IP),msg:T(MSG)(d /∈ R)→¬uni({d}, /0,msg).G(ip,R)

+∑data:DATA del(ip,data).G(ip,R)

+∑D,D':T(Set(IP)),msg:T(MSG)(ip ∈ D')→ receive(D,D',msg).G(ip,R)

+∑D,D':T(Set(IP)),msg:T(MSG)(ip /∈ D')→ arrive(D,D',msg).G(ip,R)

+∑ip':T(IP) connect(ip,ip').G(ip,R∪{ip'})
+∑ip':T(IP) connect(ip',ip).G(ip,R∪{ip'})
+∑ip',ip�:T(IP)(ip /∈ {ip',ip�})→ connect(ip',ip�).G(ip,R)

+∑ip':T(IP) disconnect(ip,ip').G(ip,R\{ip'})
+∑ip':T(IP) disconnect(ip',ip).G(ip,R\{ip'})
+∑ip',ip�:T(IP)(ip /∈ {ip',ip�})→ disconnect(ip',ip�).G(ip,R)

This rule elevates processes to the network level by synchronizing them with a process G that
provides the address of the node on which they run and the set of addresses of nodes that are
within transmission range. Through this synchronization, the actions cast, ¬uni, del, and receive
of a process T(P) are forced to have certain parameter values, which eliminates many – but not
all – of the superfluous mCRL2 actions that are impossible in AWN. G also adds independent
node behavior, namely arrive (which allows a node to synchronize the arrival of messages at
other nodes with the rest of the network), connect, and disconnect actions.
At the end, only single actions with certain labels are permitted to occur: multi-actions produced

by putting T(P) and G in parallel are blocked, and so are leftover cast, cast, ¬uni, ¬uni, del,
del, receive, and receive actions.

Rule T15: Parallel nodes

T(M || N) = ρR∇V Γ{arrive|arrive→a}ΓC(T(M) || T(N)) T15

where R = {a→ arrive,c→ connect,d→ disconnect,s→ starcast}
where V = {a,c,d,deliver,s, t}
where C = {starcast|arrive→ s,connect|connect→ c,disconnect|disconnect→ d}

This rule produces a sequence of mCRL2 operators that restricts the behavior of T(M) || T(N)
in such a way that any remaining action that can occur has a possible counterpart in AWN. In
particular, the sequence of mCRL2 operators enforces that:
• One process does starcast action and the other process does a matching arrive action;
• Both processes do the same connect, disconnect, or arrive action;
• One of the processes does a deliver or t action and the other process does nothing.

44 Part 2. Formal translation

Rule T16: Network

T([M]) = ∇V ρ{starcast→t}ΓC(T(M) || H) T16

where V = {t,newpkt,deliver,connect,disconnect}
where C = {newpkt|arrive→ newpkt}
where H = ∑ip:T(IP),data:T(DATA),dest:T(IP) newpkt({ip},{ip},newpkt(data,dest)).H

At the highest level of the AWN specification, it is possible to inject messages into the network
via newpkt actions. In mCRL2, this behavior is enabled by translation rule T16. A newpkt action
is generated from a remaining arrive action (which means that all nodes in the network are
taking this action in parallel) that has exactly one node both as intended and as actual destination.
In addition, the message parameter of the action is forced to have a specific newpkt format.
The rule also renames remnant starcast actions to t and finally blocks multi-actions such as

connect|newpkt as well as leftover arrive and newpkt actions.

3.3 Totalness
This section shows that the translation function T is total.

Lemma 3.1 The translation function T as defined via the rules in Tables 2.8 and 2.9 is total;
that is, T(P) is defined for all valid AWN expressions P.

Proof. The proof is trivial, and therefore given informally.
First, there must exist a matching translation rule for each rule of the grammar of AWN. This is

indeed the case.
Second, there must exist a matching translation rule for each input at recursive applications of T.

Considering that recursive applications only receive process expressions from the original AWN
process expression as input, such as p or q, these process expressions must match the grammar
of AWN, and therefore a matching translation rule must exist.
Third, there should be no infinite recursion. Since the input at recursive applications of T is

always a strictly smaller expression than the input of the enveloping translation rule, recursion is
always finite.
Finally, Tξ (e) must be defined for all valid data expressions e. Combining property (i) of Tξ (e)

with the fact that ∀e ∈Msort(e) . ∃t . JtK = e (see Section 2.2) where MD is the set of all semantic
values of a sort D, it follows that Tξ is a total function. �

3 Translation function 45

3.4 Translation relation
Proving the correctness of the translation function involves showing the existence of a strong
bisimulation between an AWN process and its translated counterpart in mCRL2. Because a
strong bisimulation is a relation, it is useful to express the translation function as relation:

T̃
def
= { (P,T(P)) | P is an AWN parallel process, node, or (partial) network expression } (2.1)

Ultimately, however, the correctness proof will be a statement about the following relation:

T̃τ

def
=
{
([M],τ{t}T([M]))

∣∣ [M] is an AWN network expression
}

(2.2)

According to Lemma 3.1, both relations are defined for all valid AWN expressions of a matching
type.

3.5 Action relation
The translation function T changes AWN actions to mCRL2 actions in a manner that is not
always straightforward. To formally prove the correctness of T, the precise relation between
AWN actions and mCRL2 actions must be made explicit first. The relation is called A and its
definition can be found in Table 2.10.

A
def
= {

({ τ } ,{ t(U(D),U(R),U(m)) }), (2.3)

({ broadcast(ξ (ms)) } ,
{

cast(JUIPK,�D,JTξ (ms)K)
∣∣ �D ∈ T(Set(IP))

}
), (2.4)

({ groupcast(ξ (dests),ξ (ms)) } ,
{

cast(JTξ (dests)K,�D,JTξ (ms)K)
∣∣ �D ∈ T(Set(IP))

}
), (2.5)

({ unicast(ξ (dest),ξ (ms)) } ,
{

cast(JTξ ({dest})K,JTξ ({dest})K,JTξ (ms)K)
}
), (2.6)

({ ¬unicast(ξ (dest),ξ (ms)) } ,
{
¬uni(JTξ ({dest})K,J /0K,JTξ (ms)K)

}
), (2.7)

({ send(ξ (ms)) } ,
{

send(J /0K,J /0K,JTξ (ms)K)
}
), (2.8)

({ deliver(ξ (data)) } ,
{

del(î,JTξ (data)K)
∣∣ î ∈ T(IP)

}
), (2.9)

({ receive(m) } ,
{

receive(�D,�D',U(m))
∣∣ �D,�D' ∈ T(Set(IP))

}
), (2.10)

({ R : *cast(m) } ,{ starcast(U(D),U(R),U(m)) }), (2.11)
({ ip : deliver(d) } ,{ deliver(U(ip),U(d)) }), (2.12)

({ H¬K : arrive(m) } ,

{
arrive(�D,�D',U(m))

∣∣∣∣∣
�D,�D'∈T(Set(IP))

�D'⊆�D
H⊆�D'

K∩�D'= /0

}
), (2.13)

({ connect(ip’, ip”) } ,{ connect(U(ip’),U(ip”)) }), (2.14)
({ disconnect(ip’, ip”) } ,{ disconnect(U(ip’),U(ip”)) }), (2.15)
({ ip : newpkt(d,dip) } ,{ newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip))) }) (2.16)

| m,ξ (ms) ∈MSG; ip, ip’, ip”,dip,dest ∈ IP; d,ξ (data) ∈ DATA; dests,R,D,H,K ∈ Set(IP); R⊆ D }

Table 2.10: Action relation A

46 Part 2. Formal translation

4 Correctness proof
This section proves that the translation of any AWN expression [M] is strongly bisimilar to
T([M]) up to data congruence, modulo renaming. This is done by proving Theorem 4.11,
which shows that T̃τ is a satisfactory strong bisimulation (once again, up to data congruence and
modulo renaming). An overview of how the proof of the Theorem 4.11 is established is given in
Figure 2.1. It shows the lemmas and theorems used by the correctness proof and how they relate:
arrows connect (groups of) lemmas and theorems, pointing towards the lemma or theorem for
which they are used.
First, it must be established that data congruence is indeed a strong bisimulation in mCRL2

(see Theorem 4.1). From there, it is a short step to show that a strong bisimulation up to data
congruence indeed implies strong bisimulation between AWN expressions and their translations
(see Theorem 4.2) – this makes it possible to substitute mCRL2 data expressions by semantically
equivalent ones in later proofs.
The next part of the proof establishes Lemmas 4.3 to 4.6:
• Lemma 4.3 establishes a useful shorthand equivalence between the meaning of a closed

expression in AWN and the meaning of syntactic expressions that denote its corresponding
syntactic value in mCRL2.
• Lemma 4.4 states that AWN expressions can be translated to mCRL2 expressions without

losing their meaning: the semantic values of the expressions in AWN and mCRL2 must
correspond with one another. This is clearly a desirable property of the Tξ (exp) function,
and it is proven correct with the help of Lemma 4.3.
• Lemma 4.5 concerns substitutions: later parts of the proof require that a substitution σ

occurring in an expression such as Tξ [σ](exp) can be moved outside of the T function.
• Similar to Lemma 4.5, Lemma 4.6 enables an expression like TV (ξ [σ],P) to be rewritten

to TV (ξ ,P)[T(σ)] (note that this is just a pseudo-expression to sketch the principle of the
lemma).

The work so far has been generic preparatory work. The proof of Theorem 4.11 starts in earnest
with Lemmas 4.7, 4.8, and 4.9. Lemma 4.7 proves by structural induction that actions of an
AWN process P can be mimicked by its mCRL2 counterpart T(P). Note that the notion of a
strong A -warped simulation is used here: an action by the AWN process must be mimicked by
the mCRL2 process with a set of actions, as defined by the action relation A .
The reverse of Lemma 4.7 has been divided into two theorems because the translation function

for the sequential processes of AWN has a different signature than the translation function for
higher-level AWN processes. Lemma 4.8 proves that mCRL2 process TDOM(ξ)(ξ ,p) can also be
mimicked by AWN process ξ ,p. To this end, index parameter V is chosen as DOM(ξ) because
AWN inference rules can only be applied if their data expressions are bound. Lemma 4.9 builds
on Lemma 4.8, proving that it generally holds that an mCRL2 process T(P) can mimic the
behavior of AWN process P.
Lemmas 4.7 and 4.9 combined prove that translation relation T̃ is a strong A -warped bisimula-

tion. This only leaves the proof of Theorem 4.11, where it is shown that A at the network level
can be replaced by a bijective renaming function f. The conclusion that any AWN expression
[M] is strongly bisimilar to T([M]) up to data congruence and modulo renaming immediately
follows.

4 Correctness proof 47

Lemma 3.1

Translation is a total function

Auxiliary lemma 4.3

Closed expressions
can be denoted syntactically

in mCRL2

Theorem 4.2

Strong bisimulation up to
data congruence is a
strong bisimulation

Auxiliary lemma 4.4

AWN expressions retain
their meaning in mCRL2

Auxiliary lemma 4.5

Substitutions can be moved
in and out of the translation

function for data expressions

Theorem 4.1

Data congruence in mCRL2
is a strong bisimulation

Auxiliary lemma 4.6

Substitutions can be moved
in and out of the translation

function for processes

Lemma 4.8

AWN simulates mCRL2
up to data congruence
at the sequential level

Lemma 4.7

mCRL2 simulates AWN
up to data congruence

Lemma 4.9

AWN simulates mCRL2
up to data congruence

Theorem 4.11

Translation is a strong
bisimulation up to data

congruence modulo renaming

Theorem 4.10

AWN and mCRL2 simulate
each other up to data

congruence

Figure 2.1: Overview of the correctness proof.

48 Part 2. Formal translation

4.1 Representative derivations
The proofs for Theorems 4.8 and 4.9 require the analysis of all possible behavior of certain
mCRL2 process expressions, namely those process expressions that can be produced by the
function T. To obtain all possible behavior that corresponds with an mCRL2 process expression
p, all possible derivation trees (or simply ‘derivations’) based on the mCRL2 inference rules that
result in p must be constructed. Clearly, this is a lot of effort.
In order to reduce the number of derivations that must be considered as well as the number of

derivations that should be listed in order to convince the reader, the concept of a representative
derivation is introduced here. First, consider the definition of acyclic derivations:

Definition 4.1 An mCRL2 derivation is called cyclic if it produces two conclusions that are
semantically equivalent and if one of those conclusions is produced before the application
of an mCRL2 inference rule and the other of those conclusions is produced after the same
inference rule application. All other mCRL2 derivations are called acyclic.

It should be obvious that every mCRL2 process expression has an acyclic derivation, and that
all cyclic derivations can be rewritten to some acyclic derivation.

Definition 4.2 A representative derivation is an acyclic derivation that describes all acyclic
derivations that
• apply the same mCRL2 inference rules as the representative derivation (in the same

order and the same number of times), and
• reach a final conclusion that is semantically equivalent to the final conclusion of the

representative derivation.

The number of representative derivations in mCRL2 for a process expression is limited because
all inference rules of mCRL2 extend their input premisse(s) with some syntax that would not
appear in the correct position if the inference rules would be applied in a different order. This
even includes the inference rules RECURSION 1 or RECURSION 2 – rules that at first glance
seem to remove syntax rather than add it – because particular process definitions are required in
order to rewrite process expressions to a process call.
As an illustration of how the number of representative derivations is limited, consider the task

of determining the behavior of the expression

TDOM(ξ)(ξ ,broadcast(ms).p)

Following the definition of Tξ , this behavior is the same as the behavior of

∑D:T(Set(IP)) cast(UIP,D,Tξ (ms)).TDOM(ξ)(ξ ,p)

4 Correctness proof 49

The only inference rules of mCRL2 that can produce this expression are SUM 1 and SUM 2,
because how else could the ∑-operator be where it is? In either case, the new expression is(

cast(UIP,D,Tξ (ms)).TDOM(ξ)(ξ ,p)
)
[D := t�D]

which can be rewritten to

cast(UIP, t�D,Tξ (ms)).TDOM(ξ)(ξ ,p)

This expression can only result from the SEQ 1 or SEQ 2 inference rules, neither of which
produces X as a potential next state – this means that SUM 1 could not have been used to get
here!
Finally, the question becomes whether both SEQ 1 and SEQ 2 are possible or only one of them.

The answer is ‘no’: SEQ 2 would require the cast action to solutarily lead to a new state (that
is not X) and this is not possible. SEQ 1, on the other hand, gives an expression that adheres
to the form of AXIOM, the only available mCRL2 axiom. Consequently, there is only one
representative derivation for the original expression:

AXIOM

cast(UIP, t�D,Tξ (ms))
Jcast(UIP ,t�D,Tξ (ms))K
−−−−−−−−−−−−−→X

Definition 2.1
cast(UIP, t�D,Tξ (ms))

cast(JUIPK,�D,JTξ (ms)K)
−−−−−−−−−−−−−−→X

SEQ 1

cast(UIP, t�D,Tξ (ms)).TDOM(ξ)(ξ ,p)
cast(JUIPK,�D,JTξ (ms)K)
−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

Substitution(
cast(UIP,D,Tξ (ms)).TDOM(ξ)(ξ ,p)

)
[D := t�D]

cast(JUIPK,�D,JTξ (ms)K)
−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

SUM 2

∑D:T(Set(IP)) cast(UIP,D,Tξ (ms)).TDOM(ξ)(ξ ,p)
cast(JUIPK,�D,JTξ (ms)K)
−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

T1
TDOM(ξ)(ξ ,broadcast(ms).p)

cast(JUIPK,�D,JTξ (ms)K)
−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

It should be obvious that providing all representative derivations for a process expression is
sufficient to obtain all possible behavior of that process expression. This approach is used several
times in this document, often indicated with the phrase ‘a representative derivation without
alternatives’:

Definition 4.3 A representative derivation without alternatives is a representative derivation
A in mCRL2 such that there does not exist another representative derivation B that
• reaches a final conclusion that is semantically equivalent to the final conclusion of A,

and
• is not described by A.

50 Part 2. Formal translation

4.2 Data congruence
In various parts of the correctness proof a specific closed expression in mCRL2 tU(ξ (exp)) has been
obtained, and in order to progress it must be shown that tU(ξ (exp)) = Tξ (exp). However, this is not
necessarily the case. Suppose, for example, that exp = 1+1. Then potentially tU(ξ (exp)) = 2 and
Tξ (exp) = 1+1 (depending on the evaluations of tU(ξ (1+1)) and T(1+1)), and the (syntactic)
expressions 2 and 1+1 are clearly not the same!
In order for the proof to work, it must be established that such differences can be safely ignored.

This is possible if making an exclusively syntactic change to the data expression of a process
does not affect the behavior of that process; that is, if a process that results from making such an
exclusively syntactic change is strongly bisimilar to the original process. The mCRL2 authors
do not provide a proof of such a property for their language, and therefore this section has been
dedicated to it.
First, define the notion of a strong bisimulation:

Definition 4.4 Let LTS1 = (S1,Act,→1) and LTS2 = (S2,Act,→2) be labeled transition
systems where→i ⊆ Si×Act×Si. Then R⊆ S1×S2 is called a strong simulation of LTS1 by
LTS2 if and only if

∀(p,q) ∈ R,a ∈ Act,p′ ∈ S1 . p a−→1 p′⇒∃q′ ∈ S2 . q a−→2 q′∧ (p′,q′) ∈ R

Strong simulation is a commonly used concept, but for the correctness proof its definition is
extended several times. In preparation of this, the sketch below illustrates strong simulation in
its current form:

a
q

a
p

RR

q'

p'

For the definition to apply, in all cases where an action a from p to p′ is possible and (p,q) ∈ R,
there must also exist a q′ that q can reach via a such that p′ and q′ are also related by R.

Definition 4.5 Let LTS1 = (S1,Act,→1) and LTS2 = (S2,Act,→2) be labeled transition
systems where→i ⊆ Si×Act×Si. Then R1 ⊆ S1×S2 is called a strong bisimulation between
LTS1 and LTS2 if and only if
• R is a strong simulation of LTS1 by LTS2 and
• R˘ is a strong simulation of LTS2 by LTS1.

4 Correctness proof 51

The meaning of data congruence must also be formally specified:

Definition 4.6 Let p and q be two mCRL2 processes. Then p and q are equivalent up to data
congruence if:
• p and q are only syntactically different in their data expressions, and
• when doing a pairwise comparison, the data expressions of p and q are semantically

equivalent.
In this context, ‘data expressions’ refers to guard conditions, action arguments, summation

variables, and the arguments of process recursions.
The equivalence of p and q up to data congruence is denoted as p≡ q.

The following theorem is proposed:

Theorem 4.1 Data congruence in mCRL2 is a strong bisimulation.

Proof. A partial proof can be found in Appendix A (because the proof requires a case distinction
with many similar cases, only some of these cases are treated). �

Now consider the following definitions:

Definition 4.7 Let p and q be two processes, let A be a set of actions and let z be an action.
Then

p z−→≡ q⇒∃q′ . p z−→ q′∧q′ ≡ q

p A−→≡ q⇒∀a ∈ A . p a−→≡ q

Note that p z−→≡ q⇒ p z−→ q and p A−→≡ q⇒ p A−→ q.

Definition 4.8 Let LTS1 = (S1,Act,→1) and LTS2 = (S2,Act,→2) be labeled transition
systems where→i ⊆ Si×Act×Si. Then R⊆ S1×S2 is called a strong simulation up to ≡
of LTS1 by LTS2 if and only if

∀(p,q) ∈ R,a ∈ Act,p′ ∈ S1 . p a−→1 p′⇒
∃p′′ ∈ S1,q′′ ∈ S2 . p a−→1≡ p′′∧p′′ ≡ p′∧q a−→2≡ q′′∧ (p′′,q′′) ∈ R

The sketch below illustrates this definition:

a data congr.
q''q

data congr.a
p''p

RR

p'

52 Part 2. Formal translation

For the definition to apply, in all cases where an action a from p to p′ is possible and (p,q) ∈ R,
the other states, actions, and relations that are depicted must also exist:
• p must be able to reach a state that is data congruent with some state p′′ ≡ p′ via the action

a;
• q must be able to reach a state that is data congruent with some state q′′ via the action a;

and
• p′′ and q′′ must be related by R.

Definition 4.9 Let LTS1 = (S1,Act,→1) and LTS2 = (S2,Act,→2) be labeled transition
systems where→i ⊆ Si×Act×Si. Then R1 ⊆ S1×S2 is called a strong bisimulation up to
≡ between LTS1 and LTS2 if and only if
• R is a strong simulation up to ≡ of LTS1 by LTS2 and
• R˘ is a strong simulation up to ≡ of LTS2 by LTS1.

This leads to the following theorem:

Theorem 4.2 Let S1 and S2 be sets of mCRL2 process expressions and let R⊆ S1×S2 be a
strong bisimulation up to ≡ . Then S1 and S2 are strongly bisimilar.

Proof. The theorem follows immediately from Theorem 4.1 and a lemma from Milner [26]. �

For convenience the definition of ≡ is extended by the identity relation for AWN processes:

Definition 4.10 Let p and q be two processes. Then p and q are equivalent up to ≡ if:
• p and q are two mCRL2 processes that are equivalent up to ≡ ; or
• p and q are two AWN processes such that p = q.

The equivalence of p and q up to ≡ is (still) denoted as p≡ q.

4 Correctness proof 53

4.3 Auxiliary lemmas
This section gives several auxiliary lemmas and their proofs.

Lemma 4.3 If ξ (exp) is defined, then JTξ (exp)K = JtU(ξ (exp))K.

Proof. Because ξ (exp) is defined, Property (ii) of the Tξ (exp) function gives that JTξ (exp)K =
U(ξ (exp)). Furthermore, it is assumed in mCRL2 that JteK = e for all semantic values e (see the
definition of t in Section 2.2) so that JtU(ξ (exp))K = U(ξ (exp)) = JTξ (exp)K. �

Lemma 4.4 If e is a semantic AWN value and ξ (exp) is defined, then

ξ (exp) = e⇔ JTξ (exp)K = U(e)

Proof. Start with the observation that

U(e) Definition of t
= JtU(e)K and JTξ (exp)K Lemma 4.3

= JtU(ξ (exp))K (2.17)

As a consequence,

ξ (exp) = e
U is a bijection⇐======⇒ U(ξ (exp)) = U(e)⇔ JtU(ξ (exp))K = JtU(e)K

2.17⇐⇒ JTξ (exp)K = U(e)

�

Lemma 4.5 If e is a semantic AWN value and v /∈ DOM(ξ), then

Tξ (exp)
[

T(v) := tU(e)
]
= Tξ [v:=e](exp)

Proof.

Tξ (exp)
[

T(v) := tU(e)
] Definition of Tξ

= T(exp)
[

T(x) := tU(y)
∣∣ x := y ∈ ξ

][
T(v) := tU(e)

]
v /∈ DOM(ξ)
= T(exp)

[
T(x) := tU(y)

∣∣ x := y ∈ ξ [v := e]
]

Definition of Tξ

= Tξ [v:=e](exp)

Note that v /∈ DOM(ξ) is needed because otherwise equating two ordered substitutions with a
single substitution is not necessarily valid. �

Lemma 4.6 If e is a semantic AWN value and v an AWN variable, then

v ∈V ∧v /∈ DOM(ξ)⇒ TV (ξ ,p)
[

T(v) := tU(e)
]
= TV (ξ [v := e],p)

Proof. See Appendix B. �

54 Part 2. Formal translation

4.4 Proof for strong warped bisimulation
Because mCRL2 mimics AWN actions with sets of actions, the regular notion of strong bisimu-
lation is not suitable for proving Lemmas 4.7, 4.8, and 4.9 in a compositional manner. Instead, a
weaker version of bisimulation is introduced, to return to bisimulation up to ≡ later:

Definition 4.11 Let LTS1 = (S1,Act1,→1) and LTS2 = (S2,Act2,→2) be labeled transition
systems where→i ⊆ Si×Acti×Si and let A ⊆P(Act1)×P(Act2). Then R⊆ S1×S2 is a
strong A -warped simulation up to ≡ of LTS1 by LTS2 if and only if

∀(p,q) ∈ R,a ∈ Act1,p′ ∈ S1 . p a−→1 p′⇒

∃(A1,A2) ∈A ,p′′ ∈ S1,q′′ ∈ S2 . a ∈ A1∧p A1−→1≡ p′′∧p′′ ≡ p′∧q A2−→2≡ q′′∧ (p′′,q′′) ∈ R

A simple sketch is given to illustrate this definition:

A2 data congr.

q''q

data congr.

A1

a

p''p

action relation RR

p'

For the definition to apply, in all cases where an action a from p to p′ is possible and (p,q) ∈ R,
the other states, actions, and relations that are depicted must also exist:
• p must be able to reach a state that is data congruent with some state p′′ ≡ p′ via all actions

in A1, a set of actions containing the action a;
• q must be able to reach a state that is data congruent with some state q′′ via all actions in

A2;
• A1 and A2 must be related by the action relation A ; and
• p′′ and q′′ must be related by R.

Definition 4.12 Let LTS1 = (S1,Act1,→1) and LTS2 = (S2,Act2,→2) be labeled transition
systems where→i ⊆ Si×Acti×Si and let A ⊆P(Act1)×P(Act2). Then R⊆ S1×S2 is
called a strong A -warped bisimulation up to ≡ between LTS1 and LTS2 if and only if
• R is a strong A -warped simulation up to ≡ of LTS1 by LTS2 and
• R˘ is a strong A -̆warped simulation up to ≡ of LTS2 by LTS1.

4 Correctness proof 55

It is claimed that mCRL2 expressions T(P) mimic AWN expressions P in accordance with
Definition 4.11:

Lemma 4.7 Take translation relation T̃ from Equation 2.1 and action relation A from Ta-
ble 2.10. Then T̃ is a strong A -warped simulation up to ≡ of AWN expressions P by mCRL2
expressions T(P) for all AWN expressions P.

Proof. Using Lemma 3.1, for Definition 4.11 to apply it is sufficient to prove that

∀P,P′,a .P a−→ P′⇒∃(A1,A2) ∈A . a ∈ A1∧P
A1−→ P′∧T(P)

A2−→≡ T(P′) (2.18)

The translation relation is defined for every AWN expression P, and it is therefore valid to
choose P′′ = P′. This can be depicted graphically as

A2 data congr.

T(P'')
= T(P')T(P)

data congr.

A1

a

P'' = P'P

translation
relation

translation
relation action relation

P'
P'
P'

P'

The proof of Equation 2.18 is by structural induction over the inference rules of AWN.
Induction hypothesis: For all premises P a−→ P′ of an AWN inference rule, it holds that

∃(A1,A2) ∈A . a ∈ A1∧P
A1−→ P′∧T(P)

A2−→≡ T(P′)

Base cases: Show for each axiomatic inference rule of AWN with conclusion P a−→ P′ that
there is some (A1,A2) ∈A . a ∈ A1∧P

A1−→ P′ such that T(P) a′−→≡ T(P′) can be derived for all
a′ ∈ A2.

� Example 2.1 AWN defines the inference rule

BROADCAST (T1)
ξ ,broadcast(ms).p

broadcast(ξ (ms))−−−−−−−−−−→ ξ ,p

There exists an (A1,A2) in A such that broadcast(ξ (ms)) ∈ A1∧ξ ,broadcast(ms).p
A1−→ ξ ,p,

namely Pair 2.4 in Table 2.10. This base case can therefore be proven by finding a set of
derivations in mCRL2 such that T(ξ ,broadcast(ms).p) a−→≡ T(ξ ,p) for all a ∈ A2 where

A2 =
{

cast(JUIPK,�D,JTξ (ms)K)
∣∣ �D ∈ T(Set(IP))

}

56 Part 2. Formal translation

In mCRL2, the following derivation can be made for all �D ∈ T(Set(IP)):

AXIOM

cast(UIP, t�D,Tξ (ms))
Jcast(UIP ,t�D,Tξ (ms))K
−−−−−−−−−−−−−→X

Definition 2.1
cast(UIP, t�D,Tξ (ms))

cast(JUIPK,�D,JTξ (ms)K)
−−−−−−−−−−−−−−→X

SEQ 1

cast(UIP, t�D,Tξ (ms)).TDOM(ξ)(ξ ,p)
cast(JUIPK,�D,JTξ (ms)K)
−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

Substitution(
cast(UIP,D,Tξ (ms)).TDOM(ξ)(ξ ,p)

)
[D := t�D]

cast(JUIPK,�D,JTξ (ms)K)
−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

SUM 2

∑D:T(Set(IP)) cast(UIP,D,Tξ (ms)).TDOM(ξ)(ξ ,p)
cast(JUIPK,�D,JTξ (ms)K)
−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

T1
TDOM(ξ)(ξ ,broadcast(ms).p)

cast(JUIPK,�D,JTξ (ms)K)
−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

T12
T(ξ ,broadcast(ms).p)

cast(JUIPK,�D,JTξ (ms)K)
−−−−−−−−−−−−−−→ T(ξ ,p)

for D /∈ T(V). In conclusion, the induction hypothesis holds for this base case.
�

Induction step: Given only its side conditions and the induction hypothesis, show for each

inference rule of AWN with conclusion P a−→ P′ that there is some (A1,A2)∈A . a∈ A1∧P
A1−→ P′

such that T(P) a′−→≡ T(P′) can be derived for all a′ ∈ A2.

� Example 2.2 AWN defines the inference rule

P
broadcast(m)−−−−−−−→ P′ BROADCAST (T3)

ip : P : R
R:*cast(m)−−−−−−→ ip : P′ : R

There exists an (A1,A2) in A such that R : *cast(m) ∈ A1 ∧ ip : P : R
A1−→ ip : P′ : R, namely

Pair 2.11 in Table 2.10 (note that it is possible to choose D = UIP). The induction step can
therefore be proven for this particular case by finding a set of derivations in mCRL2 for T(ip : P :
R) a−→≡ T(ip : P′ : R) for all a ∈ A2 = { starcast(JUIPK,U(R),U(m)) } .
In mCRL2, the following derivation can be made:

AXIOM

cast(UIP, tU(R), tU(m))
Jcast(UIP,tU(R),tU(m))K−−−−−−−−−−−−→X

Definition 2.1
cast(UIP, tU(R), tU(m))

cast(JUIPK,JtU(R)K,JtU(m)K)−−−−−−−−−−−−−−→X
Definition of t

cast(UIP, tU(R), tU(m))
cast(JUIPK,U(R),U(m))−−−−−−−−−−−−−→X

SEQ 1
cast(UIP, tU(R), tU(m)).G(tU(ip), tU(R))

cast(JUIPK,U(R),U(m))−−−−−−−−−−−−−→ G(tU(ip), tU(R))JtU(R)∩UIP = tU(R)K = true GUARD 2
(tU(R)∩UIP = tU(R))→ cast(UIP, tU(R), tU(m)).G(tU(ip), tU(R))

cast(JUIPK,U(R),U(m))−−−−−−−−−−−−−→ G(tU(ip), tU(R))
Substitution(

(tU(R)∩D= D')→ cast(D,D',msg).G(tU(ip), tU(R))
)
[D := UIP,D' := tU(R),msg := tU(m)]

cast(JUIPK,U(R),U(m))−−−−−−−−−−−−−→ G(tU(ip), tU(R))
SUM 2 (3 times)

∑D,D':T(Set(IP)),msg:T(MSG)(tU(R)∩D= D')→ cast(D,D',msg).G(tU(ip), tU(R))
cast(JUIPK,U(R),U(m))−−−−−−−−−−−−−→ G(tU(ip), tU(R))

CHOICE 2
∑D,D':T(Set(IP)),msg:T(MSG)(tU(R)∩D= D')→ cast(D,D',msg).G(tU(ip), tU(R))+S[ip := tU(ip),R := tU(R)]

cast(JUIPK,U(R),U(m))−−−−−−−−−−−−−→ G(tU(ip), tU(R))
Substitution(

∑D,D':T(Set(IP)),msg:T(MSG)(R∩D= D')→ cast(D,D',msg).G(ip,R)+S
)
[ip := tU(ip),R := tU(R)]

cast(JUIPK,U(R),U(m))−−−−−−−−−−−−−→ G(tU(ip), tU(R))
Definition of G RECURSION 2

G(tU(ip), tU(R))
cast(JUIPK,U(R),U(m))−−−−−−−−−−−−−→ G(tU(ip), tU(R))

where S is an expression equal to all summands of G except for the first one.

4 Correctness proof 57

From the induction hypothesis, it follows that T(P)
cast(JUIPK,U(R),U(m))−−−−−−−−−−−−−→≡ T(P′) because Pair 2.4

in Table 2.10 is the only (B1,B2) ∈A . broadcast(m) ∈ B1. Combining this with the conclusion
of the derivation above gives

Induction hypothesis
T(P)

cast(JUIPK,U(R),U(m))−−−−−−−−−−−−−→≡ T(P′)
(see above)

G(tU(ip), tU(R))
cast(JUIPK,U(R),U(m))−−−−−−−−−−−−−→ G(tU(ip), tU(R))

PAR 3
T(P) || G(tU(ip), tU(R))

cast(JUIPK,U(R),U(m))|cast(JUIPK,U(R),U(m))−−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ T(P′) || G(tU(ip), tU(R))
COMM 2

ΓC(T(P) || G(tU(ip), tU(R)))
γC(cast(JUIPK,U(R),U(m))|cast(JUIPK,U(R),U(m)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ ΓC(T(P′) || G(tU(ip), tU(R)))

Apply γC

ΓC(T(P) || G(tU(ip), tU(R)))
starcast(JUIPK,U(R),U(m))−−−−−−−−−−−−−−−→≡ ΓC(T(P′) || G(tU(ip), tU(R)))

starcast ∈V ∪{τ} ALLOW 2
∇V ΓC(T(P) || G(tU(ip), tU(R)))

starcast(JUIPK,U(R),U(m))−−−−−−−−−−−−−−−→≡ ∇V ΓC(T(P′) || G(tU(ip), tU(R)))
T14

T(ip : P : R)
starcast(JUIPK,U(R),U(m))−−−−−−−−−−−−−−−→≡ T(ip : P′ : R)

So it is indeed the case that

T(ip : P : R) a−→≡ T(ip : P′ : R) for all a ∈ A2 = { starcast(JUIPK,U(R),U(m)) }

which finishes the induction step for the case of the BROADCAST (T3) inference rule.
�

Similar proofs must be done for all other inference rules of AWN. These proofs can be found in
Appendix C. Given all of the proofs, Equation 2.18 holds. �

AWN expressions ξ ,p should also be able to mimic mCRL2 expressions T(ξ ,p) in accordance
with Definition 4.11:

Lemma 4.8 For TV as defined by the rules T1 to T10 in Table 2.8 it holds that

∀p,a,Q,ξ . TDOM(ξ)(ξ ,p)
a−→ Q⇒∃(A1,A2) ∈A ,̆q,σ . a ∈ A1 (2.19)

∧TDOM(ξ)(ξ ,p)
A1−→≡ TDOM(ξ [σ])(ξ [σ],q)∧ξ ,p A2−→ ξ [σ],q∧Q≡ TDOM(ξ [σ])(ξ [σ],q)

Proof. The proof of Equation 2.19 is by structural induction over the rules T1 to T10 in Table 2.8.
This is a sound approach because these rules yield all mCRL2 expressions that can result from a
translation by TV . For each translation rule, all representative derivations (see Definition 4.3)
for expressions of the form TDOM(ξ)(ξ ,p)

a−→ Q are listed, and for each possible derivation
Lemma 4.8 is proven.
Induction hypothesis: For all recursions TW (ξ ,p) that are part of a translation rule defining TV ,

it holds that

∀a,Q .TDOM(ξ)(ξ ,p)
a−→ Q⇒∃(A1,A2) ∈A ,̆q,σ . a ∈ A1∧

TDOM(ξ)(ξ ,p)
A1−→≡ TDOM(ξ [σ])(ξ [σ],q)∧ξ ,p A2−→ ξ [σ],q∧Q≡ TDOM(ξ [σ])(ξ [σ],q)

Base cases: Show for translation rules T1 to T7 and T10 that for all a and Q such that TDOM(ξ)(ξ ,p)
a−→

Q there is some (A1,A2)∈A ˘. a∈A1 and some σ ,q such that TDOM(ξ)(ξ ,p)
A1−→≡ TDOM(ξ [σ])(ξ [σ],q)

and ξ ,p a′−→ ξ [σ],q can be derived for all a′ ∈ A2 and Q≡ TDOM(ξ [σ])(ξ [σ],q).

58 Part 2. Formal translation

� Example 2.3 The translation function TV is partially defined by translation rule

TV (ξ ,broadcast(ms).p) = ∑D:T(Set(IP)) cast(UIP,D,Tξ (ms)).TV (ξ ,p) where D /∈ T(V) T1

For expressions of the form TDOM(ξ)(ξ ,broadcast(ms).p) a−→ Q, consider the following deriva-
tion:

AXIOM

cast(UIP, t�D,Tξ (ms))
Jcast(UIP ,t�D,Tξ (ms))K
−−−−−−−−−−−−−→X

Definition 2.1
cast(UIP, t�D,Tξ (ms))

cast(JUIPK,�D,JTξ (ms)K)
−−−−−−−−−−−−−−→X

SEQ 1

cast(UIP, t�D,Tξ (ms)).TDOM(ξ)(ξ ,p)
cast(JUIPK,�D,JTξ (ms)K)
−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

Substitution(
cast(UIP,D,Tξ (ms)).TDOM(ξ)(ξ ,p)

)
[D := t�D]

cast(JUIPK,�D,JTξ (ms)K)
−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

SUM 2

∑D:T(Set(IP)) cast(UIP,D,Tξ (ms)).TDOM(ξ)(ξ ,p)
cast(JUIPK,�D,JTξ (ms)K)
−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

T1
TDOM(ξ)(ξ ,broadcast(ms).p)

cast(JUIPK,�D,JTξ (ms)K)
−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

This derivation is a representative derivation without alternatives (see Definition 4.3). It follows
that a∈

{
cast(JUIPK,�D,JTξ (ms)K)

∣∣ �D ∈ T(Set(IP))
}

and Q= TDOM(ξ)(ξ ,p)≡ TDOM(ξ [σ])(ξ [σ],p)

by choosing σ = /0. There is exactly one pair (A1,A2)∈A ˘. a∈A1∧TDOM(ξ)(ξ ,broadcast(ms).p)
A1−→

TDOM(ξ [σ])(ξ [σ],p):

(
{

cast(JUIPK,�D,JTξ (ms)K)
∣∣ �D ∈ T(Set(IP))

}
,{ broadcast(ξ (ms)) })

This pair satisfies the condition that ξ ,broadcast(ms).p a′−→ ξ [σ],p can be derived for all a′ ∈ A2
(via AWN inference rule BROADCAST (T1)), which is sufficient to prove this particular base
case.

�

Induction step: Given only its side conditions and the induction hypothesis, show for translation
rules T8 and T9 that for all a and Q such that TDOM(ξ)(ξ ,p)

a−→Q there is some (A1,A2)∈A ˘ . a∈

A1 and some σ ,q such that TDOM(ξ)(ξ ,p)
A1−→≡ TDOM(ξ [σ])(DOM(ξ [σ]),q) and p a′−→ q can be

derived for all a′ ∈ A2 and Q≡ TDOM(ξ [σ])(DOM(ξ [σ]),q).

� Example 2.4 The translation function TV is partially defined by translation rule
TV (ξ ,X(exp1, · · · ,expn)) = X(Tξ (exp1), · · · ,Tξ (expn)) T8

where T(X(var1, · · · ,varn)
def
= p) = X(T(var1) : sort(Tξ (exp1)), · · · ,T(varn) : sort(Tξ (expn)))

def
= T{var1 ,···,varn}(/0,p)

The induction hypothesis states that recursions TV occurring in X(Tξ (exp1), · · · ,Tξ (expn)) are
related. In particular, the induction hypothesis is used here to relate arbitrary instantiations of
process calls:

∀a,Q . T{d1,···,dn}(/0[d1 := ξ (exp1), · · · ,dn := ξ (expn)],p)
a−→ Q⇒∃(A1,A2) ∈A ,̆q,σ . a ∈ A1

∧T{d1,···,dn}(/0[d1 := ξ (exp1), · · · ,dn := ξ (expn)],p)
A1−→≡

T{d1,···,dn}∪DOM(σ)(/0[d1 := ξ (exp1), · · · ,dn := ξ (expn)][σ],q)

∧ /0[d1 := ξ (exp1), · · · ,dn := ξ (expn)],p
A2−→ /0[d1 := ξ (exp1), · · · ,dn := ξ (expn)][σ],q

∧Q≡ T{d1,···,dn}∪DOM(σ)(/0[d1 := ξ (exp1), · · · ,dn := ξ (expn)][σ],q)

4 Correctness proof 59

The following derivation in AWN can be based on the fourth line of the instantiated induction
hypothesis:

Induction hypothesis
/0[d1 := ξ (exp1), · · · ,dn := ξ (expn)],p

a′−→ /0[d1 := ξ (exp1), · · · ,dn := ξ (expn)][σ],q Definition of X
RECURSION (T1)

ξ ,X(exp1, · · · ,expn)
a′−→ /0[d1 := ξ (exp1), · · · ,dn := ξ (expn)][σ],q

This derivation holds for all a′ ∈ A2. Similarly, in mCRL2, it happens to be the case that

Induction hypothesis
T{d1,···,dn}(/0[d1 := ξ (exp1), · · · ,dn := ξ (expn)],p)

a−→≡ T{d1,···,dn}∪DOM(σ)(/0[d1 := ξ (exp1), · · · ,dn := ξ (expn)][σ],q)
Lemma 4.6

T{d1,···,dn}(/0,p)[T(d1) := tU(ξ (exp1))
, · · · ,T(dn) := tU(ξ (expn))

]
a−→≡ T{d1,···,dn}∪DOM(σ)(/0[d1 := ξ (exp1), · · · ,dn := ξ (expn)][σ],q)

Theorem 4.1
Lemma 4.3

T{d1,···,dn}(/0,p)[T(d1) := Tξ (exp1), · · · ,T(dn) := Tξ (expn)]
a−→≡ T{d1,···,dn}∪DOM(σ)(/0[d1 := ξ (exp1), · · · ,dn := ξ (expn)][σ],q)

Definition of X RECURSION 2
X(Tξ (exp1), · · · ,Tξ (expn))

a−→≡ T{d1,···,dn}∪DOM(σ)(/0[d1 := ξ (exp1), · · · ,dn := ξ (expn)][σ],q)
T8

TV (ξ ,X(exp1, · · · ,expn))
a−→≡ T{d1,···,dn}∪DOM(σ)(/0[d1 := ξ (exp1), · · · ,dn := ξ (expn)][σ],q)

for all a ∈ A1. This derivation is a representative derivation without alternatives (see Defini-
tion 4.3).
Because the induction hypothesis is used to express the relationship between arbitrary instan-

tiations of process calls, the first line of this derivation plus the inference rules of mCRL2 are
sufficient to generate all possible behavior of an mCRL2 process call. The actions available to
TV (ξ ,X(exp1, · · · ,expn)) in mCRL2 can therefore be mimicked by AWN, and so both derivations
can be combined into an new equation matching the induction hypothesis:

∀a,Q . TV (ξ ,X(exp1, · · · ,expn))
a−→ Q⇒∃(A1,A2) ∈A ,̆q,σ . a ∈ A1

∧TV (ξ ,X(exp1, · · · ,expn))
A1−→≡

T{d1,···,dn}∪DOM(σ)(/0[d1 := ξ (exp1), · · · ,dn := ξ (expn)][σ],q)

∧ /0[d1 := ξ (exp1), · · · ,dn := ξ (expn)],p
A2−→ /0[d1 := ξ (exp1), · · · ,dn := ξ (expn)][σ],q

∧Q≡ T{d1,···,dn}∪DOM(σ)(/0[d1 := ξ (exp1), · · · ,dn := ξ (expn)][σ],q)

This confirms the induction step of the proof of Lemma 4.8.
�

Given the proofs for translation rules T1 to T10 (see Appendix D), Equation 2.19 holds. �

60 Part 2. Formal translation

In addition to Lemma 4.7, it should also be the case that AWN expressions P can mimic mCRL2
expressions T(p) in general (once more in accordance with Definition 4.11):

Lemma 4.9 Let T̃˘ be the converse of translation relation T̃ from Equation 2.1 and let A ˘ be
the converse of relation A from Table 2.10. Then T̃˘ is a strong A -̆warped simulation of
mCRL2 expressions T(P) by AWN expressions P for all AWN expressions P.

Proof. For all actions that T(P) can do, it must be shown that the resulting state is data congruent
with T(P′). A depiction of the requirements for the proof in this direction is given below:

A2 data congr.

P'' = P'P

data congr.

A1

a
T(P'')

= T(P')T(P)

translation
relation

translation
relation inverted action relation

P'
P'
P'

P'

Q

Note that data congruence is implied by the assumption that P′′ = P′. In combination with
Lemma 3.1, this means that for Definition 4.11 to apply it is sufficient to prove that

∀P,a,Q′ .T(P) a−→ Q⇒∃(A1,A2) ∈A ,̆P′ . a ∈ A1∧T(P) A1−→≡ T(P′)∧P A2−→ P′∧Q≡ T(P′)
(2.20)

The proof of Equation 2.20 is provided by structural induction over the translation rules of
mCRL2, which is possible because these yield all possible mCRL2 expressions that can result
from a translation by T.
Induction hypothesis: For all recursions T(P) that are part of a translation rule defining T, it

holds that

∀a,Q . T(P) a−→ Q⇒∃(A1,A2) ∈A ,̆P′ . a ∈ A1∧T(P) A1−→≡ T(P′)∧P A2−→ P′∧Q≡ T(P′)

Base cases: Show for translation rules T11 and T12 that for all a and Q such that T(P) a−→ Q

there is some (A1,A2) ∈A ˘ . a ∈ A1 and some P′ such that T(P)
A1−→≡ T(P′) and P a′−→ P can be

derived for all a′ ∈ A2 and Q≡ T(P′).

4 Correctness proof 61

� Example 2.5 The translation function T is partially defined by translation rule T12:

T(ξ ,p) = TDOM(ξ)(ξ ,p)

Suppose that TDOM(ξ)(ξ ,p)
a−→ Q. Then, according to Lemma 4.8, there exists some (A1,A2) ∈

A ˘ . a ∈ A1 and some σ ,p′ such that TDOM(ξ)(ξ ,p)
A1−→≡ TDOM(ξ [σ])(ξ [σ],p′) and ξ ,p a′−→

ξ [σ],p′ for all a′ ∈ A2 and Q≡ TDOM(ξ [σ])(ξ [σ],p′).

Define ζ = ξ [σ]. Q is also data congruent with TDOM(ζ)(ζ ,p′) which, as stated by rule T12,
equals T(ζ ,p′). As a result, there must exist some (A1,A2) ∈A ˘ . a ∈ A1 and some p′ so that

T(ξ ,p)
A1−→≡ T(ζ ,p′) and ξ ,p a′−→ ζ ,p′ for all a′ ∈ A2 and Q≡ T(ζ ,p′), proving this particular

base case.
�

Induction step: Given only their side conditions and the induction hypothesis, show for transla-
tion rules T13 to T16 that for all a and Q such that T(P) a−→ Q there is some (A1,A2) ∈A ˘ . a ∈ A1

and some P′ such that T(P)
A1−→≡ T(P′) and P a′−→ P′ can be derived for all a′ ∈ A2 and Q≡ T(P′).

� Example 2.6 The translation function T is partially defined by translation rule

T([M]) = ∇V ρ{starcast→t}ΓC(T(M) || H) T16

where V = {t,newpkt,deliver,connect,disconnect}
where C = {newpkt|arrive→ newpkt}
where H = ∑ip:T(IP),data:T(DATA),dest:T(IP) newpkt({ip},{ip},newpkt(data,dest)).H

Consider two pairs from Table 2.10:

({ H¬K : arrive(m) } ,

 arrive(�D,�D',U(m))

∣∣∣∣∣∣
�D,�D'∈T(Set(IP))

�D'⊆�D
U(H)⊆�D'

U(K)∩�D'= /0

),

({ ip : newpkt(d,dip) } ,{ newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip))) })

Let A1 and N1 be defined as the second members of these pairs; that is, let

A1
def
=

 arrive(�D,�D',U(m))

∣∣∣∣∣∣
�D,�D'∈T(Set(IP))

�D'⊆�D
U(H)⊆�D'

U(K)∩�D'= /0


N1

def
= { newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip))) }

and let

N1
def
=
{

newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))
}

for some d ∈ DATA, ip ∈ IP, H,K ∈ Set(IP), and m ∈MSG.

62 Part 2. Formal translation

The following cases are distinguished:
1: T(M) does a transition a ∈ A1 and H does a transition b ∈ N1.
2: T(M) does a transition a /∈ A1 and H does a transition b ∈ N1.
3: T(M) does nothing and H does a transition b ∈ N1.
4: T(M) does a transition a . a = starcast and H does nothing.
5: T(M) does a transition a . a ∈ {t,newpkt,deliver,connect,disconnect} and H does noth-

ing.
6: T(M) does a transition a . a /∈ {t,starcast,newpkt,deliver,connect,disconnect} and H

does nothing.
Note that these cases cover all combinations of behavior of T(M) and H (H can only do newpkt

actions; see the first part of the derivation in the Lemma 4.7-proof for Newpkt (T4), which is a
representative derivation without alternatives).
The proof is provided below for each of the cases:

1: T(M) does a transition a ∈ A1 and H does a transition b ∈ N1. Following the induction
hypothesis and eliminating pairs from the action relation A in Table 2.10 that do not
match the transition labels from A1, it can first be concluded that

T(M)
L1−→≡ T(M′)∧M

H¬K:arrive(m)−−−−−−−−→M′

The mCRL2 derivation in the Lemma 4.7-proof for Newpkt (T4) shows how the first
conjunct is sufficient to prove that T([M])

L1−→≡ T([M′]). Under the constraints of this
case, the derivation is a representative derivation without alternatives (see Definition 4.3)
and so all related behavior of T([M]) is covered.
On the AWN side, the second conjunct can be used as premise in

M
{ip}¬K:arrive(newpkt(d,dip))−−−−−−−−−−−−−−−−−→M′ NEWPKT (T4)
[M]

ip:newpkt(d,dip)−−−−−−−−−→ [M′]

This case is proven if there exists a pair (A1,A2)∈A ˘ that satisfies a∈ A1∧T([M])
A1−→≡

T([M′])∧ [M]
A2−→ [M′], and the converse of Pair 2.16 satisfies this requirement.

2: T(M) does a transition a /∈ A1 and H does a transition b ∈ N1. This situation fails to
generate behavior for T([M]) because no derivation similar to the one in the Lemma 4.7-
proof for Newpkt (T4) is possible:

T(M)
a−→≡ T(M′) H

newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−→ H
PAR 3

T(M) || H a|newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ T(M′) || H
COMM 2

ΓC(T(M) || H)
γC(a|newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip))))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ ΓC(T(M′) || H)

Apply γC

ΓC(T(M) || H)
a|newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ ΓC(T(M′) || H)

RENAME 2
ρ{starcast→t}ΓC(T(M) || H)

{starcast→t}•a|newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ ρ{starcast→t}ΓC(T(M′) || H)
Apply {starcast→ t}•

ρ{starcast→t}ΓC(T(M) || H)
a|newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ ρ{starcast→t}ΓC(T(M′) || H)

The ALLOW 2 operator cannot be applied next because a|newpkt /∈V ∪{τ}. Since this
means that T([M]) cannot do a transition in mCRL2 under the circumstances specified in

4 Correctness proof 63

this particular case, there is no behavior for AWN to mimic.
3: T(M) does nothing and H does a transition

newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip))) ∈ N1

This situation fails to generate behavior for T([M]) because no derivation similar to the
one in the Lemma 4.7-proof for Newpkt (T4) is possible:

H
newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−→ H PAR 5

T(M) || H newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−→ T(M) || H
COMM 2

ΓC(T(M) || H)
γC(newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip))))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ΓC(T(M) || H)

Apply γC

ΓC(T(M) || H)
newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−→ ΓC(T(M) || H)

RENAME 2
ρ{starcast→t}ΓC(T(M) || H)

{starcast→t}•newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ρ{starcast→t}ΓC(T(M) || H)
Apply {starcast→ t}•

ρ{starcast→t}ΓC(T(M) || H)
newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−→ ρ{starcast→t}ΓC(T(M) || H)

The ALLOW 2 operator cannot be applied next because newpkt /∈ V ∪{τ}. Since this
means that T([M]) cannot do a transition in mCRL2 under the circumstances specified in
this particular case, there is no behavior for AWN to mimic.

4: T(M) does a transition a . a = starcast and H does nothing.
Following the induction hypothesis and eliminating pairs from the action relation A in
Table 2.10 that do not match the transition label starcast, it can first be concluded that

T(M)
starcast(U(D),U(R),U(m))−−−−−−−−−−−−−−→≡ T(M′)∧M

R:*cast(m)−−−−−−→M′

for all D,R ∈ Set(IP) and m ∈MSG where R⊆ D.
The mCRL2 derivation in the Lemma 4.7-proof for Cast (T4-4) shows how the first

conjunct is sufficient to prove that T([M])
t(U(D),U(R),U(m))−−−−−−−−−−→≡ T([M′]). Under the con-

straints of this case, the derivation is a representative derivation without alternatives (see
Definition 4.3) and so all related behavior of T([M]) is covered.
On the AWN side, the second conjunct can be used as premise in

M
R:*cast(m)−−−−−−→M′ CAST (T4-4)

[M]
τ−→ [M′]

This case is proven if there exists a pair (A1,A2)∈A ˘ that satisfies a∈ A1∧T([M])
A1−→≡

T([M′])∧ [M]
A2−→ [M′], and the converse of Pair 2.11 satisfies this requirement.

5: T(M) does a transition a . a ∈ {t,newpkt,deliver,connect,disconnect} and H does noth-
ing. The induction hypothesis states that

∃(A1,A2) ∈A ˘ . a ∈ A1∧T(P)
A1−→≡ T(P′)∧P

A2−→ P′

Define A ′ as a subset of A ˘ that contains the possible values of (A1,A2) ∈A ˘ where A1
are actions that T(P 〈〈 Q) can perform in mCRL2 and where A2 are the actions that AWN
should use to mimic the actions in A1 in order for this case to be proven:

A ′ def
=
{
(A1,A2)

∣∣∣ (A1,A2) ∈A ,̆ T(P 〈〈 Q)
A1−→≡ T(P′ 〈〈 Q)

}

64 Part 2. Formal translation

The following derivation is possible in mCRL2 for all a ∈ A1 such that (A1,A2) ∈A ′:

Induction hypothesis
T(M)

a−→≡ T(M′)
PAR 2

T(M) || H a−→≡ T(M′) || H
COMM 2

ΓC(T(M) || H)
γC(a)−−−→≡ ΓC(T(M′) || H)

Apply γC
ΓC(T(M) || H)

a−→≡ ΓC(T(M′) || H)
RENAME 2

ρ{starcast→t}ΓC(T(M) || H)
{starcast→t}•a−−−−−−−−−→≡ ρ{starcast→t}ΓC(T(M′) || H)

Apply {starcast→ t}•
ρ{starcast→t}ΓC(T(M) || H)

a−→≡ ρ{starcast→t}ΓC(T(M′) || H)
a ∈V ∪{τ} ALLOW 2

∇V ρ{starcast→t}ΓC(T(M) || H)
a−→≡ ∇V ρ{starcast→t}ΓC(T(M′) || H)

T16
T([M])

a−→≡ T([M′])

This derivation is valid only for a ∈ A1 such that a ∈ V ∪{τ}. Under the constraints
of this case, the derivation is also a representative derivation without alternatives (see
Definition 4.3). Finally it must be observed that it is impossible for T(M) to produce a
newpkt action independent of H, meaning that a 6= newpkt.
Consequently, A ′ is as follows:
{

({ t(U(D),U(R),U(m)) } ,{ τ }),
({ deliver(U(ip),U(d)) } ,{ ip : deliver(d) }),

({ connect(U(ip’),U(ip”)) } ,{ connect(ip’, ip”) }),
({ disconnect(U(ip’),U(ip”)) } ,{ disconnect(ip’, ip”) })

| m ∈MSG; ip, ip’, ip” ∈ IP; d ∈ DATA; dests,R,D ∈ Set(IP); R⊆ D }
For all (A1,A2) ∈ A ′ the actions A1 in mCRL2 can be mimicked by the actions A2 in
AWN by means of the inference rules

M τ−→M′ INTERNAL (T4-3)
[M]

τ−→ [M′]

M
ip:deliver(d)−−−−−−−→M′ DELIVER (T4-3)

[M]
ip:deliver(d)−−−−−−−→ [M′]

M
connect(ip,ip′)−−−−−−−−→M′ CONNECT (T4-2)

[M]
connect(ip,ip′)−−−−−−−−→ [M′]

M
disconnect(ip,ip’)−−−−−−−−−−→M′ DISCONNECT (T4-2)

[M]
disconnect(ip,ip’)−−−−−−−−−−→ [M′]

4 Correctness proof 65

respectively. Therefore the induction hypothesis holds for this case.
6: T(M) does a transition a . a /∈ {t,starcast,newpkt,deliver,connect,disconnect} and H

does nothing. This situation fails to generate behavior for T([M]) because no derivation
similar to the one in the Lemma 4.7-proof for Newpkt (T4) is possible:

T(M)
a−→≡ T(M′)

PAR 2
T(M) || H a−→≡ T(M′) || H

COMM 2
ΓC(T(M) || H)

γC(a)−−−→≡ ΓC(T(M′) || H)
Apply γC

ΓC(T(M) || H)
a−→≡ ΓC(T(M′) || H)

RENAME 2
ρ{starcast→t}ΓC(T(M) || H)

{starcast→t}•a−−−−−−−−−→≡ ρ{starcast→t}ΓC(T(M′) || H)

The ALLOW 2 operator cannot be applied next because a /∈ V ∪{τ}. Since this means
that T([M]) cannot do a transition in mCRL2 under the circumstances specified in this
particular case, there is no behavior for AWN to mimic.

�

Similar proofs must be done for all other translation rules defining T. These proofs can be
found in Appendix E. Given all of the proofs, Equation 2.20 holds. �

Finally, Lemmas 4.7 and 4.9 can be united in a single theorem:

Theorem 4.10 Take translation relation T̃ from Equation 2.1 and action relation A from
Table 2.10. Then T̃ is a strong A -warped bisimulation up to ≡ (see Definition 4.12) between
AWN expressions P and mCRL2 expressions T(P) for all AWN expressions P.

Proof. T̃ is a strong A -warped bisimulation up to ≡ of P by T(P) for all P if and only
if Definition 4.12 applies. This definition consists of two conditions, the first of which is
established by the proof for Lemma 4.7 and the second of which is established by the proof for
Lemma 4.9. �

66 Part 2. Formal translation

4.5 Proof for strong bisimulation modulo renaming
The definition of strong warped bisimulation in the previous section is just a stepping stone to-
wards proving a more commonly known type of strong bisimulation, namely strong bisimulation
modulo renaming:

Definition 4.13 Let LTS1 = (S1,Act1,→1) and LTS2 = (S2,Act2,→2) be labeled transition
systems where →i ⊆ Si×Acti× Si and let f : Act1 → Act2 be a bijective function. Then
R⊆ S1×S2 is called a strong simulation up to ≡ of LTS1 by LTS2 modulo renaming by f if
and only if

∀(p,q) ∈ R,a ∈ Act1,p′ ∈ S1 . p a−→2 p′⇒∃q′ ∈ S2 . q
f(a)−−→2≡ q′∧ (p′,q′) ∈ R

Definition 4.14 Let LTS1 = (S1,Act1,→1) and LTS2 = (S2,Act,→2) be labeled transition
systems where →i ⊆ Si×Act× Si and let f : Act1 → Act2 be a bijective function. Then
R⊆ S1×S2 is called a strong bisimulation up to ≡ between LTS1 and LTS2 modulo renaming
by f if and only if
• R is a simulation up to ≡ of LTS1 by LTS2 modulo renaming by f and
• R˘ is a simulation up to ≡ of LTS2 by LTS1 modulo renaming by f−1.

The final theorem that must be proven is as follows:

Theorem 4.11 Take translation relation T̃τ from Equation 2.2. Then there exists a bijective
function f : ActAWN→ ActmCRL2 so that T̃τ is a strong bisimulation up to ≡ between AWN
expressions [M] and mCRL2 expressions τ{t}T([M]) modulo renaming by f for all AWN
expressions [M].

Proof. The inference rules of AWN (see Tables 2.1 and 2.2) clearly show that

∀M,Q,a . [M]
a−→ Q ⇒ ∃M′ . Q = [M′]

which means that Equation 2.18 implies that

∀M,M′,a .[M]
a−→ [M′]⇒ (2.21)

∃(A1,A2) ∈A . a ∈ A1∧ [M]
A1−→ [M′]∧T([M])

A2−→≡ T([M′])

Similarly, the Lemma 4.9-proof for Translation rule T16 shows that

∀M,Q,a . [T(M)]
a−→≡ Q ⇒ ∃M′ . Q = T([M′])

which means that Equation 2.20 implies that

∀M,M′,a′ .T([M])
a′−→≡ T([M′])⇒ (2.22)

∃(A1,A2) ∈A˘ . a′ ∈ A1∧T([M])
A1−→≡ T([M′])∧ [M]

A2−→ [M′]

4 Correctness proof 67

Equations 2.21 and 2.22 only require a subset A ′ of A in order to be valid, namely the
subset containing the pairs in A with the actions that [M] and T([M]) can actually perform.
To determine the contents of A ′, the inference rules of AWN and the Lemma 4.9-proof for
Translation rule T16 can be used once again because they exhaustively list all possible behavior
of [M] and T([M]). This results in the following value of A ′:
A ′ = {

({ τ } ,{ t(U(D),U(R),U(m)) }),
({ ip : deliver(d) } ,{ deliver(U(ip),U(d)) }),

({ connect(ip’, ip”) } ,{ connect(U(ip’),U(ip”)) }),
({ disconnect(ip’, ip”) } ,{ disconnect(U(ip’),U(ip”)) }),
({ ip : newpkt(d,dip) } ,{ newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip))) })

| m ∈MSG; ip, ip’, ip”,dip ∈ IP; d ∈ DATA; R,D ∈ Set(IP); R⊆ D }
Furthermore, the different manifestations of the t action are not visible at the network level, and

therefore they can be hidden in mCRL2 using a τ{t} operation:

T([M])
a′−→≡ T([M′])

HIDE 2
τ{t}T([M])

θ{t}(a′)−−−−→≡ τ{t}T([M′])

This changes Equations 2.21 and 2.22 and the value of A ′ to the following:

∀M,M′,a .[M]
a−→ [M′]⇒

∃(A1,A2) ∈A ′
τ . a ∈ A1∧ [M]

A1−→ [M′]∧ τ{t}T([M])
A2−→≡ τ{t}T([M′])

∀M,M′,a′ .τ{t}T([M])
a′−→≡ τ{t}T([M′])⇒

∃(A1,A2) ∈A ′
τ˘ . a′ ∈ A1τ{t}∧ τ{t}T([M])

A1−→≡ τ{t}T([M′])∧ [M]
A2−→ [M′]

where

A ′
τ

def
= {

({ τ } ,{ τ }),
({ ip : deliver(d) } ,{ deliver(U(ip),U(d)) }),

({ connect(ip’, ip”) } ,{ connect(U(ip’),U(ip”)) }),
({ disconnect(ip’, ip”) } ,{ disconnect(U(ip’),U(ip”)) }),
({ ip : newpkt(d,dip) } ,{ newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip))) })

| ip, ip’, ip”,dip ∈ IP; d ∈ DATA }

68 Part 2. Formal translation

Note that all pairs in A ′
τ are singleton sets, which means that they can be replaced by the

bijective function f:

∀M,M′,a .

(
[M]

a−→ [M′]⇒ τ{t}T([M])
f(a)−−→≡ τ{t}T([M′])

)
(2.23)

∀M,M′,a′ .
(

τ{t}T([M])
a′−→≡ τ{t}T([M′])⇒ [M]

f−1(a′)−−−−→≡ [M′]
)

(2.24)

where

f(a) =



τ if a = τ

deliver(U(ip),U(d)) if a = ip : deliver(d)
connect(U(ip’),U(ip”)) if a = connect(ip’, ip”)
disconnect(U(ip’),U(ip”)) if a = disconnect(ip’, ip”)
newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip))) if a = ip : newpkt(d,dip)

from which can be concluded immediately that{
([M],τ{t}T([M]))

∣∣ [M] is an AWN network expression
}

is a strong bisimulation up to ≡ modulo renaming by f. �

3. AWN input language3. AWN input language

The formal translation has been implemented in practice in the form of a tool. This tool requires
an AWN specification as input. This input is written in the AWN input language, which is
described in this section.

1 Files
The AWN input language allows an AWN specification to be distributed over multiple files. One
of these files must be a protocol file and the other files must be library files.

1.1 Header
The type of a file is determined by its header. Protocol files start with

protocol protocolName;

In the current version of the AWN input language, a protocol header only gives a name to
the specified protocol and indicates the starting point of an AWN specification. In the future,
however, the protocol header could be extended with syntax to make certain assumptions made
by the protocol explicit (one example of such an assumption is whether connections in a network
are symmetric or asymmetric).
Library files start with the header

library libraryName;

By providing a name, the library file allows other files to access its definitions. This is done by
importing the library file with the following syntax:

import libraryName;

Imports are recursive; that is, if a library file B imports a library file C, then a file A that imports
B gains access to the definitions in C as well.

70 Part 3. AWN input language

1.2 Body
After the file header, an AWN file can contain a number of consecutive declarations. Declarations
link a name to an object – which can be a type, a constant, a function, a process, or a network –
so that the name will be interpreted accordingly elsewhere in the specification The following
section and Sections 4 to 8 elaborate on the available declaration categories.

2 Type declarations
The AWN specification will almost certainly make use of data, and the AWN input language
requires information about the type of that data. Some types are immediately available (see
subsection 2.1) whereas other types must be declared before they can be used.
Type declarations follow this grammar:

type typeName (ε | = typeExpr);

Type declarations do not have to make the actual type explicit in the case that the AWN
specification should not make any assumptions about the type. Otherwise, a type declaration
refers to a type expression, which adheres to the grammar

typeExpr ::= typeName

| (typeExpr)

| Boolean | Integer | String | $IP | $MSG | $DATA | $STRUCT | $TRACE
| enum(enumValue1, · · · ,enumValuen)

| range(dataExpr, dataExpr)

| list of typeExpr

| set of typeExpr

| struct(fieldName: typeExpr, · · · ,fieldName: typeExpr) (ε | extends typeExpr)

| typeExpr # · · · # typeExpr -> typeExpr

| typeExpr # · · · # typeExpr +-> typeExpr

The grammar allows the declaration of primitive types, enumerable types, range types, list types,
set types, struct types, and function types (which can be total or partial). Each of these type
categories is discussed in the following subsections.

2 Type declarations 71

2.1 Primitive types
In each specification, the AWN input language provides the following types automatically:
• A boolean type named Boolean (true or false);
• An integer type named Integer (..., -2, -1, 0, 1, 2, 3, ...);
• A floating point type named Real (3.14159, ...);
• A struct type named $IP, which is the type of node addresses;
• A struct type named $MSG, the type used for storing messages;
• A struct type named $DATA, the type used for storing the data that travels through a

network;
• A struct type named $STRUCT, which can be used for generic data structures;
• A struct type named $TRACE, which can be passed to trace actions for model-checking

purposes (see Section 6).

2.2 Enumerable types
Enumerable types define a static set of values, and instances of a specific enumerable type can
only have values that are in the set that corresponds with their type.

2.3 Range types
Range types are integer types restricted to a static range. For example,

1 type Byte = range(0, 255);

declares an integer named Byte restricted to values between 0 and 255.

2.4 List types
List types are collections of elements of a specified type. For example,

1 type Array = list of Integer;

declares a list of integers. Elements in a list are ordered – they have a position relative to the
head of the list – and do not have to be unique. Lists can only contain a finite number of elements
their contents (elements are maintained exhaustively).

2.5 Set types
Similar to list types, set types are collections of elements of a specified type. Unlike lists,
however, sets do not maintain the positions of their elements, and they can also denote an infinite
number of elements by using a symbolic representation.

72 Part 3. AWN input language

2.6 Struct types
Struct types (also called hierarchical types) are types that can:
• Define fields, which are named containers of a specific type;
• Inherit fields from another hierarchical type.

For example,
1 type Entry = struct(key: Integer, value: Integer);

defines an struct type Entry with two fields, one named key and one named value, that both
are of type Integer. The supertype of Entry is left out, which means that the default supertype
is used, $STRUCT. $STRUCT is a primitive struct type that, like the other primitive struct types,
has no fields, and consequently Entry does not have any inherited fields.
The Entry type can, in turn, also be used by another struct type as a supertype:
1 type MarkedEntry = struct(marked: boolean) extends Entry;

The MarkedEntry type has 3 fields: it inherits key and value from Entry, and then there is
marked, which it added itself.
Struct types that inherit from $STRUCT are meant for defining general data structures. Types

that inherit from $IP, $MSG, $DATA, or $TRACE exist for more specific purposes, namely for
identifying nodes, storing messages, storing the data that passes through a network, and making
protocol behavior visible, respectively. To illustrate, a typical extension of $IP is
For example,
1 type IP = struct(address: Integer) extends $IP; //$IP refers to a primitive type.

which allows the type IP to be used for the identification of nodes.

2.7 Function types
Function types pair one or more source types with exactly one target type. By providing function
types, the AWN input language makes it possible to pass functions as a parameter to other
functions, which greatly increases the expressiveness of the language.
Functions can be total or partial depending on whether they are defined for all possible input

values or not, and a function’s totalness is reflected in its type: total functions use the regular ->
arrow whereas partial functions use +->.

3 Data expressions 73

3 Data expressions

Data expressions allow for the analysis and manipulation of data. They conform to the following
grammar:

dataExpr ::= booleanValue | integerValue | realValue

| enumTypeName::enumValue

| variableName

| functionName(dataExpr, · · · ,dataExpr)

| variableName(dataExpr, · · · ,dataExpr)

| typeName(dataExpr)

| list of typeExpr (dataExpr) | set of typeExpr (dataExpr)

| unaryOp dataExpr

| dataExpr binaryOp dataExpr

| dataExpr . fieldName

| dataExpr[dataExpr]

| dataExpr is typeExpr | dataExpr istype typeExpr

| (dataExpr)

| dataExpr # · · · # dataExpr -> dataExpr

| |dataExpr|

| low(typeExpr) | high(typeExpr)

| head(dataExpr) | tail(dataExpr) | rhead(dataExpr) | rtail(dataExpr)

| floor(dataExpr) | ceil(dataExpr) | round(dataExpr)

| collapse(dataExpr)

| lambda varDecls . dataExpr

| { dataExpr .. dataExpr } (ε | of typeExpr)

| { dataExpr, · · · ,dataExpr } (ε | of typeExpr)

| { dataExpr (ε | quantDecls (ε | @ dataExpr)) } (ε | of typeExpr)

| [dataExpr .. dataExpr] (ε | of typeExpr)

| [dataExpr, · · · ,dataExpr] (ε | of typeExpr)

| [dataExpr (ε | quantDecls (ε | @ dataExpr))] (ε | of typeExpr)

| new typeName(dataExpr, · · · ,dataExpr)

| if dataExpr then dataExpr else dataExpr end
| forall(quantDecls @ dataExpr) | exists(quantDecls @ dataExpr)

| ifexists quantDecls @ dataExpr then dataExpr else dataExpr end
| with assignExprs do dataExpr end
| with init variableName := dataExpr, quantDecls do dataExpr end
| undefined typeExpr | arbitrary typeExpr

varDecls ::= variableName: typeExpr, · · · , variableName: typeExpr

quantDecls ::= variableName in dataExpr, · · · , variableName in dataExpr

assignExprs ::= variableName := dataExpr, · · · , variableName := dataExpr

The following subsections describe each of these types of data expressions.

74 Part 3. AWN input language

3.1 Literals
As in many programming languages, data expressions may consist of simple literal values. In
case of the AWN input language, there are boolean literals, integer literals, and real literals:

dataExpr ::= booleanValue | integerValue | realValue | enumTypeName::enumValue

In addition, the values of the declared enumerable types can also be considered literals. Note
that the name of the enumerable type and the :: symbol are obligatory!

3.2 Variables
Data expressions can refer to the values stored in variables by writing the names of those
variables:

dataExpr ::= variableName

3.3 Function calls
Functions (see Section 5) can be called by writing the function name with the appropriate number
of parameter values in parentheses, and if a function is stored in a variable the same can be done
by writing the name of that variable instead:

dataExpr ::= functionName(dataExpr, · · · ,dataExpr)
| variableName(dataExpr, · · · ,dataExpr)

3.4 Casting
A special type of function consists of the name of a type followed by an expression in parentheses:

dataExpr ::= typeName(dataExpr)
| list of typeExpr (dataExpr)
| set of typeExpr (dataExpr)

This is a casting operation: the expression in parentheses will be interpreted as if it were of the
type in front of the parentheses. The same can be done without using a type name in case of lists
and sets – this syntax is useful in particular for casting the element type of a collection.
Note that it is good practice (but not obligatory) to precede a cast by an is or istype operation

(see subsection 3.5) in order to check at run-time whether the cast is legal.

3 Data expressions 75

3.5 Operations

Data expressions can, of course, consist of unary or binary operations (a list of all available unary
and binary operations can be found in Appendix F):

dataExpr ::= unaryOp dataExpr
| dataExpr binaryOp dataExpr
| dataExpr . fieldName
| dataExpr[dataExpr]
| dataExpr is typeExpr
| dataExpr istype typeExpr
| (dataExpr)

The following binary operations in particular are special:
• The . operator followed by the name of a struct field is used to access the value stored in

the field by that name in the preceding struct;
• [n] accesses the n+1-th element of the preceding list (n must be of type Integer);
• The is operator checks whether the object left of the operator is of the type right of the

operator or a subtype;
• The istype operator checks whether the object left of the operator is exactly of the type

right of the operator;
In order to override operator precedence, place the appropriate data expression between paren-

theses in the traditional manner.

3.6 Partial function construction

The -> operator can be used to construct an instance of a partial function:

dataExpr ::= dataExpr # · · · # dataExpr -> dataExpr

3.7 Predefined functions

The AWN input language provides a number of predefined functions:
• |dataExpr| returns the absolute value of an integer or real, or the size of a list;
• low(typeExpr) returns the first value of an enum type, or the lower bound of a range type;
• high(typeExpr) returns the last value of an enum type, or the upper bound of a range type;
• head(dataExpr) returns the first element of a list;
• tail(dataExpr) returns a list containing all elements of a list after its first element;
• rhead(dataExpr) return the last element of a list;
• rtail(dataExpr) returns a list containing all elements of a list before its last element;
• floor(dataExpr) returns the greatest integer smaller than or equal to a real;
• ceil(dataExpr) returns the smallest integer greater than or equal to a real;
• round(dataExpr) returns a real rounded to an integer;
• collapse(dataExpr) remove all duplicates from a list.

76 Part 3. AWN input language

3.8 Lambda functions
Lambda functions are anonymous functions that are specified inside data expressions themselves:

dataExpr ::= lambda varDecls . dataExpr
varDecls ::= variableName: dataExpr, · · · , variableName: dataExpr

3.9 Collection expressions
Both sets and lists can be constructed manually by using the syntax below:

dataExpr ::= { dataExpr .. dataExpr } (ε | of typeExpr)
| { dataExpr, · · · ,dataExpr } (ε | of typeExpr)
| { dataExpr (ε | quantDecls (ε | @ dataExpr)) } (ε | of typeExpr)
| [dataExpr .. dataExpr] (ε | of typeExpr)
| [dataExpr, · · · ,dataExpr] (ε | of typeExpr)
| [dataExpr (ε | quantDecls (ε | @ dataExpr))] (ε | of typeExpr)

The first notation allows a set to be specified by defining a lower and upper bound. Obviously,
this only works in the case of certain types (integers, reals, and enumerable types). The second
notation specifies set elements one by one, and the third notation uses set comprehension to
specify the contents of the set.
The notations for list expressions are similar, with one restriction: the quantifiers in the last

notation must be lists – after all, it is not generally possible to convert a symbolic expression to
an exhaustive list of elements!

3.10 Struct construction
Struct types are instantiated by using the new keyword:

dataExpr ::= new typeName(dataExpr, · · · ,dataExpr)

The required parameters provide initial values for all fields of the struct, including inherited
fields (the fields are ordered from oldest to newest). The number of parameters and the types of
the parameters should, of course, be compatible with the types of those fields.

3.11 Conditional expression
The following expression allows one of two branches to be selected based on the evaluation of a
condition:

dataExpr ::= if dataExpr then dataExpr else dataExpr end

The types of both branches must be compatible. If the condition is undefined, the result of the
conditional expression will also be undefined.

3 Data expressions 77

3.12 Quantified expressions
The application of the ∀ and ∃ operators have the following notations in the AWN input language:

dataExpr ::= forall(quantDecls @ dataExpr)
| exists(quantDecls @ dataExpr)

quantDecls ::= variableName in dataExpr, · · · , variableName in dataExpr

3.13 Ifexists expression
The following syntax allows an ∃ operator to be executed, and then one of two branches to be
selected depending on whether the ∃-condition could be satisfied:

dataExpr ::= ifexists quantDecls @ dataExpr then dataExpr else dataExpr end
quantDecls ::= variableName in dataExpr, · · · , variableName in dataExpr

In the positive branch, the quantifiers have the values of an arbitrary instance for which the
∃-condition holds. The negative branch can be used to set a default (or undefined) value.
The code snippet below demonstrates a function that returns the greatest integer in a list
1 function max(ints: list of Integer): Integer

2 = ifexists e1 in list @ forall(e2 in ints @ e1 >= e2) then e1 else 0 end;

3.14 With expression
With a with expression, a value can be computed and stored in a variable for later use:

dataExpr ::= with assignExprs do dataExpr end
assignExprs ::= variableName := dataExpr, · · · , variableName := dataExpr

The following example illustrates how the with expression can be used in practice:
1 function pythagoras(x1, x2, y1, y2: Integer): Real

2 = with dx := x2 - x1, dy := y2 - y1 do

3 sqrt(dx * dx + dy * dy)

4 end;

(The example above assumes the existence of the sqrt function, which is not a predefined
function in the AWN input language.)

78 Part 3. AWN input language

3.15 With-init expression
The with-init expression can be applied to lists in order to compute a value based on their
contents:

dataExpr ::= with init variableName := dataExpr, quantDecls do dataExpr end
quantDecls ::= variableName in dataExpr, · · · , variableName in dataExpr

As an example, the following code snippet shows how with init is used to count the number of
non-negative integers in a list:

1 function getPosIntCount(ints: list of Integer): Integer

2 = with init c := 0, i in ints do

3 if i < 0 then c else c + 1 end

4 end;

The variable c is initialized to 0, after which the data expression in the body is evaluated for
every element i in the list ints: for every i >= 0, c is incremented, otherwise it remains the
same.
Elements of a list are processed in order of their position in the list. When using multiple

quantifiers, the data expression in the body is evaluated for every combination of values of those
quantifiers, with each quantifier iterating once for every combination of values of its preceding
quantifiers.

3.16 Undefined expression
If a data expression is not defined under certain circumstances, the following syntax can be used
to denote this:

dataExpr ::= undefined typeExpr

For example,
1 partial function safeDivide(value, divisor: Integer): Integer

2 = if divisor == 0 then

3 undefined Integer

4 else

5 value / divisor

6 end;

prevents divisions by zero from taking place, returning an undefined value instead. The function
must be defined as partial (see Section 5) as it is not defined for certain input values.
Operations with undefined operands and functions with undefined parameters yield an undefined

value of their return type. This means that undefined Integer == 12 evaluates to undefined
Boolean and that safeDivide(12, 0) + 1.0 evaluates to undefined Real.

4 Constants 79

3.17 Arbitrary expression
For model-checking purposes, it is sometimes useful to be able to give a non-specific literal
value. This does not mean that the literal has a random value, but that the AWN specification
will be considered for all possible values of the literal:

dataExpr ::= arbitrary typeExpr

4 Constants
The AWN input language provides the option to define constants. Constants are global identifiers
with a type and a value that cannot be modified after initialization. The grammar for constants is
as follows:

constDecl ::= const variableName: typeExpr;

A simple example of a constant declaration is
1 const PI: Real = 3.14159;

5 Functions
Functions allow computations to be expressed more efficiently. To define a function, use the
following grammar:

function ::= (ε | partial) function functionName (varDecls) : typeExpr = dataExpr ;
varDecls ::= variableName: dataExpr, · · · , variableName: dataExpr

Clearly, the distinction between a partial and total function is made with the partial keyword.
A sequence of variable declarations (or rather, parameter declarations) defines which identifiers
refer to the parameter values of the function and which types the type of those parameters. The
function should also specify its return type. Finally, the function must give its body as a data
expression.

80 Part 3. AWN input language

6 Sequential processes
Sequential processes make use of the following grammar:

seqProcessDecl ::=

(ε | sequential) process seqProcessName(varDecls): typeExpr

(ε | uses varDecls) = seqProcessExpr;

Parameters allow information to be passed to a sequential process when it is instantiated.
Sequential processes also have an optional uses clause for variables that are initialized by guards
(this reduces the risk of new variables being introduced by accident).
The body of a sequential process adheres to this grammar:

seqProcessExpr ::= broadcast(dataExpr) . seqProcessExpr

| groupcast(dataExpr, dataExpr) . seqProcessExpr

| unicast(dataExpr, dataExpr) . seqProcessExpr > (seqProcessExpr | ...)
| send(dataExpr) . seqProcessExpr

| deliver(dataExpr) . seqProcessExpr

| receive(variableName) . seqProcessExpr

| [[dataExpr]] seqProcessExpr

| seqProcessName(dataExpr, · · · , dataExpr)

| seqProcessExpr + seqProcessExpr

| [dataExpr] seqProcessExpr

| (seqProcessExpr)

| if dataExpr then seqProcessExpr else seqProcessExpr end
| trace(dataExpr) . seqProcessExpr

The grammar only introduces a small number of new notations compared to the behavior of
AWN:
• The unicast action now can use ... instead of a process expression as its ‘else’ branch,

which denotes that its ‘else’ branch is the same as its ‘then’ branch.
• Instead of the [_] notation for guards, it is now possible to use an if expression. The main

advantage of the if expression is the presence of an else branch. (Both branches produce a
τ-transition when taken.)
• The trace action is introduced in order to facilitate model-checking. The trace action

takes a parameter of type $TRACE (or a subtype of $TRACE) which can carry interesting
data. Because trace actions are visible actions from outside the protocol, the data will also
be visible.

The code snippet below shows an example of a sequential process that forwards a message to
its destination:

1 process P uses m: $MSG, dest: $IP, text: String = receive(m) .

2 [DataMsg(m) == new DataMsg(dest, text)] unicast(dest, m) . P > ...;

7 Parallel processes 81

7 Parallel processes
Parallel processes use the following syntax:

parProcessDecl ::=

parallel process parProcessName(varDecls): typeExpr

(ε | uses varDecls) = parProcessExpr;

The body of a parallel process makes use of this grammar:

parProcessExpr ::= seqProcessExpr | parProcessExpr << parProcessExpr

A parallel process expression can put a number of sequential processes in parallel, exactly as
specified by the formal AWN language.

8 Networks
Networks adhere to the following grammar:

networkDecl ::= network networkName = networkExpr;

networkExpr ::= networkExpr || networkExpr | nodeExpr

nodeExpr ::= dataExpr:parProcessExpr:dataExpr

| dataExpr:parProcessName(dataExpr, · · · , dataExpr):dataExpr

The building blocks of a network are node expressions. These expressions start with the address
of the node (which must be of type $IP or a subtype of $IP) followed by a colon and then a
parallel process expression or the instantiation of a parallel process (see subsection 7) followed
by a second colon and then a set of the addresses of the nodes that are within range of the current
node.
To illustrate, the following code snippet defines a fully connected network of 3 nodes:
1 network ThreeNodes =

2 new IP(1) : Node() : { new IP(2), new IP(3) }

3 || new IP(2) : Node() : { new IP(1), new IP(3) }

4 || new IP(3) : Node() : { new IP(1), new IP(2) };

4. Implementation4. Implementation

The translation from AWN to mCRL2 has been created inside of a newly developed framework
that supports future translations from AWN to other model-checkers and code generators. The
implementation of this framework and of the AWN-to-mCRL2 translation is described here.

1 Translation framework
The framework, which has mostly been developed in Java but also makes use of several domain-
specific languages, can be used in two ways:
• As standalone software; or
• As a plug-in of the popular coding environment Eclipse1.

Both cases make use of the same underlying code.
Figure 4.1 gives a high-level overview of how different parts of the implementation relate. The

core of the implementation is the so-called ‘transformation chain executor’. This component can
execute a series of instructions contained in a given transformation chain specification, such as
loading an AWN model from a text file (that is, compiling an AWN specification), transforming
models (translating AWN to a different format), and exporting a model as text.
In order to compile an AWN specification, the transformation chain executor uses the AWN

compiler. This compiler is generated from an Xtext grammar. The compiler also has several
modules for which Xtext only generates stubs; they must be implemented further manually if
needed. The important modules are the scope provider, which determines the objects that are
accessible from a specific position in an AWN specification, and the validator, which checks for
problems such as type mismatches.
The Eclipse plug-in contains functionality that redirects the files of the selected project to

the same code as the standalone implementation. However, it also makes use of the scope
provider and validator in a more direct manner, namely by extracting suggestions for code
completion from them and by showing the user immediately whether there are errors in the
AWN specification. There are also Xtext modules that are only used by user-interfaces, such
as a module that generates a layout of the code that can be used for navigation and a module

1https://www.eclipse.org/

https://www.eclipse.org/

84 Part 4. Implementation

that shows more information on an object when hovering over it with the mouse. Some of these
modules have been implemented to a limited degree.

Layout manager

Transformation engine

Validator

Scope provider

...

Eclipse plug-in

Standalone
implementation

AWN compiler

Transformation chain executor

AWN metamodel

*

Model-to-text
transformation

* *

Model-to-model
transformationMetamodel

Transformation chain
specification

Figure 4.1: Chain of transformations used by the implementation of the AWN-to-mCRL2
translation.

2 AWN-to-mCRL2 translation
The translation framework currently contains a single translation chain specification, namely
the one from AWN to mCRL2. The specification can be found in the file awn2mcrl2.chain. It
executes 4 main instructions:

1. First, the AWN specification is parsed and validated, resulting in an AWN model if
successful. This model is still in it ‘raw’ form – this means that it is very similar to an
abstract syntax tree, and that more work is needed to make manipulation of the AWN
specification more convenient.

2. The AWN model is reorganized and decorated with more information, which gives a more
forthcoming AWN model.

3. The third transformation constructs an mCRL2 model based on the new AWN model; this
transformation is therefore that which actually performs the AWN-to-mCRL2 translation.

4. The fourth instruction is to export the mCRL2 model to one or more .mcrl2 files.
Other translations (a translation from AWN to UPPAAL, for example) may require additional
intermediate steps or no intermediate steps at all.
The following sections describe each of the main instructions in greater detail. A graphical

representation of the AWN-to-mCRL2 transformation chain can be found in Figure 4.2.

2 AWN-to-mCRL2 translation 85

AWN model

mCRL2 specification

mCRL2 model

Raw-AWN model

AWN specification

Figure 4.2: Simplified transformation chain for the AWN-to-mCRL2 translation.

Figure 4.3: Screen capture of the graphical user interface of the Eclipse plug-in.

86 Part 4. Implementation

2.1 Compiling AWN
The first transformation in the transformation chain is a compilation of plain-text files: the AWN
specification in text form is converted by a lexer to a token stream, which is subsequently used
by a parser to construct a ‘raw’ AWN model instance (as if it were an abstract syntax tree).
Finally, the ‘raw’ AWN model is checked for problems by a validator. The transformation chain
is aborted if problems are found.
The lexer and parser mentioned above are all generated from a language specification by Xtext,

a framework for developing domain-specific languages. The grammar used by the parser can be
found across Section 3, where the syntax of AWN (as developed in the course of this project) is
discussed.
The validator is an extension of a stub generated by Xtext. It checks the validity of declarations

on the top level of the abstract syntax tree (such as type declarations, function declarations, and
process declarations) by recursively exploring the corresponding branch in the abstract syntax
tree. The validator ignores problems at a higher level if problems at a lower level are found –
otherwise the user would be bombarded with error messages that are mostly irrelevant!
Several (Java) helper classes have been written to assist with the validation. These classes

mostly contain functionality to determine the type of expressions and to analyze the relationships
between types.
Xtext automatically links the lexer, parser, and validator to the compiler. Besides these bare

necessities, Xtext also provides components for an integrated development environment (IDE),
such as a scope provider (which dictates which objects are accessible at a certain position in the
AWN specification) and a content assistant (which helps the user with modifying code). Some of
these components have been implemented in order to make the Xtext-generated IDE for AWN
suitable for more serious use.

2.2 Transformation from Raw-AWN to AWN
The ‘raw’ AWN model produced by the AWN compiler has many characteristics of an abstract
syntax tree. Before doing the transformation to an mCRL2 model, it is convenient to do a
preparatory step that rearranges and restructures parts of the ‘raw’ model first.
This step is performed by another transformation. This transformation is contained in raw2awn.qvto,

where the extension ‘.qvto’ refers to the programming language in which transformation has
been implemented: ‘QVT’ stands for Query/View/Transformation, which are three concepts
that are integrated in the language, and the ‘o’ stands for operational, indicating that certain
instructions in the language are executed imperatively.
The raw2awn.qvto transformation handles the following tasks:
• It introduces actual objects for primitive types, and it changes references to primitive

types to references to those objects. Consequently, subsequent transformations can handle
primitive type references as regular type references.
• The transformation modifies object names if necessary in order to make them unique. This

is done in order to preempt naming conflicts.
• Certain elements in the ‘raw’ model represent multiple object types. The reason for this

is that there exists overlap between the syntax for those different object types, and Xtext
does not have the capability of differentiating between the object types at parsing time.
As a prime example, elements of type NamedDefinitionObjectRef are used for variable
references, values of enumerable types, function calls, and casting operations. The
transformation of the ‘raw’ model determines which object type was meant and replaces

2 AWN-to-mCRL2 translation 87

the original element by one that more accurately represents that object type.
• Some operators for data expressions have ambiguous uses: the + can be used to add up

two numbers, take the union of two sets, or concatenate two lists; the - operator can be
used to subtract a number, set, or list from another number, set, or list; the ! operator can
apply logical negation to a boolean expression or take the complement of a set; and the
|expr| function either returns the absolute value of a number or the size of a list.
Because of the ambiguity, the Xtext parser makes a default choice, letting the transfor-
mation of the ‘raw’ AWN model resolve the ambiguity by potentially overwriting the
operation type based on operand types.
• The transformation fills in missing fields resulting from optional syntax (so that subsequent

transformations do not have to know how to handle these cases).
• The transformation resolves syntactic sugar (such as the syntax of ifexists expressions,

which are actually refinements of with-init expressions).
• The transformation ensures that all types used in the AWN specification have an explicitly

named declaration in the output model. This includes the types of functions and expressions.
This results in a list of type declarations that is often longer than in the original ‘raw’
model. Subsequent transformations can refer to this list in order to more easily identify
types and their relations with other types.

2.3 Transformation from AWN to mCRL2

This part of the implementation has been, of course, the focus of the entire project: it is the
transformation after which AWN has disappeared and an mCRL2 specification has taken over.
This transformation is contained entirely in the file awn2mcrl2.qvto.
The awn2mcrl2.qvto transformation must perform multiple tasks, and applying the translation

function from Section 3 is one of the least laborious.
Broadly, the steps that the transformation goes through are as follows:

1. It defines a list of keywords from both AWN and mCRL2. When encountering these
keywords as names of variables or functions at a later stage of the transformation they will
be renamed in order to prevent naming conflicts.

2. It makes a list for AWN types and a list of mCRL2 sorts – the idea being that the mCRL2
sort at a specific position in the second list is the counterpart to an AWN type at a
specific position in the first list. The first entries added to the lists are the AWN primitive
types Boolean, Integer, Real, $IP, $MSG, $DATA, $STRUCT, and $TRACE. The mCRL2
counterparts are constructed manually.

3. The transformation declares the mCRL2 actions that the translation requires.
4. The transformation declares an mCRL2 sort for each AWN type in the input model, but

without content for the moment: the sort declaration instances are needed from the very
beginning so that they can be referenced before their translation has been performed. The
AWN types and their mCRL2 counterparts are added to the two lists mentioned in step 2.
Because the previous transformation has ensured that all AWN types are present in the
input model, it is now possible to find the corresponding mCRL2 sort declaration of each
AWN type that the transformation can encounter.

5. Now that all mCRL2 sorts can be referenced, the transformation does the actual translation
of the AWN types. Most translations are straightforward: set types are translated to set
sorts, list types are translated to list sorts, function types are translated to function sorts,
and so on. The exception is the translation of struct types, because all struct types that are

88 Part 4. Implementation

a subtype of the same primitive struct type ($IP, $MSG, $DATA, $STRUCT, or $TRACE) are
converted to the same, manually created mCRL2 structured sort. For each struct type, the
transformation determines its ultimate supertype, and then adds all fields of the struct type
as arguments to the appropriate structured sort.
To be more precise, the mCRL2 structured sort has two constructors: one default ‘nil’
constructor and one ‘new’ constructor. It is the second constructor that is modified at this
point of the transformation:
• The value of the first argument of the constructor indicates the struct type in the

original AWN specification. The operators is and istype compare this value with
their second operand.
• The subsequent arguments consist of all fields of all struct types that inherit from the

primitive struct type in question. (Note that this will likely cause instances of the
structured sort to have many arguments with irrelevant, dummy values.)

6. The constants from the AWN specification are translated.
7. The functions from the AWN specification are translated.
8. The sequential processes from the AWN specification are translated.
9. The parallel processes from the AWN specification are translated.

10. The transformation adds the helper processes G and H (see T14 and T16 in Table 2.9) to the
specification.

11. The network declarations from the AWN specification are translated.
Ultimately, the majority of the awn2mcrl2.qvto file consists of code that translates data

expressions from AWN to mCRL2. This is not surprising considering the number of different
expression types.

2.4 mCRL2 to text
The model-to-text part of the translation was implemented with the following features:
• Model-to-text specifications are compiled at run-time. This has the advantage that users

can add or modify a translation without having to rebuild the AWN plug-in for Eclipse.
• Names and locations of the output files are specified in the current .chain file. This means

that all information related to input and output can be found in that .chain file.
The model-to-text translation for mCRL2 was defined in a metamodel-independent language

developed specifically for this project, namely TxtGen (see Appendix I). Not making use of
an existing tool deviates from the MDE principle to reuse previous work as much as possible;
however, achieving the features listed above by using available tools such as Xpand and Acceleo
required more effort than expected, and so a custom alternative was developed. In the future, it
may be preferable to replace the mCRL2-to-text translation with one that is based on an existing
tool.

5. Use cases5. Use cases

Here two use cases that were performed in the course of the project are discussed.

1 Leader protocol
The protocol chosen of the first use case is the leader protocol, chosen because it is small, making
manual inspection – if required – manageable. The purpose of the leader protocol is to allow
the nodes of a fully connected network to decide on a leader node. To this end, each node
is initialized with a number, which it will eventually transmit to all other nodes. Nodes keep
track of which node transmitted the highest number, and the idea is that when all nodes have
transmitted their number all nodes have selected the same leader.
The leader protocol was defined using the AWN input language (see Appendix G). A small

modification to the original leader protocol was made in order to make certain state variables vis-
ible – unfortunately, state variables are hidden from direct analysis in mCRL2. The modification
is the addition of a special trace action in the body of the main process followed by the main
process recursively calling itself, which means that it should not influence the other behavior of
the protocol in any way.
Next, the following property (formulated using µ-calculus combined with Hennessy-Milner

logic) was checked for the leader protocol:

µX . (νY . φ ∧ [true] Y)∨ ([¬trace] X ∧<¬trace> X)

where φ expresses a state in which all nodes in the network can do a trace action with the same
arguments, namely the number and address of the selected leader node. The first disjunct of the
property denotes a state where φ holds and from where no state can be reached such that ¬φ .
The rather long second disjunct of the property has been added so that any traces are rejected in
which a trace action occurs while there are still other actions possible.
It was expected that the property would hold for the leader protocol, and this was confirmed by

mCRL2. The protocol was subsequently changed so that the property should no longer hold, and
this was also confirmed by mCRL2.

90 Part 5. Use cases

2 AODV protocol
The second use case makes use of the Ad hoc On-Demand Distance Vector (AODV) routing
protocol [27], a protocol previously formalized in AWN [28, 29]. AODV is a widely used routing
protocol designed for Mobile Ad-hoc Networks (MANETs) and Wireless Mesh Networks
(WMNs).
As customary for internet protocols, AODV has been specified in an RFC document [27], which

contains several ambiguities, contradictions, and sections that are underspecified. As a matter
of fact, AWN was first developed to obtain a formal specification of AODV that was consistent
and complete [28, 29]. This specification has been input in the implementation of this project in
order to translate it to mCRL2 (see Appendix H).
mCRL2 was used to check AODV for a weak form of the package-delivery property, the property

of whether a sent packet eventually arrives at its destination. This property was expressed as
follows:

[true∗.trace(newpkt(dip,data))]
[(¬deliver(dip,data))∗]

<true∗><deliver(dip,data)> true

The property looks for the special trace action, which has in this case been deployed to make
the sending of a packet visible to the mCRL2 model-checker. The property states that every path
that ends with a trace action must be followed by a path that, until the packet has been deliver, is
at the very least capable of eventually delivering the packet.
The property was tested with mCRL2 for a static linear network of three nodes. Two tests were

performed: one test where one packet was inserted into the network and one test where two
packets were inserted into the network. As was expected, the first test succeeded and the second
test failed: pen-and-paper analysis has shown in the past that the packet-delivery property does
not hold for AODV [28].

6. Conclusions6. Conclusions

1 Results summary
The project has yielded the following items:
• A formally defined function for translating AWN to mCRL2;
• A proof that shows that the output of the translation function is strongly bisimilar to its

input, up to data congruence and modulo action renaming;
• An implementation of the translation function;
• A specification of the AWN input language;
• An editor for the AWN input language, serving as a front-end for the implementation;
• Some initial use cases of the implementation, demonstrating its usability.

2 Discussion
This section discusses (some of the) shortcomings of the items that the project produced. First,
the shortcomings of the correctness proof:
• There is an important difference between the semantics of AWN and the semantics of

mCRL2: sequential process expressions in AWN can carry semantic values, whereas
process expression in mCRL2 consist exclusively of syntax. This difference has been
resolved by introducing the translation rule T12, and by adding the index parameter ξ of
the Tξ function (the function that translates data expressions). Several lemmas make it
possible to manipulate the contents of this parameter.
An alternate approach to resolving the difference between the two semantics that was
considered was defining an intermediate AWN language with exclusively syntactic expres-
sions. This option was not chosen because it was estimated that the fact that the correctness
proof would then also consist of two left-to-right and two right-to-left steps would result in
more work than proving a somewhat more complicated left-to-right step and a somewhat
more complicated right-to-left step.
If more correctness proofs are needed in the future with similar issues, it may be worthwhile
to define an intermediate AWN language after all. It then becomes possible to base multiple
correctness proofs on work that is done only once.

92 Part 6. Conclusions

• The right-to-left part of the correctness proof (see Lemmas 4.8 and 4.9) requires the
evaluation of all possible behavior of specific mCRL2 process expressions. This behavior
is defined by the possible derivations for those process expressions, and it requires an
understanding of the inference rules of mCRL2 to determine that all derivations for
a particular process expression have been found (see Section 4.1). This reasoning is
sufficiently convincing for the purposes of this project. Regardless, it is one of the weaker
parts of the correctness proof.
In order to increase the confidence in that part of the proof, one could use software
that systematically searches for all possible derivations. These derivations can then be
compared to the derivations found in the pen-and-paper proof in this report.

Second, the shortcomings of the implementation:

• The code that implements the AWN-to-mCRL2 translation closely reflects the rules of
the translation function (see Section 3), which means that the correctness of the code
can be assumed with a high degree of confidence. The same does not apply to the code
that translates AWN data expressions, from which the correctness proof abstracts (see
Section 3.16). The implementation of the translation consists for 68% (circa 1980 out of
2900 lines) of code that translates data expressions.
Clearly, the translation of the data expressions is a significant weakness of the implementa-
tion. However, proving its correctness is much more involved than proving the correctness
of the process algebra only, and the work required would not have fitted within the time
frame of the project.
• The behavior of undefined values does not match the description in Section 3.16 at the

time of writing. Instead, the current behavior treats each undefined value more or less as a
constant; for example, undefined Integer == undefined Integer yields true rather
than undefined Boolean.
The use cases do not require the official behavior, and implementing it has therefore been
given a low priority. Eventually, the work was skipped altogether due to time constraints.
A full implementation would also make mCRL2 specifications more complicated, which
could make manually debugging the software much more difficult. The additional mCRL2
code could also significantly increase the amount of time that it takes to analyze a specifi-
cation. Regardless, it is desirable to implement the full behavior of undefined values in
the future.
• The implementation does not include unit tests or another form of automated software

testing. Having such testing methods is a good way to detect unforeseen errors that result
from changes to the code, and it should be a high priority to add them if the translation
framework is to used more intensively.
Automated unit testing is not trivial to create because Xtext adds a non-deterministic
component to the behavior of the implementation: Xtext can construct different – but
equivalent – abstract syntax trees from the same AWN specification. This is a side-effect of
ordering the objects in a set according to their hashes. It is an effect that can be overcome,
but doing so has been considered out-of-scope for this project.
• The use cases that were performed with the help of the implementation were small; that

is, the network topologies that were tested only contained up to 5 nodes. These network
topologies already required much time and memory to analyze (see Chapter 5). However,
none of mCRL2’s state space reduction methods were used, nor any of LTSmin’s multi-
threaded algorithms. The expectation is that employing such techniques will make the

3 Future work 93

analysis of larger network topologies feasible.
• The current implementation has been developed so that translations can be altered while

the editor for the AWN input language is running: the code that defined the translation
is reloaded before each execution. This is useful when developing a translation – one
does not have to frequently restart the editor, and third parties do not require knowledge
of or access to the translation framework – but it also impacts the performance of the
implementation. In the future, it may be worth changing the implementation so that the
translation is only loaded at start-up.
• Related to the previous point is the fact that the model-to-text converter of the framework

(see Section 2.4) is a custom-built one rather than one that is based on Ecore Modelling
Framework, such as Acceleo and Xpand. The reason for this is that after serious efforts
no progress was made towards loading model-to-text translations at run-time with those
converters. They therefore did not meet the (admittedly secondary) goal of allowing third
parties do develop their own translations, and an alternative was developed.
Existing model-to-text converters also only supported the export of single text files (unless
the documentation for exporting multiple text files per model was missing or overlooked).
Since translations can very easily be imagined to have multiple output files, this was an
additional reason to develop a custom converter.
The disadvantage of using a custom-built model-to-text converter is, of course, that
one must learn to use it. It may also contain errors (considering that there is no wider
community that makes use of it) and it will likely require maintenance in the future.
Because of this, it would be prudent to re-evaluate the use of the custom-built converter
when more translations are added to the translation framework.

3 Future work
Several aspects of the translation framework have been left unfinished and may merit continuation
in the future:
• Implement undefined according to its description in Section 3.16;
• Add automated (unit) tests to the implementation, in case of further development;
• Make the implementation even more user-friendly, for example by linking mCRL2 (or

LTSmin) more directly with Eclipse;
• Analyze larger network topologies by using mCRL2’s reduction techniques and possibly

LTSmin;
• Implement other translations (such as a translation to UPPAAL) and code generation;
• Implement the translation of properties such as packet deliver and loop freedom;
• Optimize the implementation.

Bibliography
[1] S. Bradner. IETF Working Group Guidelines and Procedures. RFC 2418. RFC Editor,

Sept. 1998, pages 19–21. URL: https://tools.ietf.org/html/rfc2418 (cited on
page 13).

[2] C. Villamizar, R. Chandra, and R. Govindan. BGP Route Flap Damping. RFC 2418. RFC
Editor, Nov. 1998, pages 19–21. URL: https://www.ietf.org/rfc/rfc2439.txt
(cited on page 13).

[3] Zhuoqing Morley Mao et al. “Route flap damping exacerbates Internet routing conver-
gence”. In: ACM SIGCOMM Computer Communication Review. Volume 32. 4. ACM.
2002, pages 221–233 (cited on page 13).

[4] Charles Perkins, Elizabeth Belding-Royer, and Samir Das. Ad hoc on-demand distance
vector (AODV) routing. Technical report. 2003 (cited on page 13).

[5] Rob Van Glabbeek et al. “Sequence numbers do not guarantee loop freedom: AODV
can yield routing loops”. In: Proceedings of the 16th ACM international conference on
Modeling, analysis & simulation of wireless and mobile systems. ACM. 2013, pages 91–
100 (cited on pages 13, 14).

[6] Ansgar Fehnker et al. “A process algebra for wireless mesh networks”. In: European
Symposium on Programming. Springer. 2012, pages 295–315 (cited on pages 13, 14, 19,
20).

[7] Ansgar Fehnker et al. “A process algebra for wireless mesh networks used for modelling,
verifying and analysing AODV”. In: arXiv preprint arXiv:1312.7645 (2013) (cited on
page 13).

[8] Peter Höfner et al. “A rigorous analysis of AODV and its variants”. In: Proceedings of the
15th ACM international conference on Modeling, analysis and simulation of wireless and
mobile systems. ACM. 2012, pages 203–212 (cited on page 14).

[9] Emile Bres, Rob van Glabbeek, and Peter Höfner. “A timed process algebra for wireless
networks with an application in routing”. In: European Symposium on Programming
Languages and Systems. Springer. 2016, pages 95–122 (cited on page 14).

[10] Jan Friso Groote et al. “The formal specification language mCRL2”. In: Dagstuhl Seminar
Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik. 2007 (cited on page 14).

[11] Rob van Glabbeek, Peter Höfner, and Djurre van der Wal. “Analysing AWN-specifications
using mCRL2”. In: International Conference on integrated Formal Methods. iFM. 2018
(cited on page 14).

[12] List of model checking tools. https://en.wikipedia.org/wiki/List_of_model_
checking_tools. [Online; accessed 1-October-2017]. 2017 (cited on page 15).

[13] List of verification and synthesis tools. https://github.com/johnyf/tool_lists/
blob/master/verification_synthesis.md. [Online; accessed 1-October-2017].
2017 (cited on page 15).

https://tools.ietf.org/html/rfc2418
https://www.ietf.org/rfc/rfc2439.txt
https://en.wikipedia.org/wiki/List_of_model_checking_tools
https://en.wikipedia.org/wiki/List_of_model_checking_tools
https://github.com/johnyf/tool_lists/blob/master/verification_synthesis.md
https://github.com/johnyf/tool_lists/blob/master/verification_synthesis.md

96 BIBLIOGRAPHY

[14] Yahoda verification tools database. https://web.archive.org/web/20151106214218/
http://anna.fi.muni.cz/yahoda/. [Online; accessed 1-October-2017]. 2017 (cited
on page 15).

[15] Stefan Blom, Jaco van de Pol, and Michael Weber. “LTSmin: Distributed and Symbolic
Reachability.” In: CAV. Volume 6174. Springer. 2010, pages 354–359 (cited on pages 16,
17).

[16] André Arnold et al. “The AltaRica formalism for describing concurrent systems”. In:
Fundamenta Informaticae 40.2, 3 (1999), pages 109–124 (cited on page 17).

[17] Hubert Garavel et al. “CADP 2011: a toolbox for the construction and analysis of dis-
tributed processes”. In: International Journal on Software Tools for Technology Transfer
15.2 (2013), pages 89–107 (cited on page 17).

[18] Thomas Gibson-Robinson et al. “FDR3—a modern refinement checker for CSP”. In:
International Conference on Tools and Algorithms for the Construction and Analysis of
Systems. Springer. 2014, pages 187–201 (cited on page 17).

[19] Sjoerd Cranen et al. “An Overview of the mCRL2 Toolset and Its Recent Advances.” In:
TACAS. Volume 13. Springer. 2013, pages 199–213 (cited on page 17).

[20] Alessandro Cimatti et al. “NuSMV 2: An opensource tool for symbolic model checking”.
In: International Conference on Computer Aided Verification. Springer. 2002, pages 359–
364 (cited on page 17).

[21] Gerard J. Holzmann. “The model checker SPIN”. In: IEEE Transactions on software
engineering 23.5 (1997), pages 279–295 (cited on page 17).

[22] Gregor Kiczales et al. “Aspect-oriented programming”. In: ECOOP’97—Object-oriented
programming (1997), pages 220–242 (cited on page 17).

[23] FPM Stappers et al. “Dogfooding the structural operational semantics of mCRL2”. In:
Computer Science Report 11-18 (2011) (cited on page 28).

[24] Jan Friso Groote and Mohammad Reza Mousavi. Modeling and analysis of communicating
systems. MIT press, 2014 (cited on pages 28, 31).

[25] Gordon D Plotkin. “A structural approach to operational semantics”. In: (1981) (cited on
page 28).

[26] Robin Milner. Communication and concurrency. Volume 84. Prentice hall New York etc.,
1989 (cited on page 52).

[27] C. E. Perkins, E. M. Belding-Royer, and S. Das. Ad hoc On-Demand Distance Vector
(AODV) Routing. RFC 3561 (Experimental), Network Working Group. 2003. URL: http:
//www.ietf.org/rfc/rfc3561.txt (cited on page 90).

[28] Ansgar Fehnker et al. A Process Algebra for Wireless Mesh Networks used for Modelling,
Verifying and Analysing AODV. TR. 2013. URL: http://arxiv.org/abs/1312.7645
(cited on page 90).

[29] R. J. van Glabbeek et al. “Modelling and Verifying the AODV Routing Protocol”. In:
Distributed Computing 29.4 (2016), pages 279–315. DOI: 10.1007/s00446-015-0262-
7 (cited on page 90).

https://web.archive.org/web/20151106214218/http://anna.fi.muni.cz/yahoda/
https://web.archive.org/web/20151106214218/http://anna.fi.muni.cz/yahoda/
http://www.ietf.org/rfc/rfc3561.txt
http://www.ietf.org/rfc/rfc3561.txt
http://arxiv.org/abs/1312.7645
https://doi.org/10.1007/s00446-015-0262-7
https://doi.org/10.1007/s00446-015-0262-7

Appendices

Appendix A

Proof of Theorem 4.1

Theorem: Data congruence in mCRL2 is a strong bisimulation.
Proof: The proof is provided by structural induction over the inference rules of mCRL2 (see

Tables 2.6 and 2.7).

Induction hypothesis: For all premises p ω−→ p′ of an mCRL2 inference rule, it holds that

∀q . q≡ p⇒∃q′ . q′ ≡ p′∧q ω−→ p′

Base cases: Show for each axiomatic inference rule of mCRL2 with conclusion r ω−→ r′ that for
all s≡ r there exists some s′ ≡ r′ such that s ω−→ s′.

Axiom: mCRL2 has only one (untimed) axiomatic inference rule, namely:

AXIOM
α

JαK−−→X
In other words, r = α and r′ =X.
For any s≡ r, it holds that JsK = JrK = JαK. This means that the following derivation is
valid:

AXIOM
s

JαK−−→X
Obviously,X≡X. This finishes the base case of Theorem 4.1.

100 Part A. Proof of Theorem 4.1

Induction step: Given only its side conditions and the induction hypothesis, show for each
inference rule of mCRL2 with conclusion r ω−→ r′ that for all s≡ r there exists some s′ ≡ r′ such
that s ω−→ s′.

Seq 1: mCRL2 defines inference rule

p ω−→X
SEQ 1

p.q ω−→ q

In other words, r = p.q and r′ = q.
Because data expressions can only be part of a single process, for any s≡ p.q it must be
the case that

∃s1,s2 . s1 ≡ p∧ s2 ≡ q∧ s = s1.s2

This means that the following derivation is valid:

Induction hypothesis
s1

ω−→X
SEQ 1

s1.s2
ω−→ s2

Since s2 ≡ q, this particular induction step of Theorem 4.1 is confirmed.

Sum 1: mCRL2 defines inference rule

p[d := te]
ω−→ p′

e ∈MD SUM 2
∑d:D p ω−→ p′

In other words, r = ∑d:D p and r′ = p′.
Because of the form,

∀s . s≡ r⇒∃q . s = ∑d:D q

Note that FV(q) = FV(p)⊆ {d} which, with the previous expression, gives that

q[d := tu]≡ p[d := tu]

for all u ∈MD. In particular, this equation holds for u = e.
The induction hypothesis can now be used to determine that

p[d := te]
ω−→ p′∧q[d := te]≡ p[d := te]⇒

(
∃q′ . q′ ≡ p′∧q[d := te]

ω−→ q′
)

This means that the following derivation is valid:

q[d := te]
ω−→ q′

e ∈MD SUM 2
∑d:D q ω−→ q′

Since q′ ≡ r′, this particular induction step of Theorem 4.1 is confirmed.

101

Rec 1: mCRL2 defines inference rule

q[d1 := t1, · · · ,dn := tn]
ω−→ q′

P(d1 : D1, · · · ,dn : Dn)
def
= q RECURSION 2

P(t1, · · · , tn)
ω−→ q′

In other words, r = P(t1, · · · , tn) and r′ = q′.
Because data expressions cannot affect data expressions located within another process
argument, for any s≡ P(t1, · · · , tn) it must be the case that

∃u1, · · ·un . u1 ≡ t1∧·· · ∧un ≡ tn∧ s = P(u1, · · · ,un)

Furthermore,

∀u1, · · ·un . u1 ≡ t1∧·· · ∧un ≡ tn⇒ q[v1 := u1, · · · ,un := tn]≡ q[v1 := t1, · · · ,vn := tn]

According to the induction hypothesis, this means that there exists an s′ ≡ q′ such that

q[v1 := u1, · · · ,un := tn]
ω−→ s′

This yields the start of the following derivation:

(see above)
q[d1 := u1, · · · ,dn := un]

ω−→ s′
P(d1 : D1, · · · ,dn : Dn)

def
= q RECURSION 2

P(u1, · · · ,un)
ω−→ s′

Since s′ ≡ r′, this particular induction step of Theorem 4.1 is confirmed.

The proofs for the other induction steps are similar to the ones above and are not included in
this document. All the proofs combined prove that Theorem 4.1 holds.

Appendix B

Complete proof of Lemma 4.6

Lemma: If e is a semantic AWN value and v an AWN variable, then

v ∈V ∧v /∈ DOM(ξ)⇒ TV (ξ ,p)
[

T(v) := tU(e)
]
= TV (ξ [v := e],p)

Proof: The proof is provided by structural induction over the translation rules T1 to T10.
Induction hypothesis: For all recursions TW (ξ ,p) that are part of a translation rule defining TV ,

it holds that

v ∈W ∧v /∈ DOM(ξ)⇒ TW (ξ ,p)
[

T(v) := tU(e)
]
= TW (ξ [v := e],p)

1 Base case

Translation rule T8: Applying a substitution to T8 gives the following:

TV (ξ ,X(exp1, · · · ,expn))[T(v) := tU(e)]

T8
= X(Tξ (exp1), · · · ,Tξ (expn))[T(v) := tU(e)]

= X(Tξ (exp1)[T(v) := tU(e)], · · · ,Tξ (expn)[T(v) := tU(e)])

Lemma 4.5 (n times)
= X(Tξ [v:=e](exp1), · · · ,Tξ [v:=e](expn))

T8
= TV (ξ [v := e],X(exp1, · · · ,expn))

104 Part B. Complete proof of Lemma 4.6

2 Induction step

Translation rule T1: As a preparatory step, observe that

v ∈V ⇒ T(v) ∈ T(V)

D /∈ T(V)

}
⇒ D 6= T(v) (B.1)

Applying a substitution to T1 gives the following:

TV (ξ ,broadcast(ms).p)[T(v) := tU(e)]

T1
=
(
∑D:T(Set(IP)) cast(UIP,D,Tξ (ms)).TV (ξ ,p)

)
[T(v) := tU(e)]

B.1
= ∑D:T(Set(IP)) cast(UIP[T(v) := tU(e)],D,Tξ (ms)[T(v) := tU(e)]).TV (ξ ,p)[T(v) := tU(e)]

UIP is closed
= ∑D:T(Set(IP)) cast(UIP,D,Tξ (ms)[T(v) := tU(e)]).TV (ξ ,p)[T(v) := tU(e)]

Lemma 4.5
= ∑D:T(Set(IP)) cast(UIP,D,Tξ [v:=e](ms)).TV (ξ ,p)[T(v) := tU(e)]

I.H.
= ∑D:T(Set(IP)) cast(UIP,D,Tξ [v:=e](ms)).TV (ξ [v := e],p)
T1
= TV (ξ [v := e],broadcast(ms).p)

This proves this particular induction step.

Translation rule T2: As a preparatory step, observe that

v ∈V ⇒ T(v) ∈ T(V)

D /∈ T(V)

}
⇒ D 6= T(v) (B.2)

Applying a substitution to T2 gives the following:

TV (ξ ,groupcast(dests,ms).p)[T(v) := tU(e)]

T2
=
(
∑D:T(Set(IP)) cast(Tξ (dests),D,Tξ (ms)).TV (ξ ,p)

)
[T(v) := tU(e)]

B.2
= ∑D:T(Set(IP)) cast(Tξ (dests)[T(v) := tU(e)],D,Tξ (ms)[T(v) := tU(e)]).TV (ξ ,p)[T(v) := tU(e)]

Lemma 4.5 (2 times)
= ∑D:T(Set(IP)) cast(Tξ [v:=e](dests),D,Tξ [v:=e](ms)).TV (ξ ,p)[T(v) := tU(e)]

I.H.
= ∑D:T(Set(IP)) cast(Tξ [v:=e](dests),D,Tξ [v:=e](ms)).TV (ξ [v := e],p)
T2
= TV (ξ [v := e],groupcast(dests,ms).p)

This proves this particular induction step.

2 Induction step 105

Translation rule T3: Applying a substitution to T3 gives the following:

TV (ξ ,unicast(dest,ms).pI q)[T(v) := tU(e)]

T3
= (cast({Tξ (dest)},{Tξ (dest)},Tξ (ms)).TV (ξ ,p)

+¬uni({Tξ (dest)}, /0,Tξ (ms)).TV (ξ ,q))[T(v) := tU(e)]

=
(
cast({Tξ (dest)},{Tξ (dest)},Tξ (ms)).TV (ξ ,p)

)
[T(v) := tU(e)]

+
(
¬uni({Tξ (dest)}, /0,Tξ (ms)).TV (ξ ,q)

)
[T(v) := tU(e)]

Lemma 4.5 (5 times)
= cast({Tξ [v:=e](dest)},{Tξ [v:=e](dest)},Tξ [v:=e](ms)).TV (ξ ,p)[T(v) := tU(e)]

+¬uni({Tξ [v:=e](dest)}, /0,Tξ [v:=e](ms)).TV (ξ ,q)[T(v) := tU(e)]

I.H. (2 times)
= cast({Tξ [v:=e](dest)},{Tξ [v:=e](dest)},Tξ [v:=e](ms)).TV (ξ [v := e],p)

+¬uni({Tξ [v:=e](dest)}, /0,Tξ [v:=e](ms)).TV (ξ [v := e],q)

T3
= TV (ξ [v := e],unicast(dest,ms).pI q)

This proves this particular induction step.

Translation rule T4: Applying a substitution to T4 gives the following:

TV (ξ ,send(Tξ (ms)).p)[T(v) := tU(e)]

T3
=

(
send(/0, /0,Tξ (ms)).TV (ξ ,p)

)
[T(v) := tU(e)]

= send(/0, /0,Tξ (ms)[T(v) := tU(e)]).TV (ξ ,p)[T(v) := tU(e)]

Lemma 4.5
= send(/0, /0,Tξ [v:=e](ms)).TV (ξ ,p)[T(v) := tU(e)]

I.H.
= send(/0, /0,Tξ [v:=e](ms)).TV (ξ [v := e],p)
T4
= TV (ξ ,send(Tξ (ms)).p)

This proves this particular induction step.

Translation rule T5: Applying a substitution to T5 gives the following:

TV (ξ ,deliver(data).p)[T(v) := tU(e)]

T5
=

(
∑ip:T(IP) del(ip,Tξ (data)).TV (ξ ,p)

)
[T(v) := tU(e)]

ip 6= T(v)
= ∑ip:T(IP) del(ip,Tξ (data)[T(v) := tU(e)]).TV (ξ ,p)[T(v) := tU(e)]

Lemma 4.5
= ∑ip:T(IP) del(ip,Tξ [v:=e](data)).TV (ξ ,p)[T(v) := tU(e)]

I.H.
= ∑ip:T(IP) del(ip,Tξ [v:=e](data)).TV (ξ [v := e],p)
T5
= TV (ξ [v := e],deliver(data).p)

This proves this particular induction step.

106 Part B. Complete proof of Lemma 4.6

Translation rule T6: A case distinction is made depending on whether T(v) = T(msg). If
it is assumed that T(v) = T(msg), applying a substitution to T6 gives the following:

TV (ξ ,receive(msg).p)[T(v) := tU(e)]

T(v) = T(msg)
= TV (ξ ,receive(msg).p)[T(msg) := tU(e)]

T6
=
(
∑D,D':T(Set(IP)),T(msg):T(MSG) receive(D,D',T(msg)).TV∪{msg}(ξ

\msg,p)
)
[T(msg) := tU(e)]

= ∑D,D':T(Set(IP)),T(msg):T(MSG) receive(D,D',T(msg)).TV∪{msg}(ξ
\msg,p)

= ∑D,D':T(Set(IP)),T(msg):T(MSG) receive(D,D',T(msg)).TV∪{msg}((ξ [msg := e])\{msg},p)
T6
= TV (ξ [msg := e],receive(msg).p)

If it is assumed that T(v) 6= T(msg), it first must be observed that

v ∈V ⇒ T(v) ∈ T(V)

D,D' /∈ T(V)

}
⇒ D,D' 6= T(v) (B.3)

Now the same result can be obtained as before:

TV (ξ ,receive(msg).p)[T(v) := tU(e)]

T6
=
(
∑D,D':T(Set(IP)),T(msg):T(MSG) receive(D,D',T(msg)).TV∪{msg}(ξ

\msg,p)
)
[T(v) := tU(e)]

B.3, T(v) 6= T(msg)
= ∑D,D':T(Set(IP)),T(msg):T(MSG) receive(D,D',T(msg)).TV∪{msg}(ξ

\msg,p)[T(v) := tU(e)]

I.H.
= ∑D,D':T(Set(IP)),T(msg):T(MSG) receive(D,D',T(msg)).TV∪{msg}(ξ

\msg[v := e],p)

= ∑D,D':T(Set(IP)),T(msg):T(MSG) receive(D,D',T(msg)).TV∪{msg}((ξ [v := e])\{msg},p)
T6
= TV (ξ [v := e],receive(msg).p)

This proves this particular induction step.

2 Induction step 107

Translation rule T7: As a preparatory step, note that

v ∈V ⇒ T(v) ∈ T(V)

tmp /∈ T(V)

}
⇒ tmp 6= T(v) (B.4)

A case distinction is made depending on whether T(v) = T(var). If it is assumed that
T(v) = T(var), applying a substitution to T7 gives the following:

TV (ξ ,Jvar := expK p)[T(v) := tU(e)]

T(v) = T(var)
= TV (ξ ,Jvar := expK p)[T(var) := tU(e)]

T7
= (∑tmp:sort(T(var))(tmp= Tξ (exp))→ ∑T(var):sort(T(var))(T(var) = tmp)→

t(/0, /0,msg dummy).TV∪{var}(ξ
\var,p))[T(var) := tU(e)]

B.4
= ∑tmp:sort(T(var))(tmp= Tξ (exp)[T(var) := tU(e)])→

∑T(var):sort(T(var))(T(var) = tmp)→

t(/0, /0,msg dummy).TV∪{var}(ξ
\var,p)

Lemma 4.5
= ∑tmp:sort(T(var))(tmp= Tξ [var:=e](exp))→ ∑T(var):sort(T(var))(T(var) = tmp)→

t(/0, /0,msg dummy).TV∪{var}(ξ
\var,p)

T7
= TV (ξ [var := e],Jvar := expK p)

If it is assumed that T(v) 6= T(var), the same result can be obtained:

TV (ξ ,Jvar := expK p)[T(v) := tU(e)]

T7
= (∑tmp:sort(T(var))(tmp= Tξ (exp))→ ∑T(var):sort(T(var))(T(var) = tmp)→

t(/0, /0,msg dummy).TV∪{var}(ξ
\var,p))[T(v) := tU(e)]

B.4
= ∑tmp:sort(T(var))(tmp= Tξ (exp)[T(v) := tU(e)])→

(∑T(var):sort(T(var))(T(var) = tmp)→

t(/0, /0,msg dummy).TV∪{var}(ξ
\var,p))[T(v) := tU(e)]

T(v) 6= T(var)
= ∑tmp:sort(T(var))(tmp= Tξ (exp))→ ∑T(var):sort(T(var)))[T(v) := tU(e)]→

t(/0, /0,msg dummy).TV∪{var}(ξ
\var,p)[T(v) := tU(e)]

Lemma 4.5
= ∑tmp:sort(T(var))(tmp= Tξ [v:=e](exp))→ ∑T(var):sort(T(var))(T(var) = tmp)→

t(/0, /0,msg dummy).TV∪{var}(ξ
\{var},p)[T(v) := tU(e)]

I.H.
= ∑tmp:sort(T(var))(tmp= Tξ [v:=e](exp))→ ∑T(var):sort(T(var))(T(var) = tmp)→

t(/0, /0,msg dummy).TV∪{var}(ξ
\{var}[v := e],p)

= ∑tmp:sort(T(var))(tmp= Tξ [v:=e](exp))→ ∑T(var):sort(T(var))(T(var) = tmp)→

t(/0, /0,msg dummy).TV∪{var}((ξ [v := e])\var,p)
T7
= TV (ξ [v := e],Jvar := expK p)

This proves this particular induction step.

108 Part B. Complete proof of Lemma 4.6

Translation rule T9: Applying a substitution to T9 gives the following:

TV (ξ ,p+q)[T(v) := tU(e)]

T9
= (TV (ξ ,p)+TV (ξ ,q)) [T(v) := tU(e)]

= TV (ξ ,p)[T(v) := tU(e)]+TV (ξ ,q)[T(v) := tU(e)]

I.H.
= TV (ξ [v := e],p)+TV (ξ [v := e],q)
T9
= TV (ξ [v := e],p+q)

This proves this particular induction step.

Translation rule T10: As a preparatory step, note that

v ∈V ⇒ v /∈ FV(φ)\V
Property (v)
======⇒ T(v) /∈ T(FV(φ)\V) (B.5)

With B.5 available, applying a substitution to T10 gives the following:

TV (ξ ,[φ]p)[T(v) := tU(e)]

T10
= (∑T(FV(φ) \V) Tξ (φ)→ t(/0, /0,msg dummy).TV ∪ FV(φ)(ξ ,p))[T(v) := tU(e)]

B.5
= ∑T(FV(φ) \V) Tξ (φ)[T(v) := tU(e)]→ t(/0, /0,msg dummy).TV ∪ FV(φ)(ξ ,p)[T(v) := tU(e)]

Lemma 4.5
= ∑T(FV(φ) \V) Tξ [v:=e](φ)→ t(/0, /0,msg dummy).TV ∪ FV(φ)(ξ ,p)[T(v) := tU(e)]

I.H.
= ∑T(FV(φ) \V) Tξ [v:=e](φ)→ t(/0, /0,msg dummy).TV ∪ FV(φ)(ξ [v := e],p)

T10
= TV (ξ [v := e], [φ]p)

This proves this particular induction step.

Appendix C

Complete proof of Lemma 4.7
Lemma: Take translation relation T̃ from Equation 2.1 and action relation A from Table 2.10.

Then T̃ is a strong A -warped simulation up to ≡ of AWN expressions P by mCRL2 expressions
T(P) for all AWN expressions P.
Proof: Using Lemma 3.1, for Definition 4.11 to apply it is sufficient to prove that

∀P,P′,a .
(

P a−→ P′⇒∃(A1,A2) ∈A . a ∈ A1∧P
A1−→ P′∧T(P)

A2−→≡ T(P′)
)

The proof of Equation 2.18 is by structural induction over the inference rules of AWN.

Induction hypothesis: For all premises P a−→ P′ of an AWN inference rule, it holds that

∃(A1,A2) ∈A . a ∈ A1∧P
A1−→ P′∧T(P)

A2−→≡ T(P′)

1 Base cases
Show for each axiomatic inference rule of AWN with conclusion P a−→ P′ that there is some
(A1,A2) ∈A . a ∈ A1∧P

A1−→ P′ such that T(P) a′−→≡ T(P′) can be derived for all a′ ∈ A2.

Broadcast (T1): AWN defines the inference rule
BROADCAST (T1)

ξ ,broadcast(ms).p
broadcast(ξ (ms))−−−−−−−−−−→ ξ ,p

There exists an (A1,A2) in A such that broadcast(ξ (ms))∈ A1∧ξ ,broadcast(ms).p
A1−→

ξ ,p, namely Pair 2.4 in Table 2.10. This base case can therefore be proven by finding a
set of derivations in mCRL2 such that T(ξ ,broadcast(ms).p) a−→≡ T(ξ ,p) for all a ∈ A2
where

A2 =
{

cast(JUIPK,�D,JTξ (ms)K)
∣∣ �D ∈ T(Set(IP))

}
In mCRL2, the following derivation can be made for all �D ∈ T(Set(IP)):

AXIOM

cast(UIP, t�D,Tξ (ms))
Jcast(UIP ,t�D,Tξ (ms))K
−−−−−−−−−−−−−→X

Definition 2.1
cast(UIP, t�D,Tξ (ms))

cast(JUIPK,�D,JTξ (ms)K)
−−−−−−−−−−−−−−→X

SEQ 1

cast(UIP, t�D,Tξ (ms)).TDOM(ξ)(ξ ,p)
cast(JUIPK,�D,JTξ (ms)K)
−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

Substitution(
cast(UIP,D,Tξ (ms)).TDOM(ξ)(ξ ,p)

)
[D := t�D]

cast(JUIPK,�D,JTξ (ms)K)
−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

SUM 2

∑D:T(Set(IP)) cast(UIP,D,Tξ (ms)).TDOM(ξ)(ξ ,p)
cast(JUIPK,�D,JTξ (ms)K)
−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

T1
TDOM(ξ)(ξ ,broadcast(ms).p)

cast(JUIPK,�D,JTξ (ms)K)
−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

T12
T(ξ ,broadcast(ms).p)

cast(JUIPK,�D,JTξ (ms)K)
−−−−−−−−−−−−−−→ T(ξ ,p)

for D /∈ T(V). In conclusion, the induction hypothesis holds for this base case.

110 Part C. Complete proof of Lemma 4.7

Groupcast (T1): AWN defines the inference rule

GROUPCAST (T1)
ξ ,groupcast(dests,ms).p

groupcast(ξ (dests),ξ (ms))−−−−−−−−−−−−−−→ ξ ,p

There exists an (A1,A2) in A such that groupcast(ξ (dests),ξ (ms)) ∈ A1 ∧
ξ ,groupcast(ms).p

A1−→ ξ ,p, namely Pair 2.5 in Table 2.10. This base case can therefore
be proven by finding a set of derivations in mCRL2 such that T(ξ ,groupcast(ms).p) a−→≡
T(ξ ,p) for all a ∈ A2 =

{
cast(JTξ (dests)K,�D,JTξ (ms)K)

∣∣ �D ∈ T(Set(IP))
}

.
In mCRL2, the following derivation can be made for all �D ∈ T(Set(IP)):

AXIOM

cast(Tξ (dests), t�D,Tξ (ms))
Jcast(Tξ (dests),t�D,Tξ (ms))K
−−−−−−−−−−−−−−−−→X

Definition 2.1
cast(Tξ (dests), t�D,Tξ (ms))

cast(JTξ (dests)K,�D,JTξ (ms)K)
−−−−−−−−−−−−−−−−−→X

SEQ 1

cast(Tξ (dests), t�D,Tξ (ms)).TDOM(ξ)(ξ ,p)
cast(JTξ (dests)K,�D,JTξ (ms)K)
−−−−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

Substitution(
cast(Tξ (dests),D,Tξ (ms)).TDOM(ξ)(ξ ,p)

)
[D := t�D]

cast(JTξ (dests)K,�D,JTξ (ms)K)
−−−−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

SUM 2

∑D:T(Set(IP)) cast(Tξ (dests),D,Tξ (ms)).TDOM(ξ)(ξ ,p)
cast(JTξ (dests)K,�D,JTξ (ms)K)
−−−−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

T2
TDOM(ξ)(ξ ,groupcast(dests,ms).p)

cast(JTξ (dests)K,�D,JTξ (ms)K)
−−−−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

T12
T(ξ ,groupcast(dests,ms).p)

cast(JTξ (dests)K,�D,JTξ (ms)K)
−−−−−−−−−−−−−−−−−→ T(ξ ,p)

for D /∈ T(V). In conclusion, the induction hypothesis holds for this base case.

1 Base cases 111

Unicast (T1-1): AWN defines the inference rule

UNICAST (T1-1)
ξ ,unicast(dest,ms).pI q

unicast(ξ (dest),ξ (ms))−−−−−−−−−−−−→ ξ ,p

There exists an (A1,A2) in A such that unicast(ξ (dest),ξ (ms)) ∈ A1 ∧
ξ ,unicast(dest,ms).p

A1−→ ξ ,p, namely Pair 2.6 in Table 2.10. This
base case can therefore be proven by finding a set of derivations in
mCRL2 such that T(ξ ,unicast(dest,ms).p) a−→≡ T(ξ ,p) for all a ∈ A2 ={

cast(JTξ ({dest})K,JTξ ({dest})K,JTξ (ms)K)
}

.
In mCRL2, the following derivation can be made:

AXIOM

cast(Tξ ({dest}),Tξ ({dest}),Tξ (ms))
Jcast(Tξ ({dest}),Tξ ({dest}),Tξ (ms))K
−−−−−−−−−−−−−−−−−−−−−→X

Definition 2.1
cast(Tξ ({dest}),Tξ ({dest}),Tξ (ms))

cast(JTξ ({dest})K,JTξ ({dest})K,JTξ (ms)K)
−−−−−−−−−−−−−−−−−−−−−−−→X

SEQ 1
cast(Tξ ({dest}),Tξ ({dest}),Tξ (ms)).TDOM(ξ)(ξ ,p)

cast(JTξ ({dest})K,JTξ ({dest})K,JTξ (ms)K)
−−−−−−−−−−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

CHOICE 2
cast(Tξ ({dest}),Tξ ({dest}),Tξ (ms)).TDOM(ξ)(ξ ,p)+¬uni(Tξ ({dest}), /0,Tξ (ms)).TDOM(ξ)(ξ ,q)

cast(JTξ ({dest})K,JTξ ({dest})K,JTξ (ms)K)
−−−−−−−−−−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

T3

TDOM(ξ)(ξ ,unicast(dest,ms).pI q)
cast(JTξ ({dest})K,JTξ ({dest})K,JTξ (ms)K)
−−−−−−−−−−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

T12

T(ξ ,unicast(dest,ms).pI q)
cast(JTξ ({dest})K,JTξ ({dest})K,JTξ (ms)K)
−−−−−−−−−−−−−−−−−−−−−−−→ T(ξ ,p)

In conclusion, the induction hypothesis holds for this base case.

Unicast (T1-2): AWN defines the inference rule

UNICAST (T1-2)
ξ ,unicast(dest,ms).pI q

¬unicast(ξ (dest),ξ (ms))−−−−−−−−−−−−−→ ξ ,q

There exists an (A1,A2) in A such that ¬unicast(ξ (dest),ξ (ms)) ∈ A1 ∧
ξ ,unicast(dest,ms).p

A1−→ ξ ,p, namely Pair 2.7 in Table 2.10. This base case can therefore
be proven by finding a set of derivations in mCRL2 such that T(ξ ,unicast(dest,ms).p) a−→
T(ξ ,p) for all a ∈ A2 =

{
¬uni(JTξ ({dest})K,J /0K,JTξ (ms)K)

}
.

In mCRL2, the following derivation can be made:

AXIOM

¬uni(Tξ ({dest}), /0,Tξ (ms))
J¬uni(Tξ ({dest}), /0,Tξ (ms))K
−−−−−−−−−−−−−−−−→X

Definition 2.1
¬uni(Tξ ({dest}), /0,Tξ (ms))

¬uni(JTξ ({dest})K,J /0K,JTξ (ms)K)
−−−−−−−−−−−−−−−−−−→X

SEQ 1
¬uni(Tξ ({dest}), /0,Tξ (ms)).TDOM(ξ)(ξ ,q)

¬uni(JTξ ({dest})K,J /0K,JTξ (ms)K)
−−−−−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,q)

CHOICE 4
cast(Tξ ({dest}),Tξ ({dest}),Tξ (ms)).TDOM(ξ)(ξ ,p)+¬uni(Tξ ({dest}), /0,Tξ (ms)).TDOM(ξ)(ξ ,q)

¬uni(JTξ ({dest})K,J /0K,JTξ (ms)K)
−−−−−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,q)

T3

TDOM(ξ)(ξ ,unicast(dest,ms).pI q)
¬uni(JTξ ({dest})K,J /0K,JTξ (ms)K)
−−−−−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,q)

T12

T(ξ ,unicast(dest,ms).pI q)
¬uni(JTξ ({dest})K,J /0K,JTξ (ms)K)
−−−−−−−−−−−−−−−−−−→ T(ξ ,q)

In conclusion, the induction hypothesis holds for this base case.

112 Part C. Complete proof of Lemma 4.7

Send (T1): AWN defines the inference rule

SEND (T1)
ξ ,send(ms).p

send(ξ (ms))−−−−−−−→ ξ ,p

There exists an (A1,A2) in A such that send(ξ (ms)) ∈ A1 ∧ ξ ,send(ms).p
A1−→ ξ ,p,

namely Pair 2.8 in Table 2.10. This base case can therefore be proven by find-
ing a set of derivations in mCRL2 such that T(ξ ,send(ms).p) a−→≡ T(ξ ,p) for all
a ∈ A2 =

{
send(J /0K,J /0K,JTξ (ms)K)

}
.

In mCRL2, the following derivation can be made:

AXIOM

send(/0, /0,Tξ (dest))
Jsend(/0, /0,Tξ (ms))K
−−−−−−−−−−−→X

Definition 2.1
send(/0, /0,Tξ (dest))

send(J /0K,J /0K,JTξ (ms)K)
−−−−−−−−−−−−−−→X

SEQ 1

send(/0, /0,Tξ (dest)).TDOM(ξ)(ξ ,q)
send(J /0K,J /0K,JTξ (ms)K)
−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

T4
TDOM(ξ)(ξ ,send(ms).p)

send(J /0K,J /0K,JTξ (ms)K)
−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

T12
T(ξ ,send(ms).p)

send(J /0K,J /0K,JTξ (ms)K)
−−−−−−−−−−−−−−→ T(ξ ,p)

In conclusion, the induction hypothesis holds for this base case.

Deliver (T1): AWN defines the inference rule

DELIVER (T1)
ξ ,deliver(data).p

deliver(ξ (data))−−−−−−−−−→ ξ ,p

There exists an (A1,A2) in A such that deliver(ξ (data)) ∈ A1∧ ξ ,deliver(data).p
A1−→

ξ ,p, namely Pair 2.9 in Table 2.10. This base case can therefore be proven by finding a set
of derivations in mCRL2 such that T(ξ ,deliver(data).p) a−→≡ T(ξ ,p) for all a ∈ A2 ={

del(î,JTξ (data)K)
∣∣ î ∈ T(IP)

}
.

In mCRL2, the following derivation can be made for all î ∈ T(IP):

AXIOM

del(tî,Tξ (data))
Jdel(tî,Tξ (data))K
−−−−−−−−−−→X

Definition 2.1
del(tî,Tξ (data))

del(î,JTξ (data)K)
−−−−−−−−−−→X

SEQ 1

del(tî,Tξ (data)).TDOM(ξ)(ξ ,q)
del(î,JTξ (data)K)
−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

Substitution
del(ip,Tξ (data)).TDOM(ξ)(ξ ,q) [ip := tî]

del(î,JTξ (data)K)
−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

SUM 2

∑ip:T(IP) del(ip,Tξ (data)).TDOM(ξ)(ξ ,q)
del(î,JTξ (data)K)
−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

T5
TDOM(ξ)(ξ ,deliver(ms).p)

del(î,JTξ (data)K)
−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

T12
T(ξ ,deliver(ms).p)

del(î,JTξ (data)K)
−−−−−−−−−−→ T(ξ ,p)

for ip /∈ T(V). In conclusion, the induction hypothesis holds for this base case.

1 Base cases 113

Receive (T1): AWN defines the inference rule

∀m∈MSG RECEIVE (T1)
ξ ,receive(msg).p

receive(m)−−−−−−→ ξ [msg := m],p

There exists an (A1,A2) in A such that receive(m)∈ A1∧ξ ,receive(msg).p A1−→ ξ [msg :=
m],p, namely Pair 2.10 in Table 2.10. This base case can therefore be proven by finding a
set of derivations in mCRL2 such that T(ξ ,receive(msg).p) a−→≡ T(ξ [msg := m],p) for
all a ∈ A2 =

{
receive(�D,�D',U(m))

∣∣ �D,�D' ∈ T(Set(IP))
}

.
In mCRL2, the following derivation can be made for all �D,�D' ∈ T(Set(IP)):

AXIOM

receive(t�D, t�D', tU(m))
Jreceive(t�D,t�D',tU(m))K−−−−−−−−−−−−→X

Definition 2.1
receive(t�D, t�D', tU(m))

receive(�D,�D',JtU(m)K)−−−−−−−−−−−→X
Definition of t

receive(t�D, t�D', tU(m))
receive(�D,�D',U(m))−−−−−−−−−−−→X

SEQ 1
receive(t�D, t�D', tU(m)).TDOM(ξ)∪{msg}(ξ [msg := m],p)

receive(�D,�D',U(m))−−−−−−−−−−−→ TDOM(ξ)∪{msg}(ξ [msg := m],p)

receive(t�D, t�D', tU(m)).TDOM(ξ)∪{msg}(ξ
\msg[msg := m],p)

receive(�D,�D',U(m))−−−−−−−−−−−→ TDOM(ξ)∪{msg}(ξ [msg := m],p)
msg /∈ DOM(ξ \msg) Lemma 4.6(

receive(t�D, t�D',T(msg)).TDOM(ξ)∪{msg}(ξ
\msg,p)

)[
T(msg) := tU(m)

] receive(�D,�D',U(m))−−−−−−−−−−−→ TDOM(ξ)∪{msg}(ξ [msg := m],p)
Substitution(

receive(D,D',T(msg)).TDOM(ξ)∪{msg}(ξ
\msg,p)

)[
D := t�D,D' := t�D',T(msg) := tU(m)

] receive(�D,�D',U(m))−−−−−−−−−−−→ TDOM(ξ)∪{msg}(ξ [msg := m],p)
SUM 2 (3 times)

∑D,D':T(Set(IP)),T(msg):T(MSG) receive(D,D',T(msg)).TDOM(ξ)∪{msg}(ξ
\msg,p)

receive(�D,�D',U(m))−−−−−−−−−−−→ TDOM(ξ)∪{msg}(ξ [msg := m],p)
T6

TDOM(ξ)(ξ ,receive(msg).p)
receive(�D,�D',U(m))−−−−−−−−−−−→ TDOM(ξ)∪{msg}(ξ [msg := m],p)

TDOM(ξ)(ξ ,receive(msg).p)
receive(�D,�D',U(m))−−−−−−−−−−−→ TDOM(ξ [msg:=m])(ξ [msg := m],p)

T12

T(ξ ,receive(msg).p)
receive(�D,�D',U(m))−−−−−−−−−−−→ T(ξ [msg := m],p)

for D,D' /∈ T(V). In conclusion, the induction hypothesis holds for this base case.

114 Part C. Complete proof of Lemma 4.7

Assignment (T1): AWN defines the inference rule

ASSIGNMENT (T1)
ξ ,Jvar := expKp τ−→ ξ [var := ξ (exp)],p

There exists an (A1,A2) in A such that τ ∈ A1∧ξ ,Jvar := expKp
A1−→ ξ [var := ξ (exp)],p,

namely Pair 2.3 in Table 2.10. This base case can therefore be proven by finding a set
of derivations in mCRL2 such that T(ξ ,Jvar := expKp) a−→≡ T(ξ [var := ξ (exp)],p) for
all a ∈ A2 = { t(U(D),U(R),U(m)) } for some D,R ∈ Set(IP) where R ⊆ D and some
m ∈MSG.
In mCRL2, the following derivation can be made:

AXIOM

t(/0, /0,msg dummy)
Jt(/0, /0,msg dummy)K−−−−−−−−−−→X

Definition 2.1
t(/0, /0,msg dummy)

t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→X
SEQ 1

t(/0, /0,msg dummy).TDOM(ξ)∪{var}(ξ [var := ξ (exp)],p)
t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ξ)∪{var}(ξ [var := ξ (exp)],p)

t(/0, /0,msg dummy).TDOM(ξ)∪{var}(ξ
\var[var := ξ (exp)],p)

t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ξ)∪{var}(ξ [var := ξ (exp)],p)
JtJTξ (exp)K = tJTξ (exp)KK = true GUARD 2

(tJTξ (exp)K = tJTξ (exp)K)→ t(/0, /0,msg dummy).TDOM(ξ)∪{var}(ξ
\var[var := ξ (exp)],p)

t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ξ)∪{var}(ξ [var := ξ (exp)],p)
var /∈ DOM(ξ \var) Lemma 4.6

(tJTξ (exp)K = tJTξ (exp)K)→ t(/0, /0,msg dummy).TDOM(ξ)∪{var}(ξ
\var,p)

[
T(var) := tU(ξ (exp))

] t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ξ)∪{var}(ξ [var := ξ (exp)],p)(
(T(var) = tJTξ (exp)K)→ t(/0, /0,msg dummy).TDOM(ξ)∪{var}(ξ

\var,p)
)[

T(var) := tJTξ (exp)K

] t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ξ)∪{var}(ξ [var := ξ (exp)],p)
SUM 2

∑T(var):sort(T(var))(T(var) = tJTξ (exp)K)→ t(/0, /0,msg dummy).TDOM(ξ)∪{var}(ξ
\var,p)

t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ξ)∪{var}(ξ [var := ξ (exp)],p)
JtJTξ (exp)K = Tξ (exp)K = true GUARD 2

(tJTξ (exp)K = Tξ (exp))→ ∑T(var):sort(T(var))(T(var) = tJTξ (exp)K)→ t(/0, /0,msg dummy).TDOM(ξ)∪{var}(ξ
\var,p)

t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ξ)∪{var}(ξ [var := ξ (exp)],p)(
(tmp= Tξ (exp))→ ∑T(var):sort(T(var))(T(var) = tmp)→ t(/0, /0,msg dummy).TDOM(ξ)∪{var}(ξ

\var,p)
)[

tmp := tJTξ (exp)K

] t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ξ)∪{var}(ξ [var := ξ (exp)],p)
SUM 2

∑tmp:sort(T(var))(tmp= Tξ (exp))→ ∑T(var):sort(T(var))(T(var) = tmp)→ t(/0, /0,msg dummy).TDOM(ξ)∪{var}(ξ
\var,p)

t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ξ)∪{var}(ξ [var := ξ (exp)],p)
T7

TDOM(ξ)(ξ ,Jvar := expKp)
t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ξ)∪{var}(ξ [var := ξ (exp)],p)

TDOM(ξ)(ξ ,Jvar := expKp)
t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ξ [var:=ξ (exp)])(ξ [var := ξ (exp)],p)

T12

T(ξ ,Jvar := expKp)
t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ T(ξ [var := ξ (exp)],p)

for tmp /∈ T(V). In conclusion, the induction hypothesis holds for this base case.

1 Base cases 115

Guard (T1): AWN defines the inference rule

ζ = ξ [q1 := e1, · · · ,qn := en]
ζ (φ) = true∧{q1, · · · ,qn}= FV(φ)\DOM(ξ) GUARD (T1)

ξ , [φ]p τ−→ ζ ,p

There exists an (A1,A2) in A such that τ ∈ A1 ∧ ξ , [φ]p
A1−→ ζ ,p, namely Pair 2.3 in

Table 2.10. This base case can therefore be proven by finding a set of derivations in
mCRL2 such that T(ξ , [φ]p) a−→≡ T(ζ ,p) for all a ∈ A2 = { t(U(D),U(R),U(m)) } for
some D,R ∈ Set(IP) where R⊆ D and some m ∈MSG.
First, the side condition of the inference rule is used to determine that

ζ (φ) = true
Property (ii) of T
=========⇒ JTζ (φ)K = true

With this side condition, the following derivation can be made in mCRL2:

AXIOM

t(/0, /0,msg dummy)
Jt(/0, /0,msg dummy)K−−−−−−−−−−→X

Definition 2.1
t(/0, /0,msg dummy)

t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→X
SEQ 1

t(/0, /0,msg dummy).TDOM(ξ)∪{q1,···,qn}(ζ ,p)
t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ξ)∪{q1,···,qn}(ζ ,p)JTζ (φ)K = true GUARD 2

Tζ (φ)→ t(/0, /0,msg dummy).TDOM(ξ)∪{q1,···,qn}(ζ ,p)
t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ξ)∪{q1,···,qn}(ζ ,p) Definition of ζ (3 times)

Tξ [q1:=e1,···,qn:=en](φ)→ t(/0, /0,msg dummy).TDOM(ξ)∪{q1,···,qn}(ξ [q1 := e1, · · · ,qn := en],p)
t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ζ)(ζ ,p){q1, · · · ,qn}∩DOM(ξ) = /0 Lemma 4.5

Tξ (φ)[T(q1) := tU(e1), · · · ,T(qn) := tU(en)]→ t(/0, /0,msg dummy).TDOM(ξ)∪{q1,···,qn}(ξ [q1 := e1, · · · ,qn := en],p)
t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ζ)(ζ ,p){q1, · · · ,qn}∩DOM(ξ) = /0 Lemma 4.6

Tξ (φ)[T(q1) := tU(e1), · · · ,T(qn) := tU(en)]→ t(/0, /0,msg dummy).TDOM(ξ)∪{q1,···,qn}(ξ ,p)[T(q1) := tU(e1), · · · ,T(qn) := tU(en)]
t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ζ)(ζ ,p)(

Tξ (φ)→ t(/0, /0,msg dummy).TDOM(ξ)∪{q1,···,qn}(ξ ,p)
)
[T(q1) := tU(e1), · · · ,T(qn) := tU(en)]

t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ζ)(ζ ,p)
SUM 2 (n times)

∑{T(q1),···,T(qn)} Tξ (φ)→ t(/0, /0,msg dummy).TDOM(ξ)∪{q1,···,qn}(ξ ,p)
t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ζ)(ζ ,p)

∑T({q1,···,qn}) Tξ (φ)→ t(/0, /0,msg dummy).TDOM(ξ)∪{q1,···,qn}(ξ ,p)
t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ζ)(ζ ,p)

Definition of {q1, · · · ,qn} (2 times)
∑T(FV(φ) \ DOM(ξ)) Tξ (φ)→ t(/0, /0,msg dummy).TDOM(ξ)∪(FV(φ) \ DOM(ξ))(ξ ,p)

t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ζ)(ζ ,p)

∑T(FV(φ) \ DOM(ξ)) Tξ (φ)→ t(/0, /0,msg dummy).TDOM(ξ)∪FV(φ)(ξ ,p)
t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ζ)(ζ ,p)

T10

TDOM(ξ)(ξ , [φ]p)
t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ζ)(ζ ,p)

T12

T(ξ , [φ]p)
t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ T(ζ ,p)

In conclusion, the induction hypothesis holds for this base case.

116 Part C. Complete proof of Lemma 4.7

Arrive (T3-2): AWN defines the inference rule

ARRIVE (T3-2)
ip : P : R

/0¬{ip}:arrive(m)−−−−−−−−−→ ip : P : R

There exists an (A1,A2) in A such that /0¬{ip} : arrive(m) ∈ A1∧ ip : P : R
A1−→ ip : P′ : R,

namely Pair 2.13 in Table 2.10. This base case can therefore be proven by finding a set of
derivations in mCRL2 for T(ip : P : R) a−→≡ T(ip : P′ : R) for all a ∈ A2 where

A2 =

{
arrive(�D,�D',U(m))

∣∣∣∣ �D,�D'∈T(Set(IP))
�D'⊆�D

{U(ip)}∩�D'= /0

}
Note that {U(ip)}∩�D'= /0⇒ JtU(ip) /∈ t�D'K = true
In mCRL2, the following derivation can be made for all �D,�D' ∈ T(Set(IP)) such that
�D'⊆ �D∧U(ip) /∈ �D':

AXIOM

arrive(t�D, t�D', tU(m))
Jarrive(t�D,t�D',tU(m))K−−−−−−−−−−−→X

Definition 2.1
arrive(t�D, t�D', tU(m))

arrive(�D,�D',JtU(m)K)−−−−−−−−−−−→X
Definition of t

arrive(t�D, t�D', tU(m))
arrive(�D,�D',U(m))−−−−−−−−−−→X

SEQ 1
arrive(t�D, t�D', tU(m)).G(tU(ip), tU(R))

arrive(�D,�D',U(m))−−−−−−−−−−→ G(tU(ip), tU(R))JtU(ip) /∈ t�D'K = true GUARD 2
(tU(ip) /∈ t�D')→ arrive(t�D, t�D', tU(m)).G(tU(ip), tU(R))

arrive(�D,�D',U(m))−−−−−−−−−−→ G(tU(ip), tU(R))
Substitution(

(tU(ip) /∈ D')→ arrive(D,D',msg).G(tU(ip), tU(R))
)
[D := t�D,D' := t�D',msg := tU(m)]

arrive(�D,�D',U(m))−−−−−−−−−−→ G(tU(ip), tU(R))
SUM 2 (3 times)

∑D,D':T(Set(IP)),msg:T(MSG)(tU(ip) /∈ D')→ arrive(D,D',msg).G(tU(ip), tU(R))
arrive(�D,�D',U(m))−−−−−−−−−−→ G(tU(ip), tU(R))

CHOICE 2
∑D,D':T(Set(IP)),msg:T(MSG)(tU(ip) /∈ D')→ arrive(D,D',msg).G(tU(ip), tU(R))+S[ip := tU(ip),R := tU(R)]

arrive(�D,�D',U(m))−−−−−−−−−−→ G(tU(ip), tU(R))
Substitution(

∑D,D':T(Set(IP)),msg:T(MSG)(ip /∈ D')→ arrive(D,D',msg).G(ip,R)+S
)
[ip := tU(ip),R := tU(R)]

arrive(�D,�D',U(m))−−−−−−−−−−→ G(tU(ip), tU(R))
Definition of G RECURSION 2

G(tU(ip), tU(R))
arrive(�D,�D',U(m))−−−−−−−−−−→ G(tU(ip), tU(R))

PAR 5
T(P) || G(tU(ip), tU(R))

arrive(�D,�D',U(m))−−−−−−−−−−→ T(P) || G(tU(ip), tU(R))
COMM 2

ΓC(T(P) || G(tU(ip), tU(R)))
γC(arrive(�D,�D',U(m)))−−−−−−−−−−−−→ ΓC(T(P) || G(tU(ip), tU(R))) Apply γC

ΓC(T(P) || G(tU(ip), tU(R)))
arrive(�D,�D',U(m))−−−−−−−−−−→ ΓC(T(P) || G(tU(ip), tU(R)))arrive ∈V ∪{τ} ALLOW 2

∇V ΓC(T(P) || G(tU(ip), tU(R)))
arrive(�D,�D',U(m))−−−−−−−−−−→ ∇V ΓC(T(P) || G(tU(ip), tU(R)))

T14

T(ip : P : R)
arrive(�D,�D',U(m))−−−−−−−−−−→ T(ip : P : R)

where S is an expression equal to all summands of G except for the one containing arrive.
So it is indeed the case that

T(ip : P : R) a−→≡ T(ip : P : R) for all a ∈ A2 =

{
arrive(�D,�D',U(m))

∣∣∣∣ �D,�D'∈T(Set(IP))
�D'⊆�D

{U(ip)}∩�D'= /0

}

which finishes this particular base case.

1 Base cases 117

Connect (T3-1): AWN defines the inference rule

CONNECT (T3-1)
ip : P : R

connect(ip,ip′)−−−−−−−−→ ip : P : R∪{ip′}

There exist an (A1,A2) in A such that connect(ip, ip’) ∈ A1∧ ip : P : R
A1−→ ip : P′ : R∪

{ip’}, namely Pair 2.14 in Table 2.10. This base case can therefore be proven by finding a
set of derivations in mCRL2 for T(ip : P : R) a−→≡ T(ip : P′ : R∪{ip’}) for all a ∈ A2 =
{ connect(U(ip),U(ip’)) } .
In mCRL2, the following derivation can be made:

AXIOM

connect(tU(ip), tU(ip’))
Jconnect(tU(ip),tU(ip’))K−−−−−−−−−−−−→X

Definition 2.1
connect(tU(ip), tU(ip’))

connect(JtU(ip)K,JtU(ip’)K)−−−−−−−−−−−−−−→X
Definition of t

connect(tU(ip), tU(ip’))
connect(U(ip),U(ip’))−−−−−−−−−−−−→X

SEQ 1
connect(tU(ip), tU(ip’)).G(tU(ip), tU(R∪{ip’}))

connect(U(ip),U(ip’))−−−−−−−−−−−−→ G(tU(ip), tU(R∪{ip’}))
Substitution(

connect(tU(ip),ip').G(tU(ip), tU(R∪{ip’}))
)
[ip' := tU(ip’)]

connect(U(ip),U(ip’))−−−−−−−−−−−−→ G(tU(ip), tU(R∪{ip’}))
SUM 2

∑ip':T(IP) connect(tU(ip),ip').G(tU(ip), tU(R∪{ip’}))
connect(U(ip),U(ip’))−−−−−−−−−−−−→ G(tU(ip), tU(R∪{ip’}))

CHOICE 2
∑ip':T(IP) connect(tU(ip),ip').G(tU(ip), tU(R∪{ip’}))+S[ip := tU(ip),R := tU(R)]

connect(U(ip),U(ip’))−−−−−−−−−−−−→ G(tU(ip), tU(R∪{ip’}))
Substitution(

∑ip':T(IP) connect(ip,ip').G(ip,R∪{ip’})+S
)
[ip := tU(ip),R := tU(R)]

connect(U(ip),U(ip’))−−−−−−−−−−−−→ G(tU(ip), tU(R∪{ip’}))
Definition of G RECURSION 2

G(tU(ip), tU(R))
connect(U(ip),U(ip’))−−−−−−−−−−−−→ G(tU(ip), tU(R∪{ip’}))

PAR 5
T(P) || G(tU(ip), tU(R))

connect(U(ip),U(ip’))−−−−−−−−−−−−→ T(P) || G(tU(ip), tU(R∪{ip’}))
COMM 2

ΓC(T(P) || G(tU(ip), tU(R)))
γC(connect(U(ip),U(ip’)))−−−−−−−−−−−−−−→ ΓC(T(P) || G(tU(ip), tU(R∪{ip’}))) Apply γC

ΓC(T(P) || G(tU(ip), tU(R)))
connect(U(ip),U(ip’))−−−−−−−−−−−−→ ΓC(T(P) || G(tU(ip), tU(R∪{ip’})))connect ∈V ∪{τ} ALLOW 2

∇V ΓC(T(P) || G(tU(ip), tU(R)))
connect(U(ip),U(ip’))−−−−−−−−−−−−→ ∇V ΓC(T(P) || G(tU(ip), tU(R∪{ip’})))

T14

T(ip : P : R)
connect(U(ip),U(ip’))−−−−−−−−−−−−→ T(ip : P : R∪{ip’})

where S is an expression equal to all summands of G except for the first summand
containing connect.
So it is indeed the case that

T(ip : P : R) a−→≡ T(ip : P : R∪{ip’}) for all a ∈ A2 = { connect(U(ip),U(ip’)) }

which finishes this particular base case.

Connect (T3-2): Similar to the Lemma 4.7-proof for Connect (T3-1).

118 Part C. Complete proof of Lemma 4.7

Connect (T3-3): AWN defines the inference rule

ip /∈ {ip’, ip”}
CONNECT (T3-3)

ip : P : R
connect(ip’,ip”)−−−−−−−−−→ ip : P : R

There exist an (A1,A2) in A such that connect(ip’, ip”) ∈ A1∧ ip : P : R
A1−→ ip : P′ : R,

namely Pair 2.14 in Table 2.10. This base case can therefore be proven by finding
a set of derivations in mCRL2 for T(ip : P : R) a−→≡ T(ip : P′ : R) for all a ∈ A2 =
{ connect(U(ip’),U(ip”)) } .
In mCRL2, the following derivation can be made:

AXIOM

connect(tU(ip’), tU(ip”))
Jconnect(tU(ip’),tU(ip”))K−−−−−−−−−−−−−→X

Definition 2.1
connect(tU(ip’), tU(ip”))

connect(JtU(ip’)K,JtU(ip”)K)−−−−−−−−−−−−−−→X
Definition of t

connect(tU(ip’), tU(ip”))
connect(U(ip’),U(ip”))−−−−−−−−−−−−−→X

SEQ 1
connect(tU(ip’), tU(ip”)).G(tU(ip), tU(R))

connect(U(ip’),U(ip”))−−−−−−−−−−−−−→ G(tU(ip), tU(R))JtU(ip) /∈ {tU(ip’), tU(ip”)}K = true GUARD 2
(tU(ip) /∈ {tU(ip’), tU(ip”)})→ connect(tU(ip’), tU(ip”)).G(tU(ip’), tU(R))

connect(U(ip’),U(ip”))−−−−−−−−−−−−−→ G(tU(ip), tU(R))
Substitution(

(tU(ip) /∈ {ip',ip�})→ connect(ip',ip�).G(tU(ip), tU(R))
)
[ip' := tU(ip’),ip� := tU(ip”)]

connect(U(ip’),U(ip”))−−−−−−−−−−−−−→ G(tU(ip), tU(R))
SUM 2

∑ip',ip�:T(IP)(tU(ip) /∈ {ip',ip�})→ connect(ip',ip�).G(tU(ip), tU(R))
connect(U(ip’),U(ip”))−−−−−−−−−−−−−→ G(tU(ip), tU(R))

CHOICE 2
∑ip',ip�:T(IP)(tU(ip) /∈ {ip',ip�})→ connect(ip',ip�).G(tU(ip), tU(R))+S[ip := tU(ip),R := tU(R)]

connect(U(ip’),U(ip”))−−−−−−−−−−−−−→ G(tU(ip), tU(R))
Substitution(

∑ip',ip�:T(IP)(ip /∈ {ip',ip�})→ connect(ip',ip�).G(ip,R)+S
)
[ip := tU(ip),R := tU(R)]

connect(U(ip’),U(ip”))−−−−−−−−−−−−−→ G(tU(ip), tU(R))
Definition of G RECURSION 2

G(tU(ip), tU(R))
connect(U(ip’),U(ip”))−−−−−−−−−−−−−→ G(tU(ip), tU(R))

PAR 5
T(P) || G(tU(ip), tU(R))

connect(U(ip’),U(ip”))−−−−−−−−−−−−−→ T(P) || G(tU(ip), tU(R))
COMM 2

ΓC(T(P) || G(tU(ip), tU(R)))
γC(connect(U(ip),U(ip”)))−−−−−−−−−−−−−−−→ ΓC(T(P) || G(tU(ip), tU(R))) Apply γC

ΓC(T(P) || G(tU(ip), tU(R)))
connect(U(ip’),U(ip”))−−−−−−−−−−−−−→ ΓC(T(P) || G(tU(ip), tU(R)))connect ∈V ∪{τ} ALLOW 2

∇V ΓC(T(P) || G(tU(ip), tU(R)))
connect(U(ip’),U(ip”))−−−−−−−−−−−−−→ ∇V ΓC(T(P) || G(tU(ip), tU(R)))

T14

T(ip : P : R)
connect(U(ip’),U(ip”))−−−−−−−−−−−−−→ T(ip : P : R)

where S is an expression equal to all summands of G except for the third summand
containing connect. So it is indeed the case that

T(ip : P : R) a−→≡ T(ip : P : R) for all a ∈ A2 = { connect(U(ip’),U(ip”)) } with ip /∈ {ip’, ip”}

which finishes this particular base case.

Disconnect (T3-1): Similar to the Lemma 4.7-proof for Connect (T3-1).

Disconnect (T3-2): Similar to the Lemma 4.7-proof for Connect (T3-1).

Disconnect (T3-3): Similar to the Lemma 4.7-proof for Connect (T3-3).

2 Induction step 119

2 Induction step
Given only its side conditions and the induction hypothesis, show for each inference rule of

AWN with conclusion P a−→ P′ that there is some (A1,A2) ∈ A . a ∈ A1 ∧ P
A1−→ P′ such that

T(P) a′−→≡ T(P′) can be derived for all a′ ∈ A2.

Recursion (T1): AWN defines the inference rule

/0[vari := ξ (expi)]
n
i=1,p

a−→ ζ ,p′ X(var1, · · · ,varn)
def
= p

∀a∈Act RECURSION (T1)
ξ ,X(exp1, · · · ,expn)

a−→ ζ ,p′

According to the induction hypothesis,

∃(A1,A2) ∈A . a ∈ A1∧ /0[vari := ξ (expi)]
n
i=1,p

A1−→ ζ ,p′

∧T(/0[vari := ξ (expi)]
n
i=1,p)

A2−→≡ T(ζ ,p′)

and so the following derivation can be made for all a′ ∈ A2:

Induction hypothesis
T(/0[vari := ξ (expi)]

n
i=1,p)

a′−→≡ T(ζ ,p′)
T12

T{var1,···,varn}(/0[vari := ξ (expi)]
n
i=1,p)

a′−→≡ T(ζ ,p′)
Lemma 4.6

T{var1,···,varn}(/0,p)
[

T(vari) := tU(ξ (expi))

]n

i=1

a′−→≡ T(ζ ,p′)
X(var1, · · · ,varn)

def
= p, T11 RECURSION 2

X(tU(ξ (exp1))
, · · · , tU(ξ (expn))

)
a′−→≡ T(ζ ,p′)

Theorem 4.1, Lemma 4.3
X(Tξ (exp1), · · · ,Tξ (expn))

a′−→≡ T(ζ ,p′)
T8

TV (ξ ,X(exp1, · · · ,expn))
a′−→≡ T(ζ ,p′)

Choose V = DOM(ξ)
TDOM(ξ)(ξ ,X(exp1, · · · ,expn))

a′−→≡ T(ζ ,p′)
T12

T(ξ ,X(exp1, · · · ,expn))
a′−→≡ T(ζ ,p′)

This proves this particular induction step.

120 Part C. Complete proof of Lemma 4.7

Choice (T1-1): AWN defines the inference rule

ξ ,p a−→ ζ ,p′
∀a∈Act CHOICE (T1-1)

ξ ,p+q a−→ ζ ,p′

According to the induction hypothesis,

∃(A1,A2) ∈A . a ∈ A1∧ξ ,p
A1−→ ζ ,p′∧T(ξ ,p)

A2−→≡ T(ζ ,p′)

and so the following derivation can be made for all a′ ∈ A2:

Induction hypothesis
T(ξ ,p) a′−→≡ T(ζ ,p′)

CHOICE 2
T(ξ ,p)+T(ξ ,q) a′−→≡ T(ζ ,p′)

T9

T(ξ ,p+q) a′−→≡ T(ζ ,p′)

This proves this particular induction step.

Choice (T1-2): Similar to the the Lemma 4.7-proof for Choice (T1-1) (CHOICE 4 is used
instead of CHOICE 2).

2 Induction step 121

Parallel (T2-1): AWN defines the inference rule

P a−→ P′∀a 6= receive(m) PARALLEL (T2-1)
P 〈〈 Q a−→ P′ 〈〈 Q

According to the induction hypothesis,

∃(A1,A2) ∈A . a ∈ A1∧P
A1−→ P′∧T(P)

A2−→≡ T(P′)

Because a 6= receive, Pair 2.10 from Table 2.10 cannot be among the pairs (A1,A2) that
satisfy the induction hypothesis (of which there must be at least one). Furthermore, ac-
cording to the AWN semantics a must be an action that can be performed at the sequential
level, meaning that a ∈ {τ,broadcast,groupcast,unicast,¬unicast,send,deliver}. As
a consequence,

∀(A1,A2) ∈A . a ∈ A1∧P
A1−→ P′∧T(P)

A2−→≡ T(P′)⇒∀a′ ∈ A2 . a′ ∈W
where W = {t,cast,¬uni,send,del}

Given this, the following derivation can be made in mCRL2 for all a′ ∈ A2:

Induction hypothesis
T(P) a′−→≡ T(P′)

RENAME 2
ρ{receive→r}T(P)

{receive→r}•a′−−−−−−−−−→≡ ρ{receive→r}T(P′)
a′ 6= receive Apply {receive→ r}•

ρ{receive→r}T(P)
a′−→≡ ρ{receive→r}T(P′)

PAR 2
ρ{receive→r}T(P) || ρ{send→s}T(Q)

a′−→≡ ρ{receive→r}T(P′) || ρ{send→s}T(Q)
COMM 2

Γ{r|s→t}(ρ{receive→r}T(P) || ρ{send→s}T(Q))
γ{r|s→t}(a′)−−−−−−→≡ Γ{r|s→t}(ρ{receive→r}T(P′) || ρ{send→s}T(Q))

Apply γ

Γ{r|s→t}(ρ{receive→r}T(P) || ρ{send→s}T(Q))
a′−→≡ Γ{r|s→t}(ρ{receive→r}T(P′) || ρ{send→s}T(Q))

a′ ∈V ∪{τ} ⊇W ALLOW 2
∇V Γ{r|s→t}(ρ{receive→r}T(P) || ρ{send→s}T(Q))

a′−→≡ ∇V Γ{r|s→t}(ρ{receive→r}T(P′) || ρ{send→s}T(Q))
T13

T(P 〈〈 Q)
a′−→≡ T(P′ 〈〈 Q)

This proves this particular induction step.

122 Part C. Complete proof of Lemma 4.7

Parallel (T2-2): AWN defines the inference rule

Q a−→ Q′∀a 6= send(m) PARALLEL (T2-2)
P 〈〈 Q a−→ P 〈〈 Q′

According to the induction hypothesis,

∃(A1,A2) ∈A . a ∈ A1∧Q
A1−→ Q′∧T(Q)

A2−→≡ T(Q′)

Because a 6= send, Pair 2.8 from Table 2.10 cannot be among the pairs (A1,A2) that satisfy
the induction hypothesis (of which there must be at least one). Furthermore, according
to the AWN semantics a must be an action that can be performed at the sequential level,
meaning that a ∈ {τ,broadcast,groupcast,unicast,¬unicast,deliver,receive}. As a
consequence,

∀(A1,A2) ∈A . a ∈ A1∧P
A1−→ P′∧T(P)

A2−→≡ T(P′)⇒∀a′ ∈ A2 . a′ ∈W
where W = {t,cast,¬uni,del,receive}

Given this, the following derivation can be made in mCRL2 for all a′ ∈ A2:
Induction hypothesis

T(Q)
a′−→≡ T(Q′)

RENAME 2
ρ{send→s}T(Q)

{send→s}•a′−−−−−−−→≡ ρ{send→s}T(Q′)
a′ 6= send Apply {send→ s}•

ρ{send→s}T(Q)
a′−→≡ ρ{send→s}T(Q′)

PAR 5
ρ{receive→r}T(P) || ρ{send→s}T(Q)

a′−→≡ ρ{receive→r}T(P) || ρ{send→s}T(Q′)
COMM 2

Γ{r|s→t}(ρ{receive→r}T(P) || ρ{send→s}T(Q))
γ{r|s→t}(a′)−−−−−−→≡ Γ{r|s→t}(ρ{receive→r}T(P) || ρ{send→s}T(Q′)) Apply γ

Γ{r|s→t}(ρ{receive→r}T(P) || ρ{send→s}T(Q))
a′−→≡ Γ{r|s→t}(ρ{receive→r}T(P) || ρ{send→s}T(Q′))

a′ ∈V ∪{τ} ⊇W ALLOW 2
∇V Γ{r|s→t}(ρ{receive→r}T(P) || ρ{send→s}T(Q))

a′−→≡ ∇V Γ{r|s→t}(ρ{receive→r}T(P) || ρ{send→s}T(Q′))
T13

T(P 〈〈 Q)
a′−→≡ T(P 〈〈 Q′)

This proves this particular induction step.

2 Induction step 123

Parallel (T2-3): AWN defines the inference rule

P
receive(m)−−−−−−→ P′ Q

send(m)−−−−→ Q′
∀m∈MSG PARALLEL (T2-3)

P 〈〈 Q τ−→ P′ 〈〈 Q′

There exists an (A1,A2) in A such that τ ∈ A1 ∧ P 〈〈 Q
A1−→ P′ 〈〈 Q′, namely Pair 2.3

in Table 2.10. The induction step can therefore be proven for this particular case by
finding a set of derivations in mCRL2 for T(P 〈〈 Q)

a−→≡ T(P′ 〈〈 Q) for all a ∈ A2 =
{ t(U(D),U(R),U(m)) } for some D, R where R⊆ D.

From the induction hypothesis, it follows that T(P)
receive(�D,�D',U(m))−−−−−−−−−−−→≡ T(P′) for all �D,�D'∈

T(Set(IP)) because Pair 2.10 in Table 2.10 is the only (B1,B2) ∈ A . receive(m) ∈ B1.

Similarly, T(Q)
send(J /0K,J /0K,U(m))−−−−−−−−−−−→≡ T(Q′) because Pair 2.8 in Table 2.10 is the only

(B1,B2) ∈A . send(m) ∈ B1 and the following condition holds:

ξ (ms) = m Lemma 4.4⇐====⇒ JTξ (ms)K = U(m)

This means that the following derivation can be made in mCRL2:

Induction hypothesis
T(P)

receive(�D,�D',U(m))−−−−−−−−−−−→≡ T(P′)
Choose �D= �D'= /0

T(P)
receive(J /0K,J /0K,U(m))−−−−−−−−−−−−−→≡ T(P′)

RENAME 2
ρ{receive→r}T(P)

{receive→r}•receive(J /0K,J /0K,U(m))−−−−−−−−−−−−−−−−−−−−−→≡ ρ{receive→r}T(P′)
Apply {receive→ r}•

ρ{receive→r}T(P)
r(J /0K,J /0K,U(m))−−−−−−−−−→≡ ρ{receive→r}T(P′)

Induction hypothesis
T(Q)

send(J /0K,J /0K,U(m))−−−−−−−−−−−→≡ T(Q′)
RENAME 2

ρ{send→s}T(Q)
{send→s}•send(J /0K,J /0K,U(m))−−−−−−−−−−−−−−−−−−→≡ ρ{send→s}T(Q′)

Apply {send→ s}•
ρ{send→s}T(Q)

s(J /0K,J /0K,U(m))−−−−−−−−−→≡ ρ{send→s}T(Q′)

(see above)
ρ{receive→r}T(P)

r(J /0K,J /0K,U(m))−−−−−−−−−→≡ ρ{receive→r}T(P′)
(see above)

ρ{send→s}T(Q)
s(J /0K,J /0K,U(m))−−−−−−−−−→≡ ρ{send→s}T(Q′)

PAR 3
ρ{receive→r}T(P) || ρ{send→s}T(Q)

r(J /0K,J /0K,U(m))|s(J /0K,J /0K,U(m))−−−−−−−−−−−−−−−−−−→≡ ρ{receive→r}T(P′) || ρ{send→s}T(Q′)
COMM 2

Γ{r|s→t}(ρ{receive→r}T(P) || ρ{send→s}T(Q))
γ{r|s→t}(r(J /0K,J /0K,U(m))|s(J /0K,J /0K,U(m)))
−−−−−−−−−−−−−−−−−−−−−−−→≡ Γ{r|s→t}(ρ{receive→r}T(P′) || ρ{send→s}T(Q′)) Apply γ

Γ{r|s→t}(ρ{receive→r}T(P) || ρ{send→s}T(Q))
rs(J /0K,J /0K,U(m))−−−−−−−−−→≡ Γ{r|s→t}(ρ{receive→r}T(P′) || ρ{send→s}T(Q′))t ∈V ∪{τ} ALLOW 2

∇V Γ{r|s→t}(ρ{receive→r}T(P) || ρ{send→s}T(Q))
t(J /0K,J /0K,U(m))−−−−−−−−→≡ ∇V Γ{r|s→t}(ρ{receive→r}T(P′) || ρ{send→s}T(Q′))

T13

T(P 〈〈 Q)
t(J /0K,J /0K,U(m))−−−−−−−−→≡ T(P′ 〈〈 Q′)

This proves this particular induction step.

124 Part C. Complete proof of Lemma 4.7

Broadcast (T3): AWN defines the inference rule

P
broadcast(m)−−−−−−−→ P′ BROADCAST (T3)

ip : P : R
R:*cast(m)−−−−−−→ ip : P′ : R

There exists an (A1,A2) in A such that R : *cast(m)∈ A1∧ ip : P : R
A1−→ ip : P′ : R, namely

Pair 2.11 in Table 2.10 (note that it is possible to choose D = UIP). The induction step
can therefore be proven for this particular case by finding a set of derivations in mCRL2
for T(ip : P : R) a−→≡ T(ip : P′ : R) for all a ∈ A2 = { starcast(JUIPK,U(R),U(m)) } .
In mCRL2, the following derivation can be made:

AXIOM

cast(UIP, tU(R), tU(m))
Jcast(UIP,tU(R),tU(m))K−−−−−−−−−−−−→X

Definition 2.1
cast(UIP, tU(R), tU(m))

cast(JUIPK,JtU(R)K,JtU(m)K)−−−−−−−−−−−−−−→X
Definition of t

cast(UIP, tU(R), tU(m))
cast(JUIPK,U(R),U(m))−−−−−−−−−−−−−→X

SEQ 1
cast(UIP, tU(R), tU(m)).G(tU(ip), tU(R))

cast(JUIPK,U(R),U(m))−−−−−−−−−−−−−→ G(tU(ip), tU(R))JtU(R)∩UIP = tU(R)K = true GUARD 2
(tU(R)∩UIP = tU(R))→ cast(UIP, tU(R), tU(m)).G(tU(ip), tU(R))

cast(JUIPK,U(R),U(m))−−−−−−−−−−−−−→ G(tU(ip), tU(R))
Substitution(

(tU(R)∩D= D')→ cast(D,D',msg).G(tU(ip), tU(R))
)
[D := UIP,D' := tU(R),msg := tU(m)]

cast(JUIPK,U(R),U(m))−−−−−−−−−−−−−→ G(tU(ip), tU(R))
SUM 2 (3 times)

∑D,D':T(Set(IP)),msg:T(MSG)(tU(R)∩D= D')→ cast(D,D',msg).G(tU(ip), tU(R))
cast(JUIPK,U(R),U(m))−−−−−−−−−−−−−→ G(tU(ip), tU(R))

CHOICE 2
∑D,D':T(Set(IP)),msg:T(MSG)(tU(R)∩D= D')→ cast(D,D',msg).G(tU(ip), tU(R))+S[ip := tU(ip),R := tU(R)]

cast(JUIPK,U(R),U(m))−−−−−−−−−−−−−→ G(tU(ip), tU(R))
Substitution(

∑D,D':T(Set(IP)),msg:T(MSG)(R∩D= D')→ cast(D,D',msg).G(ip,R)+S
)
[ip := tU(ip),R := tU(R)]

cast(JUIPK,U(R),U(m))−−−−−−−−−−−−−→ G(tU(ip), tU(R))
Definition of G RECURSION 2

G(tU(ip), tU(R))
cast(JUIPK,U(R),U(m))−−−−−−−−−−−−−→ G(tU(ip), tU(R))

where S is an expression equal to all summands of G except for the first one.

From the induction hypothesis, it follows that T(P)
cast(JUIPK,U(R),U(m))−−−−−−−−−−−−−→≡ T(P′) because

Pair 2.4 in Table 2.10 is the only (B1,B2) ∈A . broadcast(m) ∈ B1. Combining this with
the conclusion of the derivation above gives

Induction hypothesis
T(P)

cast(JUIPK,U(R),U(m))−−−−−−−−−−−−−→≡ T(P′)
(see above)

G(tU(ip), tU(R))
cast(JUIPK,U(R),U(m))−−−−−−−−−−−−−→ G(tU(ip), tU(R))

PAR 3
T(P) || G(tU(ip), tU(R))

cast(JUIPK,U(R),U(m))|cast(JUIPK,U(R),U(m))−−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ T(P′) || G(tU(ip), tU(R))
COMM 2

ΓC(T(P) || G(tU(ip), tU(R)))
γC(cast(JUIPK,U(R),U(m))|cast(JUIPK,U(R),U(m)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ ΓC(T(P′) || G(tU(ip), tU(R)))

Apply γC

ΓC(T(P) || G(tU(ip), tU(R)))
starcast(JUIPK,U(R),U(m))−−−−−−−−−−−−−−−→≡ ΓC(T(P′) || G(tU(ip), tU(R)))

starcast ∈V ∪{τ} ALLOW 2
∇V ΓC(T(P) || G(tU(ip), tU(R)))

starcast(JUIPK,U(R),U(m))−−−−−−−−−−−−−−−→≡ ∇V ΓC(T(P′) || G(tU(ip), tU(R)))
T14

T(ip : P : R)
starcast(JUIPK,U(R),U(m))−−−−−−−−−−−−−−−→≡ T(ip : P′ : R)

So it is indeed the case that

T(ip : P : R) a−→≡ T(ip : P′ : R) for all a ∈ A2 = { starcast(JUIPK,U(R),U(m)) }

which finishes the induction step for the case of the BROADCAST (T3) inference rule.

2 Induction step 125

Groupcast (T3): AWN defines the inference rule

P
groupcast(D,m)−−−−−−−−−→ P′ GROUPCAST (T3)

ip : P : R
R∩D:*cast(m)−−−−−−−−→ ip : P′ : R

There exists an (A1,A2) in A such that R∩D : *cast(m) ∈ A1∧ ip : P : R
A1−→ ip : P′ : R,

namely Pair 2.11 in Table 2.10. The induction step can therefore be proven for this
particular case by finding a set of derivations in mCRL2 for T(ip : P : R) a−→≡ T(ip : P′ : R)
for all a ∈ A2 = { starcast(U(D),U(R∩D),U(exprm)) } .
In mCRL2, the following derivation can be made:

AXIOM

cast(tU(D), tU(R∩D), tU(m))
Jcast(tU(D),tU(R∩D),tU(m))K−−−−−−−−−−−−−−→X

Definition 2.1
cast(tU(D), tU(R∩D), tU(m))

cast(JtU(D)K,JtU(R∩D)K,JtU(m)K)−−−−−−−−−−−−−−−−→X
Definition of t

cast(tU(D), tU(R∩D), tU(m))
cast(U(D),U(R∩D),U(m))−−−−−−−−−−−−−−→X

SEQ 1
cast(tU(D), tU(R∩D), tU(m)).G(tU(ip), tU(R))

cast(U(D),U(R∩D),U(m))−−−−−−−−−−−−−−→ G(tU(ip), tU(R))JtU(R)∩ tU(D) = tU(R∩D)K = true GUARD 2
(tU(R)∩ tU(D) = tU(R∩D))→ cast(tU(D), tU(R∩D), tU(m)).G(tU(ip), tU(R))

cast(U(D),U(R∩D),U(m))−−−−−−−−−−−−−−→ G(tU(ip), tU(R))
Substitution(

(tU(R)∩D= D')→ cast(D,D',msg).G(tU(ip), tU(R))
)
[D := tU(D),D' := tU(R∩D),msg := tU(m)]

cast(U(D),U(R∩D),U(m))−−−−−−−−−−−−−−→ G(tU(ip), tU(R))
SUM 2 (3 times)

∑D,D':T(Set(IP)),msg:T(MSG)(tU(R)∩D= D')→ cast(D,D',msg).G(tU(ip), tU(R))
cast(U(D),U(R∩D),U(m))−−−−−−−−−−−−−−→ G(tU(ip), tU(R))

CHOICE 2
∑D,D':T(Set(IP)),msg:T(MSG)(tU(R)∩D= D')→ cast(D,D',msg).G(tU(ip), tU(R))+S[ip := tU(ip),R := tU(R)]

cast(U(D),U(R∩D),U(m))−−−−−−−−−−−−−−→ G(tU(ip), tU(R))
Substitution(

∑D,D':T(Set(IP)),msg:T(MSG)(R∩D= D')→ cast(D,D',msg).G(ip,R)+S
)
[ip := tU(ip),R := tU(R)]

cast(U(D),U(R∩D),U(m))−−−−−−−−−−−−−−→ G(tU(ip), tU(R))
Definition of G RECURSION 2

G(tU(ip), tU(R))
cast(U(D),U(R∩D),U(m))−−−−−−−−−−−−−−→ G(tU(ip), tU(R))

where S is an expression equal to all summands of G except for the first one.

From the induction hypothesis, it follows that T(P)
cast(U(D),U(R∩D),U(m))−−−−−−−−−−−−−−→≡ T(P′) because

Pair 2.5 in Table 2.10 is the only (B1,B2) ∈A . groupcast(D,m) ∈ B1. Combining this
with the conclusion of the derivation above gives

Induction hypothesis
T(P)

cast(U(D),U(R∩D),U(m))−−−−−−−−−−−−−−→≡ T(P′)
(see above)

G(tU(ip), tU(R))
cast(U(D),U(R∩D),U(m))−−−−−−−−−−−−−−→ G(tU(ip), tU(R))

PAR 3
T(P) || G(tU(ip), tU(R))

cast(U(D),U(R∩D),U(m))|cast(U(D),U(R∩D),U(m))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ T(P′) || G(tU(ip), tU(R))
COMM 2

ΓC(T(P) || G(tU(ip), tU(R)))
γC(cast(U(D),U(R∩D),U(m))|cast(U(D),U(R∩D),U(m)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ ΓC(T(P′) || G(tU(ip), tU(R))) Apply γC

ΓC(T(P) || G(tU(ip), tU(R)))
starcast(U(D),U(R∩D),U(m))−−−−−−−−−−−−−−−−→≡ ΓC(T(P′) || G(tU(ip), tU(R)))starcast ∈V ∪{τ} ALLOW 2

∇V ΓC(T(P) || G(tU(ip), tU(R)))
starcast(U(D),U(R∩D),U(m))−−−−−−−−−−−−−−−−→≡ ∇V ΓC(T(P′) || G(tU(ip), tU(R)))

T14

T(ip : P : R)
starcast(U(D),U(R∩D),U(m))−−−−−−−−−−−−−−−−→≡ T(ip : P′ : R)

So it is indeed the case that

T(ip : P : R) a−→≡ T(ip : P′ : R) for all a ∈ A2 = { starcast(U(D),U(R∩D),U(m)) }

which finishes the induction step for the case of the GROUPCAST (T3) inference rule.

126 Part C. Complete proof of Lemma 4.7

Unicast (T3-1): AWN defines the inference rule

P
unicast(dip,m)−−−−−−−−→ P′ dip∈R

UNICAST (T3-1)
ip : P : R

{dip}:*cast(m)−−−−−−−−→ ip : P′ : R

There exists an (A1,A2) in A such that {dip} : *cast(m) ∈ A1∧ ip : P : R
A1−→ ip : P′ : R,

namely Pair 2.11 in Table 2.10. The induction step can therefore be proven for this
particular case by finding a set of derivations in mCRL2 for T(ip : P : R) a−→≡ T(ip : P′ : R)
for all a ∈ A2 = { starcast(U({dip}),U({dip}),U(m)) } .
In mCRL2, the following derivation can be made:

AXIOM

cast(tU({dip}), tU({dip}), tU(m))
Jcast(tU({dip}),tU({dip}),tU(m))K−−−−−−−−−−−−−−−−→X

Definition 2.1
cast(tU({dip}), tU({dip}), tU(m))

cast(JtU({dip})K,JtU(R∩D)K,JtU(m)K)−−−−−−−−−−−−−−−−−−→X
Definition of t

cast(tU({dip}), tU({dip}), tU(m))
cast(U({dip}),U({dip}),U(m))−−−−−−−−−−−−−−−−−→X

SEQ 1
cast(tU({dip}), tU({dip}), tU(m)).G(tU(ip), tU(R))

cast(U({dip}),U({dip}),U(m))−−−−−−−−−−−−−−−−−→ G(tU(ip), tU(R))JtU(R)∩ tU({dip}) = tU({dip})K = true GUARD 2
(tU(R)∩ tU({dip}) = tU({dip}))→ cast(tU({dip}), tU({dip}), tU(m)).G(tU(ip), tU(R))

cast(U({dip}),U({dip}),U(m))−−−−−−−−−−−−−−−−−→ G(tU(ip), tU(R))
Substitution(

(tU(R)∩D= D')→ cast(D,D',msg).G(tU(ip), tU(R))
)
[D := tU({dip}),D' := tU({dip}),msg := tU(m)]

cast(U({dip}),U({dip}),U(m))−−−−−−−−−−−−−−−−−→ G(tU(ip), tU(R))
SUM 2 (2 times)

∑D,D':T(Set(IP)),msg:T(MSG)(tU(R)∩D= D')→ cast(D,D',msg).G(tU(ip), tU(R))
cast(U({dip}),U({dip}),U(m))−−−−−−−−−−−−−−−−−→ G(tU(ip), tU(R))

CHOICE 2
∑D,D':T(Set(IP)),msg:T(MSG)(tU(R)∩D= D')→ cast(D,D',msg).G(tU(ip), tU(R))+S[ip := tU(ip),R := tU(R)]

cast(U({dip}),U({dip}),U(m))−−−−−−−−−−−−−−−−−→ G(tU(ip), tU(R))
Substitution(

∑D,D':T(Set(IP)),msg:T(MSG)(R∩D= D')→ cast(D,D',msg).G(ip,R)+S
)
[ip := tU(ip),R := tU(R)]

cast(U({dip}),U({dip}),U(m))−−−−−−−−−−−−−−−−−→ G(tU(ip), tU(R))
Definition of G RECURSION 2

G(tU(ip), tU(R))
cast(U({dip}),U({dip}),U(m))−−−−−−−−−−−−−−−−−→ G(tU(ip), tU(R))

where S is an expression equal to all summands of G except for the first one.

From the induction hypothesis, it follows that T(P)
cast(U({dip}),U({dip}),U(m))−−−−−−−−−−−−−−−−−→≡ T(P′)

because Pair 2.6 in Table 2.10 is the only (B1,B2)∈A . unicast(dip,m)∈ B1. Combining
this with the conclusion of the derivation above gives

Induction hypothesis
T(P)

cast(U({dip}),U({dip}),U(m))−−−−−−−−−−−−−−−−−→≡ T(P′)
(see above)

G(tU(ip), tU(R))
cast(U({dip}),U({dip}),U(m))−−−−−−−−−−−−−−−−−→ G(tU(ip), tU(R))

PAR 3
T(P) || G(tU(ip), tU(R))

cast(U({dip}),U({dip}),U(m))|cast(U({dip}),U({dip}),U(m))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ T(P′) || G(tU(ip), tU(R))
COMM 2

ΓC(T(P) || G(tU(ip), tU(R)))
γC(cast(U({dip}),U({dip}),U(m))|cast(U({dip}),U({dip}),U(m)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ ΓC(T(P′) || G(tU(ip), tU(R))) Apply γC

ΓC(T(P) || G(tU(ip), tU(R)))
starcast(U({dip}),U({dip}),U(m))−−−−−−−−−−−−−−−−−−−→≡ ΓC(T(P′) || G(tU(ip), tU(R)))starcast ∈V ∪{τ} ALLOW 2

∇V ΓC(T(P) || G(tU(ip), tU(R)))
starcast(U({dip}),U({dip}),U(m))−−−−−−−−−−−−−−−−−−−→≡ ∇V ΓC(T(P′) || G(tU(ip), tU(R)))

T14

T(ip : P : R)
starcast(U({dip}),U({dip}),U(m))−−−−−−−−−−−−−−−−−−−→≡ T(ip : P′ : R)

So it is indeed the case that

T(ip : P : R) a−→≡ T(ip : P′ : R) for all a ∈ A2 = { starcast(U({dip}),U({dip}),U(m)) }

which finishes the induction step for the case of the UNICAST (T3-1) inference rule.

2 Induction step 127

Unicast (T3-2): AWN defines the inference rule

P
¬unicast(dip,m)−−−−−−−−−→ P′ dip /∈ R

UNICAST (T3-2)
ip : P : R τ−→ ip : P′ : R

There exists an (A1,A2) in A such that τ ∈ A1∧ ip : P : R
A1−→ ip : P′ : R, namely Pair 2.3 in

Table 2.10. The induction step can therefore be proven for this particular case by finding a
set of derivations in mCRL2 for T(ip : P : R) a−→≡ T(ip : P′ : R) for all a ∈ A2 where

A2 = { t(U(D),U(R),U(m)) }

In mCRL2, the following derivation can be made:

AXIOM

¬uni(tU(dip), /0, tU(m))
J¬uni(tU(dip), /0,tU(m))K−−−−−−−−−−−−→X

Definition 2.1
¬uni(tU(dip), /0, tU(m))

¬uni(JtU(dip)K,J /0K,JtU(m)K)−−−−−−−−−−−−−−→X
Definition of t

¬uni(tU(dip), /0, tU(m))
¬uni(U(dip),J /0K,U(m))−−−−−−−−−−−−−→X

SEQ 1
¬uni(tU(dip), /0, tU(m)).G(tU(ip), tU(R))

¬uni(U(dip),J /0K,U(m))−−−−−−−−−−−−−→ G(tU(ip), tU(R))JtU(dip) /∈ tU(R)K = true GUARD 2
(tU(dip) /∈ tU(R))→¬uni(tU(dip), /0, tU(m)).G(tU(ip), tU(R))

¬uni(U(dip),J /0K,U(m))−−−−−−−−−−−−−→ G(tU(ip), tU(R))
Substitution(

(d /∈ tU(R))→¬uni(D, /0,msg).G(tU(ip), tU(R))
)
[d := tU({dip}),msg := tU(m)]

¬uni(U(dip),J /0K,U(m))−−−−−−−−−−−−−→ G(tU(ip), tU(R))
SUM 2 (2 times)

∑d:T(IP),msg:T(MSG)(d /∈ tU(R))→¬uni(d, /0,msg).G(tU(ip), tU(R))
¬uni(U(dip),J /0K,U(m))−−−−−−−−−−−−−→ G(tU(ip), tU(R))

CHOICE 2
∑d:T(IP),msg:T(MSG)(d /∈ tU(R))→¬uni(d, /0,msg).G(tU(ip), tU(R))+S[ip := tU(ip),R := tU(R)]

¬uni(U(dip),J /0K,U(m))−−−−−−−−−−−−−→ G(tU(ip), tU(R))
Substitution(

∑d:T(IP),msg:T(MSG)(d /∈ R)→¬uni(d, /0,msg).G(ip,R)+S
)
[ip := tU(ip),R := tU(R)]

¬uni(U(dip),J /0K,U(m))−−−−−−−−−−−−−→ G(tU(ip), tU(R))
Definition of G RECURSION 2

G(tU(ip), tU(R))
¬uni(U(dip),J /0K,U(m))−−−−−−−−−−−−−→ G(tU(ip), tU(R))

where S is an expression equal to all summands of G except for the second one.

From the induction hypothesis, it follows that T(P)
¬uni(U(dip),U(m))−−−−−−−−−−→≡ T(P′) because

Pair 2.7 in Table 2.10 is the only (B1,B2) ∈A . ¬unicast(dip,m) ∈ B1. Combining this
with the conclusion of the derivation above gives

Induction hypothesis
T(P)

¬uni(U(dip),J /0K,U(m))−−−−−−−−−−−−−→≡ T(P′) (see above)
PAR 6

T(P) || G(tU(ip), tU(R))
¬uni(U(dip),J /0K,U(m))|¬uni(U(dip),J /0K,U(m))−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ T(P′) || G(tU(ip), tU(R))

COMM 2
ΓC(T(P) || G(tU(ip), tU(R)))

γC(¬uni(U(dip),J /0K,U(m))|¬uni(U(dip),J /0K,U(m)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ ΓC(T(P′) || G(tU(ip), tU(R)))
Apply γC

ΓC(T(P) || G(tU(ip), tU(R)))
t(U(dip),J /0K,U(m))−−−−−−−−−−−→≡ ΓC(T(P′) || G(tU(ip), tU(R)))

t ∈V ∪{τ} ALLOW 2
∇V ΓC(T(P) || G(tU(ip), tU(R)))

t(U(dip),J /0K,U(m))−−−−−−−−−−−→≡ ∇V ΓC(T(P′) || G(tU(ip), tU(R)))
T14

T(ip : P : R)
t(U(dip),J /0K,U(m))−−−−−−−−−−−→≡ T(ip : P′ : R)

So it is indeed the case that

T(ip : P : R) a−→≡ T(ip : P′ : R) for all a ∈ A2 = { t(U(D),U(R),U(m)) }

which finishes the induction step for the case of the UNICAST (T3-2) inference rule.

128 Part C. Complete proof of Lemma 4.7

Deliver (T3): AWN defines the inference rule

P
deliver(d)−−−−−→ P′ DELIVER (T3)

ip : P : R
ip:deliver(d)−−−−−−−→ ip : P′ : R

There exists an (A1,A2) in A such that ip : deliver(d) ∈ A1 ∧ ip : P : R
A1−→ ip : P′ : R,

namely Pair 2.12 in Table 2.10. The induction step can therefore be proven for this
particular case by finding a set of derivations in mCRL2 for T(ip : P : R) a−→≡ T(ip : P′ : R)
for all a ∈ A2 =

{
deliver(U(ip),JTξ (d)K)

}
.

In mCRL2, the following derivation can be made:

AXIOM

del(tU(ip), tU(d))
Jdel(tU(ip),tU(d))K−−−−−−−−−→X

Definition 2.1
del(tU(ip), tU(d))

del(JtU(ip)K,JtU(d)K)−−−−−−−−−−→X
Definition of t

del(tU(ip), tU(d))
del(U(ip),U(d))−−−−−−−−→X

SEQ 1
del(tU(ip), tU(d)).G(tU(ip), tU(R))

del(U(ip),U(d))−−−−−−−−→ G(tU(ip), tU(R))
Substitution(

del(tU(ip),msg).G(tU(ip), tU(R))
)
[data := tU(d)]

del(U(ip),U(d))−−−−−−−−→ G(tU(ip), tU(R))
SUM 2

∑data:T(DATA)del(d,data).G(tU(ip), tU(R))
del(U(ip),U(d))−−−−−−−−→ G(tU(ip), tU(R))

CHOICE 2
∑data:T(DATA)del(tU(ip),data).G(tU(ip), tU(R))+S[ip := tU(ip),R := tU(R)]

del(U(ip),U(d))−−−−−−−−→ G(tU(ip), tU(R))
Substitution(

∑data:T(DATA)del(ip,data).G(ip,R)+S
)
[ip := tU(ip),R := tU({ip})]

del(U(ip),U(d))−−−−−−−−→ G(tU(ip), tU(R))
Definition of G RECURSION 2

G(tU(ip), tU(R))
del(U(ip),U(d))−−−−−−−−→ G(tU(ip), tU(R))

where S is an expression equal to all summands of G except for the third one.

From the induction hypothesis, it follows that T(P)
del(U(ip),U(d))−−−−−−−−→≡ T(P′) because Pair 2.9

in Table 2.10 is the only (B1,B2) ∈A . deliver(d) ∈ B1. Combining this with the conclu-
sion of the derivation above gives

Induction hypothesis
T(P)

del(U(ip),U(d))−−−−−−−−→≡ T(P′)
(see above)

G(tU(ip), tU(R))
del(U(ip),U(d))−−−−−−−−→ G(tU(ip), tU(R))

PAR 3
T(P) || G(tU(ip), tU(R))

del(U(ip),U(d))|del(U(ip),U(d))−−−−−−−−−−−−−−−−−→≡ T(P′) || G(tU(ip), tU(R))
COMM 2

ΓC(T(P) || G(tU(ip), tU(R)))
γC(del(U(ip),U(d))|del(U(ip),U(d)))−−−−−−−−−−−−−−−−−−−−→≡ ΓC(T(P′) || G(tU(ip), tU(R))) Apply γC

ΓC(T(P) || G(tU(ip), tU(R)))
deliver(U(ip),U(d))−−−−−−−−−−−→≡ ΓC(T(P′) || G(tU(ip), tU(R)))deliver ∈V ∪{τ} ALLOW 2

∇V ρ{¬unicast→t}ΓC(T(P) || G(tU(ip), tU(R)))
deliver(U(ip),U(d))−−−−−−−−−−−→≡ ∇V ρ{¬unicast→t}ΓC(T(P′) || G(tU(ip), tU(R)))

T14

T(ip : P : R)
deliver(U(ip),U(d))−−−−−−−−−−−→≡ T(ip : P′ : R)

So it is indeed the case that

T(ip : P : R) a−→≡ T(ip : P′ : R) for all a ∈ A2 =
{

deliver(U(ip),JTξ (d)K)
}

which finishes the induction step for the case of the DELIVER (T3) inference rule.

2 Induction step 129

Internal (T3): AWN defines the inference rule

P τ−→ P′ INTERNAL (T3)
ip : P : R τ−→ ip : P′ : R

There exists an (A1,A2) in A such that τ ∈ A1∧ ip : P : R
A1−→ ip : P′ : R, namely Pair 2.3

in Table 2.10. The induction step can therefore be proven for this particular case by
finding a set of derivations in mCRL2 for T(ip : P : R) a−→≡ T(ip : P′ : R) for all a ∈ A2 =
{ t(U(D),U(R),U(m)) } for some D,R ∈ Set(IP) where R⊆ D and some m ∈MSG.

From the induction hypothesis, it follows that T(P)
t(U(D),U(R),U(m))−−−−−−−−−−→≡ T(P′) for some

D,R ∈ Set(IP) where R⊆D and some m ∈MSG because Pair 2.3 in Table 2.10 is the only
(B1,B2) ∈A . τ ∈ B1. This means that the following derivation can be made in mCRL2:

Induction hypothesis
T(P)

t(U(D),U(R),U(m))−−−−−−−−−−→≡ T(P′)
PAR 2

T(P) || G(tU(ip), tU(R))
t(U(D),U(R),U(m))−−−−−−−−−−→≡ T(P′) || G(tU(ip), tU(R))

COMM 2
ΓC(T(P) || G(tU(ip), tU(R)))

γC(t(U(D),U(R),U(m)))−−−−−−−−−−−−−→≡ ΓC(T(P′) || G(tU(ip), tU(R))) Apply γC

ΓC(T(P) || G(tU(ip), tU(R)))
t(U(D),U(R),U(m))−−−−−−−−−−→≡ ΓC(T(P′) || G(tU(ip), tU(R)))t ∈V ∪{τ} ALLOW 2

∇V ΓC(T(P) || G(tU(ip), tU(R)))
t(U(D),U(R),U(m))−−−−−−−−−−→≡ ∇V ΓC(T(P′) || G(tU(ip), tU(R)))

T14

T(ip : P : R)
t(U(D),U(R),U(m))−−−−−−−−−−→≡ T(ip : P′ : R)

So it is indeed the case that

T(ip : P : R) a−→≡ T(ip : P′ : R) for all a ∈ A2 = { t(U(D),U(R),U(m)) }

which finishes the induction step for the case of the INTERNAL (T3) inference rule.

Arrive (T3-1): AWN defines the inference rule

P
receive(m)−−−−−−→ P′ ARRIVE (T3-1)

ip : P : R
{ip}¬ /0:arrive(m)−−−−−−−−−→ ip : P′ : R

There exists an (A1,A2) in A such that {ip}¬ /0 : arrive(m) ∈ A1∧ ip : P : R
A1−→ ip : P′ : R,

namely Pair 2.13 in Table 2.10. The induction step can therefore be proven for this
particular case by finding a set of derivations in mCRL2 for T(ip : P : R) a−→≡ T(ip : P′ : R)
for all a ∈ A2 where

A2 =

{
arrive(�D,�D',U(m))

∣∣∣∣ �D,�D'∈T(Set(IP))
�D'⊆�D

{U(ip)}⊆�D'

}
Note that {U(ip)} ⊆ �D'⇒ JtU(ip) ∈ t�D'K = true.

130 Part C. Complete proof of Lemma 4.7

In mCRL2, the following derivation can be made for all �D,�D' ∈ T(Set(IP)) such that
�D'⊆ �D∧U(ip) ∈ �D':

AXIOM

receive(t�D, t�D', tU(m))
Jreceive(t�D,t�D',tU(m))K−−−−−−−−−−−−→X

Definition 2.1
receive(t�D, t�D', tU(m))

receive(�D,�D',JtU(m)K)−−−−−−−−−−−→X
Definition of t

receive(t�D, t�D', tU(m))
receive(�D,�D',U(m))−−−−−−−−−−−→X

SEQ 1
receive(t�D, t�D', tU(m)).G(tU(ip), tU(R))

receive(�D,�D',U(m))−−−−−−−−−−−→ G(tU(ip), tU(R))JtU(ip) ∈ t�D'K = true GUARD 2
(tU(ip) ∈ t�D')→ receive(t�D, t�D', tU(m)).G(tU(ip), tU(R))

receive(�D,�D',U(m))−−−−−−−−−−−→ G(tU(ip), tU(R))
Substitution(

(tU(ip) ∈ D')→ receive(D,D',msg).G(tU(ip), tU(R))
)
[D := t�D,D' := t�D',msg := tU(m)]

receive(�D,�D',U(m))−−−−−−−−−−−→ G(tU(ip), tU(R))
SUM 2 (3 times)

∑D,D':T(Set(IP)),msg:T(MSG)(tU(ip) ∈ D')→ receive(t�D, t�D',msg).G(tU(ip), tU(R))
receive(�D,�D',U(m))−−−−−−−−−−−→ G(tU(ip), tU(R))

CHOICE 2
∑D,D':T(Set(IP)),msg:T(MSG)(tU(ip) ∈ D')→ receive(t�D, t�D',msg).G(tU(ip), tU(R))+S[ip := tU(ip),R := tU(R)]

receive(�D,�D',U(m))−−−−−−−−−−−→ G(tU(ip), tU(R))
Substitution(

∑D,D':T(Set(IP)),msg:T(MSG)(ip ∈ D')→ receive(t�D, t�D',msg).G(ip,R)+S
)
[ip := tU(ip),R := tU(R)]

receive(�D,�D',U(m))−−−−−−−−−−−→ G(tU(ip), tU(R))
Definition of G RECURSION 2

G(tU(ip), tU(R))
receive(�D,�D',U(m))−−−−−−−−−−−→ G(tU(ip), tU(R))

where S is an expression equal to all summands of G except for the one containing
receive.
From the induction hypothesis, it follows that T(P)

receive(�D,�D',U(m))−−−−−−−−−−−→≡ T(P′) because
Pair 2.10 in Table 2.10 is the only (B1,B2) ∈A . receive(m) ∈ B1. Combining this with
the conclusion of the derivation above gives

Induction hypothesis
T(P)

receive(�D,�D',U(m))−−−−−−−−−−−→≡ T(P′)
(see above)

G(tU(ip), tU(R))
receive(�D,�D',U(m))−−−−−−−−−−−→≡ G(tU(ip), tU(R))

PAR 3
T(P) || G(tU(ip), tU(R))

receive(�D,�D',U(m))|receive(�D,�D',U(m))−−−−−−−−−−−−−−−−−−−−−−→≡ T(P′) || G(tU(ip), tU(R))
COMM 2

ΓC(T(P) || G(tU(ip), tU(R)))
γC(receive(�D,�D',U(m))|receive(�D,�D',U(m)))−−−−−−−−−−−−−−−−−−−−−−−−→≡ ΓC(T(P′) || G(tU(ip), tU(R))) Apply γC

ΓC(T(P) || G(tU(ip), tU(R)))
arrive(�D,�D',U(m))−−−−−−−−−−→≡ ΓC(T(P′) || G(tU(ip), tU(R)))arrive ∈V ∪{τ} ALLOW 2

∇V ΓC(T(P) || G(tU(ip), tU(R)))
arrive(�D,�D',U(m))−−−−−−−−−−→≡ ∇V ΓC(T(P′) || G(tU(ip), tU(R)))

T14

T(ip : P : R)
arrive(�D,�D',U(m))−−−−−−−−−−→≡ T(ip : P′ : R)

So it is indeed the case that

T(ip : P : R) a−→≡ T(ip : P′ : R) for all a ∈ A2 =

{
arrive(�D,�D',U(m))

∣∣∣∣ �D,�D'∈T(Set(IP))
�D'⊆�D

{U(ip)}⊆�D'

}

which finishes the induction step for the case of the ARRIVE (T3-1) inference rule.

2 Induction step 131

Cast (T4-1): AWN defines the inference rule

M
R:*cast(m)−−−−−−→M′ N

H¬K:arrive(m)−−−−−−−−→ N′H⊆ R∧K∩R = /0 CAST (T4-1)
M || N R:*cast(m)−−−−−−→M′ || N′

There exists an (A1,A2) in A such that R : *cast(m) ∈ A1∧M || N A1−→M′ || N′, namely
Pair 2.11 in Table 2.10. The induction step can therefore be proven for this particular
case by finding a set of derivations in mCRL2 for T(M || N)

a−→≡ T(M′ || N′) for all
a ∈ { starcast(U(D),U(R),U(m)) } for some D with R⊆ D.

From the induction hypothesis, it follows that T(M)
starcast(U(D),U(R),U(m))−−−−−−−−−−−−−−→≡ T(M′) be-

cause Pair 2.11 in Table 2.10 is the only (B1,B2) ∈A . R : *cast(m) ∈ B1.

Similarly, T(N)
arrive(�D,�D',U(m))−−−−−−−−−−→≡ T(N′) for all �D' ⊆ �D because Pair 2.13 is the only

(B1,B2) ∈ A . H¬K : arrive(m) ∈ B1. This observation about T(M) can be refined as
follows:

Induction hypothesis
T(M)

arrive(�D,�D',U(m))−−−−−−−−−−→≡ T(N′)
H⊆ R∧K∩R = /0 Choose t�D' = tU(R)

T(M)
arrive(�D,JtU(R)K,U(m))
−−−−−−−−−−−−−→≡ T(N′)

R⊆ D Choose t�D = tU(D)

T(M)
arrive(JtU(D)K,JtU(R)K,U(m))
−−−−−−−−−−−−−−−−→≡ T(N′)

Definition of t (2 times)
T(M)

arrive(U(D),U(R),U(m))−−−−−−−−−−−−−−→≡ T(N′)

This means that the following derivation can be made in mCRL2:

Induction hypothesis
T(M)

starcast(U(D),U(R),U(m))−−−−−−−−−−−−−−→≡ T(M′)
(see above)

T(M)
arrive(U(D),U(R),U(m))−−−−−−−−−−−−−−→≡ T(N′)

PAR 3
T(M) || T(N)

starcast(U(D),U(R),U(m))|arrive(U(D),U(R),U(m))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ T(M′) || T(N′)
COMM 2

ΓC(T(M) || T(N))
γC(starcast(U(D),U(R),U(m))|arrive(U(D),U(R),U(m)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ ΓC(T(M′) || T(N′)) Apply γC

ΓC(T(M) || T(N))
s(U(D),U(R),U(m))−−−−−−−−−−−→≡ ΓC(T(M′) || T(N′))

COMM 2
Γ{arrive|arrive→a}ΓC(T(M) || T(N))

γ{arrive|arrive→a}(s(U(D),U(R),U(m)))
−−−−−−−−−−−−−−−−−−−−−→≡ Γ{arrive|arrive→a}ΓC(T(M′) || T(N′)) Apply γ{arrive|arrive→a}

Γ{arrive|arrive→a}ΓC(T(M) || T(N))
s(U(D),U(R),U(m))−−−−−−−−−−−→≡ Γ{arrive|arrive→a}ΓC(T(M′) || T(N′))

s ∈V ∪{τ} ALLOW 2
∇V Γ{arrive|arrive→a}ΓC(T(M) || T(N))

s(U(D),U(R),U(m))−−−−−−−−−−−→≡ ∇V Γ{arrive|arrive→a}ΓC(T(M′) || T(N′))
RENAME 2

ρR∇V Γ{arrive|arrive→a}ΓC(T(M) || T(N))
R•s(U(D),U(R),U(m))−−−−−−−−−−−−→≡ ρR∇V Γ{arrive|arrive→a}ΓC(T(M′) || T(N′))

Apply R•
ρR∇V Γ{arrive|arrive→a}ΓC(T(M) || T(N))

starcast(U(D),U(R),U(m))−−−−−−−−−−−−−−→≡ ρR∇V Γ{arrive|arrive→a}ΓC(T(M′) || T(N′))
T15

T(M || N)
starcast(U(D),U(R),U(m))−−−−−−−−−−−−−−→≡ T(M′ || N′)

Clearly, Pair 2.11 applies to the conclusion of this derivation, and thus the induction step
of Lemma 4.7 for the case of CAST (T4-1) is established.

Cast (T4-2): Similar to the Lemma 4.7-proof for Cast (T4-1).

132 Part C. Complete proof of Lemma 4.7

Cast (T4-3): AWN defines the inference rule

M
H¬K:arrive(m)−−−−−−−−→M′ N

H’¬K’:arrive(m)−−−−−−−−−→ N′ CAST (T4-3)
M || N (H∪H’)¬(K∪K’):arrive(m)−−−−−−−−−−−−−−−→M′ || N′

There exist an (A1,A2) in A such that (H∪H’)¬(K∪K’) : arrive(m) ∈ A1∧M || N A1−→
M′ ||N′, namely Pair 2.13 in Table 2.10. The induction step can therefore be proven for this
particular case by finding a set of derivations in mCRL2 for T(M || N)

a−→≡ T(M′ || N′)
for all a ∈ A2 where

A2 =

 arrive(�D,�D',U(m))

∣∣∣∣∣∣
�D,�D'∈T(Set(IP))

�D'⊆�D
U(H)∪U(H’)⊆�D'

(U(K)∪U(K’))∩�D'= /0


From the induction hypothesis, it follows that T(M)

arrive(�D,�D',U(m))−−−−−−−−−−→≡ T(M′) for all
�D'⊆ �D because Pair 2.13 in Table 2.10 is the only (B1,B2) ∈A . H¬K : arrive(m) ∈ B1.

For the same reason, T(N)
arrive(�D,�D',U(m))−−−−−−−−−−→≡ T(N′) for all �D'⊆ �D. This means that the

following derivation can be made in mCRL2 for R⊆ D:

Induction hypothesis
T(M)

arrive(�D,�D',U(m))−−−−−−−−−−→≡ T(M′)
Choose �D= U(D), �D'= U(R)

T(M)
arrive(U(D),U(R),U(m))−−−−−−−−−−−−−−→≡ T(M′)

Induction hypothesis
T(N)

arrive(�D,�D',U(m))−−−−−−−−−−→≡ T(N′)
Choose �D= U(D), �D'= U(R)

T(N)
arrive(U(D),U(R),U(m))−−−−−−−−−−−−−−→≡ T(N′)

PAR 3
T(M) || T(N)

arrive(U(D),U(R),U(m))|arrive(U(D),U(R),U(m))−−−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ T(M′) || T(N′)
COMM 2

ΓC(T(M) || T(N))
γC(arrive(U(D),U(R),U(m))|arrive(U(D),U(R),U(m)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ ΓC(T(M′) || T(N′)) Apply γC

ΓC(T(M) || T(N))
arrive(U(D),U(R),U(m))|arrive(U(D),U(R),U(m))−−−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ ΓC(T(M′) || T(N′))

COMM 2
Γ{arrive|arrive→a}ΓC(T(M) || T(N))

γ{arrive|arrive→a}(arrive(U(D),U(R),U(m))|arrive(U(D),U(R),U(m)))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ Γ{arrive|arrive→a}ΓC(T(M′) || T(N′)) Apply γ{arrive|arrive→a}

Γ{arrive|arrive→a}ΓC(T(M) || T(N))
a(U(D),U(R),U(m))−−−−−−−−−−−→≡ Γ{arrive|arrive→a}ΓC(T(M′) || T(N′))

a ∈V ∪{τ} ALLOW 2
∇V Γ{arrive|arrive→a}ΓC(T(M) || T(N))

a(U(D),U(R),U(m))−−−−−−−−−−−→≡ ∇V Γ{arrive|arrive→a}ΓC(T(M′) || T(N′))
RENAME 2

ρR∇V Γ{arrive|arrive→a}ΓC(T(M) || T(N))
R•a(U(D),U(R),U(m))−−−−−−−−−−−−→≡ ρR∇V Γ{arrive|arrive→a}ΓC(T(M′) || T(N′))

Apply R•
ρR∇V Γ{arrive|arrive→a}ΓC(T(M) || T(N))

arrive(U(D),U(R),U(m))−−−−−−−−−−−−−−→≡ ρR∇V Γ{arrive|arrive→a}ΓC(T(M′) || T(N′))
T15

T(M || N)
arrive(U(D),U(R),U(m))−−−−−−−−−−−−−−→≡ T(M′ || N′)

where �D'⊆ �D, U(H)⊆ �D', U(H ′)⊆ �D', U(K)∩�D'= /0 and U(K′)∩�D'= /0 (according to
the induction hypothesis). The side condition of Pair 2.13 holds for the conclusion of the
derivation above:

�D'⊆ �D⇔ �D'⊆ �D

U(H)⊆ �D'∧U(H ′)⊆ �D'⇔ U(H)∪U(H ′)⊆ �D'

U(K)∩�D'= /0∧U(K′)∩�D'= /0⇔ (U(K)∪U(K′))∩�D'= /0

This proves that

T(M || N)
a−→≡ T(M′ || N′) for all a ∈

 arrive(�D,�D',U(m))

∣∣∣∣∣∣
�D,�D'∈T(Set(IP))

�D'⊆�D
U(H)∪U(H’)⊆�D'

(U(K)∪U(K’))∩�D'= /0


finishing the induction step for the case of the CAST (T4-3) inference rule.

2 Induction step 133

Cast (T4-4): AWN defines the inference rule

M
R:*cast(m)−−−−−−→M′ CAST (T4-4)

[M]
τ−→ [M′]

There exists an (A1,A2) in A such that τ ∈ A1 ∧ [M]
A1−→ [M′], namely Pair 2.3 in

Table 2.10. The induction step can therefore be proven for this particular case by
finding a set of derivations in mCRL2 for T([M])

a−→≡ T([M′]) for all a ∈ A2 =
{ t(U(D),U(R),U(m)) } for some D,R ∈ Set(IP) where R⊆ D and some m ∈MSG.

From the induction hypothesis, it follows that T(M)
starcast(U(D),U(R),U(m))−−−−−−−−−−−−−−→≡ T(M′) for

some D⊇ R because Pair 2.11 in Table 2.10 is the only (B1,B2) ∈A . R : *cast(m) ∈ B1.
This means that the following derivation can be made in mCRL2:

Induction hypothesis
T(M)

starcast(U(D),U(R),U(m))−−−−−−−−−−−−−−→≡ T(M′)
PAR 2

T(M) || H starcast(U(D),U(R),U(m))−−−−−−−−−−−−−−→≡ T(M′) || H
COMM 2

ΓC(T(M) || H)
γC(starcast(U(D),U(R),U(m)))−−−−−−−−−−−−−−−−−→≡ ΓC(T(M′) || H)

Apply γC

ΓC(T(M) || H)
starcast(U(D),U(R),U(m))−−−−−−−−−−−−−−→≡ ΓC(T(M′) || H)

RENAME 2
ρ{starcast→t}ΓC(T(M) || G)

{starcast→t}•starcast(U(D),U(R),U(m))−−−−−−−−−−−−−−−−−−−−−−−→≡ ρ{starcast→t}ΓC(T(M′) || G)
Apply {starcast→ t}•

ρ{starcast→t}ΓC(T(M) || G)
t(U(D),U(R),U(m))−−−−−−−−−−→≡ ρ{starcast→t}ΓC(T(M′) || G)

t ∈V ∪{τ} ALLOW 2
∇V ρ{starcast→t}ΓC(T(M) || G)

t(U(D),U(R),U(m))−−−−−−−−−−→≡ ∇V ρ{starcast→t}ΓC(T(M′) || G)
T16

T([M])
t(U(D),U(R),U(m))−−−−−−−−−−→≡ T([M′])

So it is indeed the case that

T([M])
a−→≡ T([M′]) for all a ∈ A2 = { t(U(D),U(R),U(m)) }

which finishes the induction step for the case of the CAST (T4-4) inference rule.

134 Part C. Complete proof of Lemma 4.7

Deliver (T4-1): AWN defines the inference rule

M
ip:deliver(d)−−−−−−−→M′ DELIVER (T4-1)

M || N ip:deliver(d)−−−−−−−→M′ || N

There exists an (A1,A2) in A such that ip : deliver(d) ∈ A1∧M || N A1−→M′ || N, namely
Pair 2.12 in Table 2.10. The induction step can therefore be proven for this particular
case by finding a set of derivations in mCRL2 for T(M || N)

a−→≡ T(M′ || N) for all
a ∈ A2 = { deliver(U(ip),U(d)) } .

From the induction hypothesis, it follows that T(M)
deliver(U(ip),U(d))−−−−−−−−−−−→≡ T(M′) because

Pair 2.12 in Table 2.10 is the only (B1,B2) ∈A . ip : deliver(d) ∈ B1. This means that
the following derivation can be made in mCRL2:

Induction hypothesis
T(M)

deliver(U(ip),U(d))−−−−−−−−−−−→≡ T(M′)
PAR 2

T(M) || T(N)
deliver(U(ip),U(d))−−−−−−−−−−−→≡ T(M′) || T(N)

COMM 2
ΓC(T(M) || T(N))

γC(deliver(U(ip),U(d)))−−−−−−−−−−−−−→≡ ΓC(T(M′) || T(N))
Apply γC

ΓC(T(M) || T(N))
deliver(U(ip),U(d))−−−−−−−−−−−→≡ ΓC(T(M′) || T(N))

COMM 2
Γ{arrive|arrive→a}ΓC(T(M) || T(N))

γ{arrive|arrive→a}(deliver(U(ip),U(d)))
−−−−−−−−−−−−−−−−−−−−−→≡ Γ{arrive|arrive→a}ΓC(T(M′) || T(N))

Apply γ{arrive|arrive→a}
Γ{arrive|arrive→a}ΓC(T(M) || T(N))

deliver(U(ip),U(d))−−−−−−−−−−−→≡ Γ{arrive|arrive→a}ΓC(T(M′) || T(N))
deliver ∈V ∪{τ} ALLOW 2

∇V Γ{arrive|arrive→a}ΓC(T(M) || T(N))
deliver(U(ip),U(d))−−−−−−−−−−−→≡ ∇V Γ{arrive|arrive→a}ΓC(T(M′) || T(N))

RENAME 2
ρR∇V Γ{arrive|arrive→a}ΓC(T(M) || T(N))

R•deliver(U(ip),U(d))−−−−−−−−−−−−→≡ ρR∇V Γ{arrive|arrive→a}ΓC(T(M′) || T(N))
Apply R•

ρR∇V Γ{arrive|arrive→a}ΓC(T(M) || T(N))
deliver(U(ip),U(d))−−−−−−−−−−−→≡ ρR∇V Γ{arrive|arrive→a}ΓC(T(M′) || T(N))

T15

T(M || N)
deliver(U(ip),U(d))−−−−−−−−−−−→≡ T(M′ || N)

So it is indeed the case that

T(M || N)
a−→≡ T(M′ || N) for all a ∈ A2 = { deliver(U(ip),U(d)) }

which finishes the induction step for the case of the DELIVER (T4-1) inference rule.

Deliver (T4-2): Similar to the Lemma 4.7-proof for Deliver (T4-1).

2 Induction step 135

Deliver (T4-3): AWN defines the inference rule

M
ip:deliver(d)−−−−−−−→M′ DELIVER (T4-3)

[M]
ip:deliver(d)−−−−−−−→ [M′]

There exists an (A1,A2) in A such that ip : deliver(d) ∈ A1∧M || N A1−→M′ || N, namely
Pair 2.12 in Table 2.10. The induction step can therefore be proven for this particular
case by finding a set of derivations in mCRL2 for T([M])

a−→≡ T([M′]) for all a ∈ A2 =
{ deliver(U(ip),U(d)) } .

From the induction hypothesis, it follows that T(M)
deliver(U(ip),U(d))−−−−−−−−−−−→≡ T(M′) because

Pair 2.12 in Table 2.10 is the only (B1,B2) ∈A . ip : deliver(d) ∈ B1. This means that
the following derivation can be made in mCRL2:

Induction hypothesis
T(M)

deliver(U(ip),U(d))−−−−−−−−−−−→≡ T(M′)
PAR 2

T(M) || H deliver(U(ip),U(d))−−−−−−−−−−−→≡ T(M′) || H
COMM 2

ΓC(T(M) || H)
deliver(U(ip),U(d)))−−−−−−−−−−−→≡ ΓC(T(M′) || H)

Apply γC

ΓC(T(M) || H)
deliver(U(ip),U(d))−−−−−−−−−−−→≡ ΓC(T(M′) || H)

RENAME 2
ρ{starcast→t}ΓC(T(M) || H)

{starcast→t}•deliver(U(ip),U(d))−−−−−−−−−−−−−−−−−−−→≡ ρ{starcast→t}ΓC(T(M′) || H)
Apply {starcast→ t}•

ρ{starcast→t}ΓC(T(M) || H)
deliver(U(ip),U(d))−−−−−−−−−−−→≡ ρ{starcast→t}ΓC(T(M′) || H)

deliver ∈V ∪{τ} ALLOW 2
∇V ρ{starcast→t}ΓC(T(M) || H)

deliver(U(ip),U(d))−−−−−−−−−−−→≡ ∇V ρ{starcast→t}ΓC(T(M′) || H)
T16

T([M])
deliver(U(ip),U(d))−−−−−−−−−−−→≡ T([M′])

So it is indeed the case that

T([M])
a−→≡ T([M′]) for all a ∈ A2 = { deliver(U(ip),U(d)) }

which finishes the induction step for the case of the DELIVER (T4-3) inference rule.

Internal (T4-1): Similar to the Lemma 4.7-proof for Deliver (T4-1).

Internal (T4-2): Similar to the Lemma 4.7-proof for Deliver (T4-1).

Internal (T4-3): Similar to the Lemma 4.7-proof for Deliver (T4-3).

136 Part C. Complete proof of Lemma 4.7

Connect (T4-1): AWN defines the inference rule

M
connect(ip,ip’)−−−−−−−−→M′ N

connect(ip,ip’)−−−−−−−−→ N′ CONNECT (T4-1)
M || N connect(ip,ip’)−−−−−−−−→M′ || N′

There exists an (A1,A2) in A such that connect(ip, ip’)∈ A1∧M ||N A1−→M′ ||N′, namely
Pair 2.14 in Table 2.10. For this particular case, the induction step can be proven by

finding a set of derivations in mCRL2 for T(M || N)
A1−→≡ T(M′ || N′) for all a ∈ A2 =

{ connect(U(ip),U(ip’)) } .

From the induction hypothesis, it follows that T(M)
connect(U(ip),U(ip’))−−−−−−−−−−−−→≡ T(M′) because

Pair 2.14 in Table 2.10 is the only (B1,B2) ∈ A . connect(ip, ip’) ∈ B1. For the same

reason, T(N)
connect(U(ip),U(ip’))−−−−−−−−−−−−→≡ T(N′). This means that the following derivation can

be made in mCRL2:

Induction hypothesis
T(M)

connect(U(ip),U(ip’))−−−−−−−−−−−−→≡ T(M′)
Induction hypothesis

T(N)
connect(U(ip),U(ip’))−−−−−−−−−−−−→≡ T(N′)

PAR 3
T(M) || T(N)

connect(U(ip),U(ip’))|connect(U(ip),U(ip’))−−−−−−−−−−−−−−−−−−−−−−−−−→≡ T(M′) || T(N′)
COMM 2

ΓC(T(M) || T(N))
γC(connect(U(ip),U(ip’))|connect(U(ip),U(ip’)))−−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ ΓC(T(M′) || T(N′)) Apply γC

ΓC(T(M) || T(N))
c(U(ip),U(ip’))−−−−−−−−→≡ ΓC(T(M′) || T(N′))

COMM 2
Γ{arrive|arrive→a}ΓC(T(M) || T(N))

γ{arrive|arrive→a}(c(U(ip),U(ip’)))
−−−−−−−−−−−−−−−−−−→≡ Γ{arrive|arrive→a}ΓC(T(M′) || T(N′)) Apply γ{arrive|arrive→a}

Γ{arrive|arrive→a}ΓC(T(M) || T(N))
c(U(ip),U(ip’))−−−−−−−−→≡ Γ{arrive|arrive→a}ΓC(T(M′) || T(N′))

c ∈V ∪{τ} ALLOW 2
∇V Γ{arrive|arrive→a}ΓC(T(M) || T(N))

c(U(ip),U(ip’))−−−−−−−−→≡ ∇V Γ{arrive|arrive→a}ΓC(T(M′) || T(N′))
RENAME 2

ρR∇V Γ{arrive|arrive→a}ΓC(T(M) || T(N))
R•c(U(ip),U(ip’))−−−−−−−−−−→≡ ρR∇V Γ{arrive|arrive→a}ΓC(T(M′) || T(N′))

Apply R•
ρR∇V Γ{arrive|arrive→a}ΓC(T(M) || T(N))

connect(U(ip),U(ip’))−−−−−−−−−−−−→≡ ρR∇V Γ{arrive|arrive→a}ΓC(T(M′) || T(N′))
T15

T(M || N)
connect(U(ip),U(ip’))−−−−−−−−−−−−→≡ T(M′ || N′)

So it is indeed the case that

T(M || N)
a−→≡ T(M′ || N) for all a ∈ A2 = { connect(U(ip),U(ip’)) }

which finishes the induction step for the case of the CONNECT (T4-1) inference rule.

2 Induction step 137

Connect (T4-2): AWN defines the inference rule

M
connect(ip,ip′)−−−−−−−−→M′ CONNECT (T4-2)

[M]
connect(ip,ip′)−−−−−−−−→ [M′]

There exists an (A1,A2) in A such that connect(ip, ip’) ∈ A1∧ [M]
A1−→ [M′], namely

Pair 2.14 in Table 2.10. For this particular case, the induction step can be proven by

finding a set of derivations in mCRL2 for T([M])
A1−→≡ T([M′]) for all a ∈ A2 where

A2 = { connect(U(ip),U(ip’)) } .

From the induction hypothesis, it follows that T(M)
connect(U(ip),U(ip’))−−−−−−−−−−−−→≡ T(M′) because

Pair 2.14 in Table 2.10 is the only (B1,B2) ∈A . connect(ip, ip’) ∈ B1. This means that
the following derivation can be made in mCRL2:

Induction hypothesis
T(M)

connect(U(ip),U(ip’))−−−−−−−−−−−−→≡ T(M′)
PAR 2

T(M) || H connect(U(ip),U(ip’))−−−−−−−−−−−−→≡ T(M′) || H
COMM 2

ΓC(T(M) || H)
γC(connect(U(ip),U(ip’)))−−−−−−−−−−−−−−→≡ ΓC(T(M′) || H)

Apply γC

ΓC(T(M) || H)
connect(U(ip),U(ip’))−−−−−−−−−−−−→≡ ΓC(T(M′) || H)

RENAME 2
ρ{starcast→t}ΓC(T(M) || H)

{starcast→t}•connect(U(ip),U(ip’))−−−−−−−−−−−−−−−−−−−−→≡ ρ{starcast→t}ΓC(T(M′) || H)
Apply {starcast→ t}•

ρ{starcast→t}ΓC(T(M) || H)
connect(U(ip),U(ip’))−−−−−−−−−−−−→≡ ρ{starcast→t}ΓC(T(M′) || H)

connect ∈V ∪{τ} ALLOW 2
∇V ρ{starcast→t}ΓC(T(M) || H)

connect(U(ip),U(ip’))−−−−−−−−−−−−→≡ ∇V ρ{starcast→t}ΓC(T(M′) || H)
T16

T([M])
connect(U(ip),U(ip’))−−−−−−−−−−−−→≡ T([M′])

So it is indeed the case that

T(M || N)
a−→≡ T(M′ || N) for all a ∈ A2 = { connect(U(ip),U(ip’)) }

which finishes the induction step for the case of the CONNECT (T4-2) inference rule.

Disconnect (T4-1): Similar to the Lemma 4.7-proof for Connect (T4-1).

Disconnect (T4-2): Similar to the Lemma 4.7-proof for Connect (T4-2).

Newpkt (T4): AWN defines the inference rule

M
{ip}¬K:arrive(newpkt(tU(d),tU(dip)))−−−−−−−−−−−−−−−−−−−−→M′ NEWPKT (T4)
[M]

ip:newpkt(d,dip)−−−−−−−−−→ [M′]

There exists an (A1,A2) in A such that ip : newpkt(d,dip) ∈ A1 ∧ [M]
A1−→ [M′],

namely Pair 2.16 in Table 2.10. This base case can therefore be proven by finding

138 Part C. Complete proof of Lemma 4.7

a set of derivations in mCRL2 such that T([M])
a−→≡ T([M′]) for all a ∈ A2 =

{ newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip))) } .
In mCRL2, the following derivation can be made:

AXIOM

newpkt({tU(ip)},{tU(ip)},newpkt(tU(d), tU(dip)))
Jnewpkt({tU(ip)},{tU(ip)},newpkt(tU(d),tU(dip)))K−−−−−−−−−−−−−−−−−−−−−−−−−−→≡X

Definition 2.1
newpkt({tU(ip)},{tU(ip)},newpkt(tU(d), tU(dip)))

newpkt({JtU(ip)K},{JtU(ip)K},newpkt(JtU(d)K,JtU(dip)K))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→≡X
Definition of t

newpkt({tU(ip)},{tU(ip)},newpkt(tU(d), tU(dip)))
newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−→≡X

SEQ 2
newpkt({tU(ip)},{tU(ip)},newpkt(tU(d), tU(dip))).H

newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ H
Substitution

(newpkt({ip},{ip},newpkt(data,dest)).H)
[
ip := tU(ip),data := tU(d),dest := tU(dip)

] newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ H
SUM 2

∑ip:T(IP),data:T(DATA),dest:T(IP)newpkt({ip},{ip},newpkt(data,dest)).H newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ H
Substitution

(∑ip:T(IP),data:T(DATA),dest:T(IP)newpkt({ip},{ip},newpkt(data,dest)).H)[]
newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ H

Definition of H RECURSION 2
H

newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ H

From the induction hypothesis, it follows that T(M)
arrive(�D,�D',newpkt(tU(d),tU(dip)))−−−−−−−−−−−−−−−−−−−→≡ T(M′)

for all �D'⊆ �D such that {U(ip)} ⊆ �D'∧U(K)∩�D'= /0 because Pair 2.13 in Table 2.10 is
the only (B1,B2) ∈A . arrive(newpkt(tU(d), tU(dip))) ∈ B1. This observation about T(M)
can be refined as follows:

Induction hypothesis
T(M)

arrive(�D,�D',newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−→≡ T(M′)
{U(ip)} ⊆ R∧K∩R = /0 Choose �D= �D'= {U(ip)}

T(M)
arrive(J{tU(ip)}K,J{tU(ip)}K,newpkt(U(d),U(dip)))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ T(M′)

T(M)
arrive({JtU(ip)K},{JtU(ip)K},newpkt(U(d),U(dip)))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ T(M′)

Definition of t (2 times)
T(M)

arrive({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ T(M′)

This means that the following derivation can be made in mCRL2:

(see above)
H

newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ H
(see above)

T(M)
arrive({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ T(M′)

PAR 3
T(M) || H newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))|arrive({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−→≡ T(M′) || H

COMM 2
ΓC(T(M) || H)

γC(newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))|arrive({U(ip)},{U(ip)},newpkt(U(d),U(dip))))−−−→≡ ΓC(T(M′) || H)
Apply γC

ΓC(T(M) || H)
newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ ΓC(T(M′) || H)

RENAME 2
ρ{starcast→t}ΓC(T(M) || H)

{starcast→t}•newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ ρ{starcast→t}ΓC(T(M′) || H)
Apply {starcast→ t}•

ρ{starcast→t}ΓC(T(M) || H)
newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ ρ{starcast→t}ΓC(T(M′) || H)

newpkt ∈V ∪{τ} ALLOW 2
∇V ρ{starcast→t}ΓC(T(M) || H)

newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ ∇V ρ{starcast→t}ΓC(T(M′) || H)
T16

T([M])
newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ T([M′])

So it is indeed the case that

T(ip : P : R) a−→≡ T(ip : P′ : R) for all a ∈ A2 = { newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip))) }

which finishes the induction step for the case of the NEWPKT (T4) inference rule.

Appendix D

Complete proof of Lemma 4.8

Lemma: For TV as defined by the rules T1 to T10 in Table 2.8 it holds that

∀p,a,Q,ξ . TDOM(ξ)(ξ ,p)
a−→ Q⇒∃(A1,A2) ∈A ,̆q,σ . a ∈ A1

∧TDOM(ξ)(ξ ,p)
A1−→≡ TDOM(ξ [σ])(ξ [σ],q)∧ξ ,p A2−→ ξ [σ],q∧Q≡ TDOM(ξ [σ])(ξ [σ],q)

Proof: The proof of Equation 2.19 is by structural induction over the rules T1 to T10 in Table 2.8.
This is a sound approach because these rules yield all mCRL2 expressions that can result from a
translation by TV . For each translation rule, all representative derivations (see Definition 4.3)
for expressions of the form TDOM(ξ)(ξ ,p)

a−→ Q are listed, and for each possible derivation
Lemma 4.8 is proven.
Induction hypothesis: For all recursions TW (ξ ,p) that are part of a translation rule defining TV ,

it holds that

∀a,Q .TDOM(ξ)(ξ ,p)
a−→ Q⇒∃(A1,A2) ∈A ,̆q,σ . a ∈ A1∧

TDOM(ξ)(ξ ,p)
A1−→≡ TDOM(ξ [σ])(ξ [σ],q)∧ξ ,p A2−→ ξ [σ],q∧Q≡ TDOM(ξ [σ])(ξ [σ],q)

140 Part D. Complete proof of Lemma 4.8

1 Base cases
Show for translation rules T1 to T7 and T10 that for all a and Q such that TDOM(ξ)(ξ ,p)

a−→ Q there

is some (A1,A2) ∈A ˘ . a ∈ A1 and some σ ,q such that TDOM(ξ)(ξ ,p)
A1−→≡ TDOM(ξ [σ])(ξ [σ],q)

and ξ ,p a′−→ ξ [σ],q can be derived for all a′ ∈ A2 and Q≡ TDOM(ξ [σ])(ξ [σ],q).

Translation rule T1: The translation function TV is partially defined by translation rule

TV (ξ ,broadcast(ms).p) = ∑D:T(Set(IP)) cast(UIP,D,Tξ (ms)).TV (ξ ,p) where D /∈ T(V) T1

For expressions of the form TDOM(ξ)(ξ ,broadcast(ms).p) a−→ Q, consider the following
derivation:

AXIOM

cast(UIP, t�D,Tξ (ms))
Jcast(UIP ,t�D,Tξ (ms))K
−−−−−−−−−−−−−→X

Definition 2.1
cast(UIP, t�D,Tξ (ms))

cast(JUIPK,�D,JTξ (ms)K)
−−−−−−−−−−−−−−→X

SEQ 1

cast(UIP, t�D,Tξ (ms)).TDOM(ξ)(ξ ,p)
cast(JUIPK,�D,JTξ (ms)K)
−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

Substitution(
cast(UIP,D,Tξ (ms)).TDOM(ξ)(ξ ,p)

)
[D := t�D]

cast(JUIPK,�D,JTξ (ms)K)
−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

SUM 2

∑D:T(Set(IP)) cast(UIP,D,Tξ (ms)).TDOM(ξ)(ξ ,p)
cast(JUIPK,�D,JTξ (ms)K)
−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

T1
TDOM(ξ)(ξ ,broadcast(ms).p)

cast(JUIPK,�D,JTξ (ms)K)
−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

This derivation is a representative derivation without alternatives (see Definition 4.3). It
follows that a ∈

{
cast(JUIPK,�D,JTξ (ms)K)

∣∣ �D ∈ T(Set(IP))
}

and Q = TDOM(ξ)(ξ ,p)≡
TDOM(ξ [σ])(ξ [σ],p) by choosing σ = /0. There is exactly one pair (A1,A2) ∈ A ˘ . a ∈

A1∧TDOM(ξ)(ξ ,broadcast(ms).p)
A1−→ TDOM(ξ [σ])(ξ [σ],p):

(
{

cast(JUIPK,�D,JTξ (ms)K)
∣∣ �D ∈ T(Set(IP))

}
,{ broadcast(ξ (ms)) })

This pair satisfies the condition that ξ ,broadcast(ms).p a′−→ ξ [σ],p can be derived for all
a′ ∈ A2 (via AWN inference rule BROADCAST (T1)), which is sufficient to prove this
particular base case.

1 Base cases 141

Translation rule T2: The translation function TV is partially defined by translation rule

TV (ξ ,groupcast(dests,ms).p) = ∑D:T(Set(IP)) cast(Tξ (dests),D,Tξ (ms)).TV (ξ ,p) where D /∈ T(V) T2

For expressions of the form TDOM(ξ)(ξ ,groupcast(dests,ms).p) a−→ Q, consider the fol-
lowing derivation:

AXIOM

cast(Tξ (dests), t�D,Tξ (ms))
Jcast(Tξ (dests),t�D,Tξ (ms))K
−−−−−−−−−−−−−−−−→X

Definition 2.1
cast(Tξ (dests), t�D,Tξ (ms))

cast(JTξ (dests)K,�D,JTξ (ms)K)
−−−−−−−−−−−−−−−−−→X

SEQ 1

cast(Tξ (dests), t�D,Tξ (ms)).TDOM(ξ)(ξ ,p)
cast(JTξ (dests)K,�D,JTξ (ms)K)
−−−−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

Substitution(
cast(Tξ (dests),D,Tξ (ms)).TDOM(ξ)(ξ ,p)

)
[D := t�D]

cast(JTξ (dests)K,�D,JTξ (ms)K)
−−−−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

SUM 2

∑D:T(Set(IP)) cast(Tξ (dests),D,Tξ (ms)).TDOM(ξ)(ξ ,p)
cast(JTξ (dests)K,�D,JTξ (ms)K)
−−−−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

T2
TDOM(ξ)(ξ ,groupcast(dests,ms).p)

cast(JTξ (dests)K,�D,JTξ (ms)K)
−−−−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

This derivation is a representative derivation without alternatives (see Defini-
tion 4.3). It follows that a ∈

{
cast(JTξ (dests)K,�D,JTξ (ms)K)

∣∣ �D ∈ T(Set(IP))
}

and
Q = TDOM(ξ)(ξ ,p) ≡ TDOM(ξ [σ])(ξ [σ],p) by choosing σ = /0. There is exactly one pair

(A1,A2) ∈A ˘ . a ∈ A1∧TDOM(ξ)(ξ ,groupcast(dests,ms).p)
A1−→ TDOM(ξ [σ])(ξ [σ],p):

(
{

cast(JTξ (dests)K,�D,JTξ (ms)K)
∣∣ �D ∈ T(Set(IP))

}
,{ groupcast(ξ (dests),ξ (ms)) })

This pair satisfies the condition that ξ ,groupcast(dests,ms).p a′−→≡ ξ [σ],p can be derived
for all a′ ∈ A2 (via AWN inference rule GROUPCAST (T1)), which is sufficient to prove
this particular base case.

142 Part D. Complete proof of Lemma 4.8

Translation rule T3: The translation function TV is partially defined by translation rule

TV (ξ ,unicast(dest,ms).pI q) = cast({Tξ (dest)},{Tξ (dest)},Tξ (ms)).TV (ξ ,p) T3

+¬uni({Tξ (dest)}, /0,Tξ (ms)).TV (ξ ,q)

For expressions of the form TDOM(ξ)(ξ ,unicast(dest,ms).pI q) a−→ Q, consider the fol-
lowing derivation:

AXIOM

cast(Tξ ({dest}),Tξ ({dest}),Tξ (ms))
Jcast(Tξ ({dest}),Tξ ({dest}),Tξ (ms))K
−−−−−−−−−−−−−−−−−−−−−→X

Definition 2.1
cast(Tξ ({dest}),Tξ ({dest}),Tξ (ms))

cast(JTξ ({dest})K,JTξ ({dest})K,JTξ (ms)K)
−−−−−−−−−−−−−−−−−−−−−−−→X

SEQ 1
cast(Tξ ({dest}),Tξ ({dest}),Tξ (ms)).TDOM(ξ)(ξ ,p)

cast(JTξ ({dest})K,JTξ ({dest})K,JTξ (ms)K)
−−−−−−−−−−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

CHOICE 2
cast(Tξ ({dest}),Tξ ({dest}),Tξ (ms)).TDOM(ξ)(ξ ,p)+¬uni(Tξ ({dest}), /0,Tξ (ms)).TDOM(ξ)(ξ ,q)

cast(JTξ ({dest})K,JTξ ({dest})K,JTξ (ms)K)
−−−−−−−−−−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

T3

TDOM(ξ)(ξ ,unicast(dest,ms).pI q)
cast(JTξ ({dest})K,JTξ ({dest})K,JTξ (ms)K)
−−−−−−−−−−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

This representative derivation has one alternative where a ∈{
¬uni(JTξ (dest)K,JTξ (ms)K)

}
:

AXIOM

¬uni(Tξ ({dest}), /0,Tξ (ms))
J¬uni(Tξ ({dest}), /0,Tξ (ms))K
−−−−−−−−−−−−−−−−→X

Definition 2.1
¬uni(Tξ ({dest}), /0,Tξ (ms))

¬uni(JTξ ({dest})K,J /0K,JTξ (ms)K)
−−−−−−−−−−−−−−−−−−→X

SEQ 1
¬uni(Tξ ({dest}), /0,Tξ (ms)).TDOM(ξ)(ξ ,q)

¬uni(JTξ ({dest})K,J /0K,JTξ (ms)K)
−−−−−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,q)

CHOICE 4
cast(Tξ ({dest}),Tξ ({dest}),Tξ (ms)).TDOM(ξ)(ξ ,p)+¬uni(Tξ ({dest}), /0,Tξ (ms)).TDOM(ξ)(ξ ,q)

¬uni(JTξ ({dest})K,J /0K,JTξ (ms)K)
−−−−−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,q)

T3

TDOM(ξ)(ξ ,unicast(dest,ms).pI q)
¬uni(JTξ ({dest})K,J /0K,JTξ (ms)K)
−−−−−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,q)

These derivations are the only representative derivations (see Definition 4.3) for an ex-
pression of the form TDOM(ξ)(ξ ,unicast(dest,ms).pI q) a−→ Q. It follows that there are
exactly two cases that must be distinguished:
• Let a ∈

{
cast(JTξ ({dest})K,JTξ ({dest})K,JTξ (ms)K)

}
and Q = TDOM(ξ)(ξ ,q)≡

TDOM(ξ [σ])(ξ [σ],q) by choosing σ = /0. There is one pair (A1,A2) ∈ A ˘ . a ∈

A1∧TDOM(ξ)(ξ ,unicast(dest,ms).pI q)
A1−→≡ TDOM(ξ [σ])(ξ [σ],p):

(
{

cast(JTξ ({dest})K,JTξ ({dest})K,JTξ (ms)K)
}
,{ unicast(ξ (dest),ξ (ms)) })

This pair satisfies the condition that ξ ,unicast(dest,ms).pI q a′−→ ξ [σ],p can be
derived for all a′ ∈ A2 (via AWN inference rule UNICAST (T1-1)).
• Let a ∈

{
¬uni(JTξ (dest)K,J /0K,JTξ (ms)K)

}
and Q = TDOM(ξ)(ξ ,q) ≡

TDOM(ξ [σ])(ξ [σ],q) by choosing σ = /0. There is one pair (A1,A2) ∈ A ˘ . a ∈

A1∧TDOM(ξ)(ξ ,unicast(dest,ms).pI q)
A1−→ TDOM(ξ [σ])(ξ [σ],q):

(
{
¬uni(JTξ (dest)K,JTξ (ms)K)

}
,{ ¬unicast(ξ (dest),ξ (ms)) })

This pair satisfies the condition that ξ ,unicast(dest,ms).pI q a′−→ ξ [σ],q can be
derived for all a′ ∈ A2 (via AWN inference rule UNICAST (T1-2)).

By proving both cases this particular base case has been established.

1 Base cases 143

Translation rule T4: The translation function TV is partially defined by translation rule

TV (ξ ,send(Tξ (ms)).p) = send(/0, /0,Tξ (ms)).TV (ξ ,p) T4

For expressions of the form TDOM(ξ)(ξ ,send(Tξ (ms)).p) a−→ Q, consider the following
derivation:

AXIOM

send(/0, /0,Tξ (dest))
Jsend(/0, /0,Tξ (ms))K
−−−−−−−−−−−→X

Definition 2.1
send(/0, /0,Tξ (dest))

send(J /0K,J /0K,JTξ (ms)K)
−−−−−−−−−−−−−−→X

SEQ 1

send(/0, /0,Tξ (dest)).TDOM(ξ)(ξ ,q)
send(J /0K,J /0K,JTξ (ms)K)
−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

T4
TDOM(ξ)(ξ ,send(ms).p)

send(J /0K,J /0K,JTξ (ms)K)
−−−−−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

This derivation is a representative derivation without alternatives (see Defini-
tion 4.3). It follows that a ∈

{
send(J /0K,J /0K,JTξ (ms)K)

}
and Q = TDOM(ξ)(ξ ,p) ≡

TDOM(ξ [σ])(ξ [σ],p) by choosing σ = /0. There is one pair (A1,A2) ∈ A ˘ . a ∈ A1 ∧

TDOM(ξ)(ξ ,send(Tξ (ms)).p)
A1−→ TDOM(ξ [σ])(ξ [σ],p):

(
{

send(J /0K,J /0K,JTξ (ms)K)
}
,{ send(ξ (ms)) })

This pair satisfies the condition that ξ ,send(Tξ (ms)).p a′−→ ξ [σ],p can be derived for all
a′ ∈ A2 (via AWN inference rule SEND (T1)), which is sufficient to prove this particular
base case.

144 Part D. Complete proof of Lemma 4.8

Translation rule T5: The translation function TV is partially defined by translation rule

TV (ξ ,deliver(data).p) = ∑ip:T(IP) del(ip,Tξ (data)).TV (ξ ,p) where ip /∈ T(V) T5

For expressions of the form TDOM(ξ)(ξ ,deliver(data).p) a−→ Q, consider the following
derivation:

AXIOM

del(tî,Tξ (data))
Jdel(tî,Tξ (data))K
−−−−−−−−−−→X

Definition 2.1
del(tî,Tξ (data))

del(î,JTξ (data)K)
−−−−−−−−−−→X

SEQ 1

del(tî,Tξ (data)).TDOM(ξ)(ξ ,q)
del(î,JTξ (data)K)
−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

Substitution
del(ip,Tξ (data)).TDOM(ξ)(ξ ,q) [ip := tî]

del(î,JTξ (data)K)
−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

SUM 2

∑ip:T(IP) del(ip,Tξ (data)).TDOM(ξ)(ξ ,q)
del(î,JTξ (data)K)
−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

T5
TDOM(ξ)(ξ ,deliver(ms).p)

del(î,JTξ (data)K)
−−−−−−−−−−→ TDOM(ξ)(ξ ,p)

This derivation is a representative derivation without alternatives (see Definition 4.3).
It follows that a ∈

{
del(î,JTξ (data)K)

∣∣ î ∈ T(IP)
}

and Q = TDOM(ξ)(ξ ,p) ≡
TDOM(ξ [σ])(ξ [σ],p) by choosing σ = /0. There is one pair (A1,A2) ∈ A ˘ . a ∈ A1 ∧

TDOM(ξ)(ξ ,deliver(data).p)
A1−→ TDOM(ξ [σ])(ξ [σ],p):

(
{

del(î,JTξ (data)K)
∣∣ î ∈ T(IP)

}
,{ deliver(ξ (data)) })

This pair satisfies the condition that ξ ,deliver(data).p a′−→ ξ [σ],p can be derived for
all a′ ∈ A2 (via AWN inference rule DELIVER (T1)), which is sufficient to prove this
particular base case.

1 Base cases 145

Translation rule T6: The translation function TV is partially defined by translation rule

TV (ξ ,receive(msg).p) = ∑D,D':T(Set(IP)),T(msg):T(MSG) receive(D,D',T(msg)).TV∪{msg}(ξ
\msg,p) where D,D' /∈ T(V) T6

For expressions of the form TDOM(ξ)(ξ ,receive(msg).p) a−→ Q, consider the following
derivation:

AXIOM

receive(t�D, t�D', tU(m))
Jreceive(t�D,t�D',tU(m))K−−−−−−−−−−−−→X

Definition 2.1
receive(t�D, t�D', tU(m))

receive(�D,�D',JtU(m)K)−−−−−−−−−−−→X
Definition of t

receive(t�D, t�D', tU(m))
receive(�D,�D',U(m))−−−−−−−−−−−→X

SEQ 1
receive(t�D, t�D', tU(m)).TDOM(ξ)∪{msg}(ξ [msg := m],p)

receive(�D,�D',U(m))−−−−−−−−−−−→ TDOM(ξ)∪{msg}(ξ [msg := m],p)

receive(t�D, t�D', tU(m)).TDOM(ξ)∪{msg}(ξ
\msg[msg := m],p)

receive(�D,�D',U(m))−−−−−−−−−−−→ TDOM(ξ)∪{msg}(ξ [msg := m],p)
msg /∈ DOM(ξ \msg) Lemma 4.6(

receive(t�D, t�D',T(msg)).TDOM(ξ)∪{msg}(ξ
\msg,p)

)[
T(msg) := tU(m)

] receive(�D,�D',U(m))−−−−−−−−−−−→ TDOM(ξ)∪{msg}(ξ [msg := m],p)
Substitution(

receive(D,D',T(msg)).TDOM(ξ)∪{msg}(ξ
\msg,p)

)[
D := t�D,D' := t�D',T(msg) := tU(m)

] receive(�D,�D',U(m))−−−−−−−−−−−→ TDOM(ξ)∪{msg}(ξ [msg := m],p)
SUM 2 (3 times)

∑D,D':T(Set(IP)),T(msg):T(MSG) receive(D,D',T(msg)).TDOM(ξ)∪{msg}(ξ
\msg,p)

receive(�D,�D',U(m))−−−−−−−−−−−→ TDOM(ξ)∪{msg}(ξ [msg := m],p)
T6

TDOM(ξ)(ξ ,receive(msg).p)
receive(�D,�D',U(m))−−−−−−−−−−−→ TDOM(ξ)∪{msg}(ξ [msg := m],p)

TDOM(ξ)(ξ ,receive(msg).p)
receive(�D,�D',U(m))−−−−−−−−−−−→ TDOM(ξ [msg:=m])(ξ [msg := m],p)

This derivation is a representative derivation without alternatives (see Definition 4.3).
It follows that a = receive(�D,�D',U(m)) and Q = TDOM(ξ [msg:=m])(ξ [msg := m],p) ≡
TDOM(ξ [σ])(ξ [σ],p) by choosing σ = [msg := m]. There is only one candidate for

(A1,A2) ∈A ˘ . a ∈ A1∧TDOM(ξ)(ξ ,receive(msg).p) A1−→ Q, namely

(
{

receive(�D,�D',U(m))
∣∣ �D,�D' ∈ T(Set(IP))

}
,{ receive(m) })

This candidate satisfies the condition that ξ ,receive(msg).p a′−→ ξ [σ],p can be derived for
all a′ ∈ A2 (via AWN inference rule RECEIVE (T1)), which is sufficient to prove this
particular base case.

146 Part D. Complete proof of Lemma 4.8

Translation rule T7: The translation function TV is partially defined by translation rule

TV (ξ ,Jvar := expK p) = ∑tmp:sort(T(var))(tmp= Tξ (exp))→ ∑T(var):sort(T(var))(T(var) = tmp)→ T7

t(/0, /0,msg dummy).TV∪{var}(ξ
\var,p) where tmp /∈ T(V)

Let tc and td be two mCRL2 expressions such that Jtc = tdK = true.
For expressions of the form TV (ξ ,Jvar := expK p) a−→Q, consider the following derivation:

AXIOM

t(/0, /0,msg dummy)
Jt(/0, /0,msg dummy)K−−−−−−−−−−→X

Definition 2.1
t(/0, /0,msg dummy)

t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→X
SEQ 1

t(/0, /0,msg dummy).TDOM(ξ)∪{var}(ξ [var := b],p)
t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ξ)∪{var}(ξ [var := b],p)

t(/0, /0,msg dummy).TDOM(ξ)∪{var}(ξ
\var[var := b],p)

t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ξ)∪{var}(ξ [var := b],p)
Jtc = tdK = true GUARD 2

(tc = td)→ t(/0, /0,msg dummy).TDOM(ξ)∪{var}(ξ
\var[var := b],p)

t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ξ)∪{var}(ξ [var := b],p)
var /∈ DOM(ξ \var) Lemma 4.6

(tc = td)→ t(/0, /0,msg dummy).TDOM(ξ)∪{var}(ξ
\var,p)

[
T(var) := tU(b)

] t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ξ)∪{var}(ξ [var := b],p)
Choose c = U(b)

(tc = td)→ t(/0, /0,msg dummy).TDOM(ξ)∪{var}(ξ
\var,p) [T(var) := tc]

t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ξ)∪{var}(ξ [var := b],p)
T(var) /∈ FV(tc = td) (

(tc = td)→ t(/0, /0,msg dummy).TDOM(ξ)∪{var}(ξ
\var,p)

)
[T(var) := tc]

t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ξ)∪{var}(ξ [var := b],p)(
(T(var) = td)→ t(/0, /0,msg dummy).TDOM(ξ)∪{var}(ξ

\var,p)
)
[T(var) := tc]

t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ξ)∪{var}(ξ [var := b],p)
SUM 2

∑T(var):sort(T(var))(T(var) = td)→ t(/0, /0,msg dummy).TDOM(ξ)∪{var}(ξ
\var,p)

t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ξ)∪{var}(ξ [var := b],p)
Jtd = Tξ (exp)K = true GUARD 2

(td = Tξ (exp))→ ∑T(var):sort(T(var))(T(var) = td)→ t(/0, /0,msg dummy).TDOM(ξ)∪{var}(ξ
\var,p)

t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ξ)∪{var}(ξ [var := b],p)(
(tmp= Tξ (exp))→ ∑T(var):sort(T(var))(T(var) = tmp)→ t(/0, /0,msg dummy).TDOM(ξ)∪{var}(ξ

\var,p)
)
[tmp := td]

t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ξ)∪{var}(ξ [var := b],p)
SUM 2

∑tmp:sort(T(var))(tmp= Tξ (exp))→ ∑T(var):sort(T(var))(T(var) = tmp)→ t(/0, /0,msg dummy).TDOM(ξ)∪{var}(ξ
\var,p)

t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ξ)∪{var}(ξ [var := b],p)
T7

TDOM(ξ)(ξ ,Jvar := expKp)
t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ξ)∪{var}(ξ [var := b],p)

TDOM(ξ)(ξ ,Jvar := expKp)
t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ξ [var:=b])(ξ [var := b],p)

This derivation is a representative derivation without alternatives (see Definition 4.3).
Furthermore, Jtc = tdK = true∧ JtU(b) = Tξ (exp)K = true⇒ JtU(b)K = JTξ (exp)K – note
that the derivation is impossible without these premises! – which means that b =
ξ (exp) according to Lemma 4.3. It follows that a = t(J /0K,J /0K,Jmsg dummyK) and Q =
TDOM(ξ [var:=ξ (exp)])(ξ [var := ξ (exp)],p)≡ TDOM(ξ [σ])(ξ [σ],p) by choosing σ = [var :=
ξ (exp)]. There is only one candidate for (A1,A2) ∈ A ˘ . a ∈ A1 ∧ TDOM(ξ)(ξ ,Jvar :=

expK p)
A1−→ Q, namely

({ t(U(D),U(R),U(m)) } ,{ τ })

This candidate satisfies the condition that ξ ,Jvar := expK p a′−→ ξ [σ],p can be derived for
all a′ ∈ A2 (via AWN inference rule ASSIGNMENT (T1)), which is sufficient to prove this
particular base case.

1 Base cases 147

Translation rule T10: The translation function TV is partially defined by translation rule

TV (ξ , [φ]p) = ∑T(FV(φ) \V) Tξ (φ)→ t(/0, /0,msg dummy).TV ∪ FV(φ)(ξ ,p) T10

Now consider the following derivation for expressions of the form TDOM(ξ)(ξ , [φ]p)
a−→ Q,

where σ = [q1 := e1, · · · ,qn := en] such that ζ = ξ [σ] and DOM(σ) = FV(φ)\DOM(ξ):
AXIOM

t(/0, /0,msg dummy)
Jt(/0, /0,msg dummy)K−−−−−−−−−−→X

Definition 2.1
t(/0, /0,msg dummy)

t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→X
SEQ 1

t(/0, /0,msg dummy).TDOM(ξ)∪{q1,···,qn}(ζ ,p)
t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ξ)∪{q1,···,qn}(ζ ,p)JTζ (φ)K = true GUARD 2

Tζ (φ)→ t(/0, /0,msg dummy).TDOM(ξ)∪{q1,···,qn}(ζ ,p)
t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ξ)∪{q1,···,qn}(ζ ,p) Definition of ζ (3 times)

Tξ [q1:=e1,···,qn:=en](φ)→ t(/0, /0,msg dummy).TDOM(ξ)∪{q1,···,qn}(ξ [q1 := e1, · · · ,qn := en],p)
t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ζ)(ζ ,p){q1, · · · ,qn}∩DOM(ξ) = /0 Lemma 4.5

Tξ (φ)[T(q1) := tU(e1), · · · ,T(qn) := tU(en)]→ t(/0, /0,msg dummy).TDOM(ξ)∪{q1,···,qn}(ξ [q1 := e1, · · · ,qn := en],p)
t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ζ)(ζ ,p){q1, · · · ,qn}∩DOM(ξ) = /0 Lemma 4.6

Tξ (φ)[T(q1) := tU(e1), · · · ,T(qn) := tU(en)]→ t(/0, /0,msg dummy).TDOM(ξ)∪{q1,···,qn}(ξ ,p)[T(q1) := tU(e1), · · · ,T(qn) := tU(en)]
t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ζ)(ζ ,p) Choose tdi = tU(ei)

Tξ (φ)[T(q1) := td1, · · · ,T(qn) := tdn]→ t(/0, /0,msg dummy).TDOM(ξ)∪{q1,···,qn}(ξ ,p)[T(q1) := td1, · · · ,T(qn) := tdn]
t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ζ)(ζ ,p)(

Tξ (φ)→ t(/0, /0,msg dummy).TDOM(ξ)∪{q1,···,qn}(ξ ,p)
)
[T(q1) := td1, · · · ,T(qn) := tdn]

t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ζ)(ζ ,p)
SUM 2 (n times)

∑{T(q1),···,T(qn)} Tξ (φ)→ t(/0, /0,msg dummy).TDOM(ξ)∪{q1,···,qn}(ξ ,p)
t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ζ)(ζ ,p)

∑T({q1,···,qn}) Tξ (φ)→ t(/0, /0,msg dummy).TDOM(ξ)∪{q1,···,qn}(ξ ,p)
t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ζ)(ζ ,p)

Definition of DOM(σ) (2 times)
∑T(FV(φ) \ DOM(ξ)) Tξ (φ)→ t(/0, /0,msg dummy).TDOM(ξ)∪(FV(φ) \ DOM(ξ))(ξ ,p)

t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ζ)(ζ ,p)

∑T(FV(φ) \ DOM(ξ)) Tξ (φ)→ t(/0, /0,msg dummy).TDOM(ξ)∪FV(φ)(ξ ,p)
t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ζ)(ζ ,p)

T10

TDOM(ξ)(ξ , [φ]p)
t(J /0K,J /0K,Jmsg dummyK)−−−−−−−−−−−−→ TDOM(ζ)(ζ ,p)

This derivation is a representative derivation without alternatives (see Definition 4.3). It
follows that a = t(J /0K,J /0K,Jmsg dummyK) and Q = TDOM(ζ)(ζ ,p) ≡ TDOM(ξ [σ])(ξ [σ],p)
because ζ = ξ [σ]. There is only one candidate for (A1,A2) ∈ A ˘ . a ∈ A1 ∧
TDOM(ξ)(ξ , [φ]p)

A1−→ Q, namely

(
{

t(J /0K,J /0K,Jmsg dummyK)
}
,{ τ })

Note that JTζ (φ)K = true if and only if ζ (φ) = true according to Lemma 4.4. This

candidate therefore satisfies the condition that ξ , [φ]p a′−→ ξ [σ],p can be derived for all
a′ ∈ A2 (via AWN inference rule GUARD (T1)), which is sufficient to prove this particular
base case.

148 Part D. Complete proof of Lemma 4.8

2 Induction step

Given only its side conditions and the induction hypothesis, show for translation rules T8 and T9

that for all a and Q such that TDOM(ξ)(ξ ,p)
a−→ Q there is some (A1,A2) ∈A ˘ . a ∈ A1 and some

σ ,q such that TDOM(ξ)(ξ ,p)
A1−→≡ TDOM(ξ [σ])(DOM(ξ [σ]),q) and p a′−→ q can be derived for all

a′ ∈ A2 and Q≡ TDOM(ξ [σ])(DOM(ξ [σ]),q).

Translation rule T8: The translation function TV is partially defined by translation rule

TV (ξ ,X(exp1, · · · ,expn)) = X(Tξ (exp1), · · · ,Tξ (expn)) T8

where T(X(var1, · · · ,varn)
def
= p) = X(T(var1) : sort(Tξ (exp1)), · · · ,T(varn) : sort(Tξ (expn)))

def
= T{var1,···,varn}(/0,p)

The induction hypothesis states that recursions TV occurring in X(Tξ (exp1), · · · ,Tξ (expn))
are related. In particular, the induction hypothesis is used here to relate arbitrary instantia-
tions of process calls:

∀a,Q . T{d1,···,dn}(/0[d1 := ξ (exp1), · · · ,dn := ξ (expn)],p)
a−→ Q⇒∃(A1,A2) ∈A ,̆q,σ . a ∈ A1

∧T{d1,···,dn}(/0[d1 := ξ (exp1), · · · ,dn := ξ (expn)],p)
A1−→≡

T{d1,···,dn}∪DOM(σ)(/0[d1 := ξ (exp1), · · · ,dn := ξ (expn)][σ],q)

∧ /0[d1 := ξ (exp1), · · · ,dn := ξ (expn)],p
A2−→ /0[d1 := ξ (exp1), · · · ,dn := ξ (expn)][σ],q

∧Q≡ T{d1,···,dn}∪DOM(σ)(/0[d1 := ξ (exp1), · · · ,dn := ξ (expn)][σ],q)

The following derivation in AWN can be based on the fourth line of the instantiated
induction hypothesis:

Induction hypothesis
/0[d1 := ξ (exp1), · · · ,dn := ξ (expn)],p

a′−→ /0[d1 := ξ (exp1), · · · ,dn := ξ (expn)][σ],q Definition of X
RECURSION (T1)

ξ ,X(exp1, · · · ,expn)
a′−→ /0[d1 := ξ (exp1), · · · ,dn := ξ (expn)][σ],q

This derivation holds for all a′ ∈ A2. Similarly, in mCRL2, it happens to be the case that
Induction hypothesis

T{d1,···,dn}(/0[d1 := ξ (exp1), · · · ,dn := ξ (expn)],p)
a−→≡ T{d1,···,dn}∪DOM(σ)(/0[d1 := ξ (exp1), · · · ,dn := ξ (expn)][σ],q)

Lemma 4.6
T{d1,···,dn}(/0,p)[T(d1) := tU(ξ (exp1))

, · · · ,T(dn) := tU(ξ (expn))
]

a−→≡ T{d1,···,dn}∪DOM(σ)(/0[d1 := ξ (exp1), · · · ,dn := ξ (expn)][σ],q)
Theorem 4.1
Lemma 4.3

T{d1,···,dn}(/0,p)[T(d1) := Tξ (exp1), · · · ,T(dn) := Tξ (expn)]
a−→≡ T{d1,···,dn}∪DOM(σ)(/0[d1 := ξ (exp1), · · · ,dn := ξ (expn)][σ],q)

Definition of X RECURSION 2
X(Tξ (exp1), · · · ,Tξ (expn))

a−→≡ T{d1,···,dn}∪DOM(σ)(/0[d1 := ξ (exp1), · · · ,dn := ξ (expn)][σ],q)
T8

TV (ξ ,X(exp1, · · · ,expn))
a−→≡ T{d1,···,dn}∪DOM(σ)(/0[d1 := ξ (exp1), · · · ,dn := ξ (expn)][σ],q)

for all a ∈ A1. This derivation is a representative derivation without alternatives (see
Definition 4.3).
Because the induction hypothesis is used to express the relationship between arbitrary
instantiations of process calls, the first line of this derivation plus the inference rules
of mCRL2 are sufficient to generate all possible behavior of an mCRL2 process call.
The actions available to TV (ξ ,X(exp1, · · · ,expn)) in mCRL2 can therefore be mimicked
by AWN, and so both derivations can be combined into an new equation matching the

2 Induction step 149

induction hypothesis:

∀a,Q . TV (ξ ,X(exp1, · · · ,expn))
a−→ Q⇒∃(A1,A2) ∈A ,̆q,σ . a ∈ A1

∧TV (ξ ,X(exp1, · · · ,expn))
A1−→≡

T{d1,···,dn}∪DOM(σ)(/0[d1 := ξ (exp1), · · · ,dn := ξ (expn)][σ],q)

∧ /0[d1 := ξ (exp1), · · · ,dn := ξ (expn)],p
A2−→ /0[d1 := ξ (exp1), · · · ,dn := ξ (expn)][σ],q

∧Q≡ T{d1,···,dn}∪DOM(σ)(/0[d1 := ξ (exp1), · · · ,dn := ξ (expn)][σ],q)

This confirms the induction step of the proof of Lemma 4.8.

Translation rule T9: The translation function TDOM(ξ) is partially defined by translation
rule

TV (ξ ,p+q) = TV (ξ ,p)+TV (ξ ,q) T9

Suppose that TDOM(ξ)(ξ ,p+q) a−→ P′ for some a and P′. According to the semantics of
mCRL2 (in particular inference rules CHOICE 2 and CHOICE 4) this can only be the case
if TDOM(ξ)(ξ ,p)

a−→ P′ or TDOM(ξ)(ξ ,q)
a−→ P′ or both:

TDOM(ξ)(ξ ,p)
a−→ P′

CHOICE 2
TDOM(ξ)(ξ ,p)+TDOM(ξ)(ξ ,q)

a−→ P′
T9

TDOM(ξ)(ξ ,p+q) a−→ P′

TDOM(ξ)(ξ ,q)
a−→ P′

CHOICE 4
TDOM(ξ)(ξ ,p)+TDOM(ξ)(ξ ,q)

a−→ P′
T9

TDOM(ξ)(ξ ,p+q) a−→ P′

That is,

TDOM(ξ)(ξ ,p+q) a−→ P′⇒ TDOM(ξ)(ξ ,p)
a−→ P′∨TDOM(ξ)(ξ ,q)

a−→ P′ (D.1)

150 Part D. Complete proof of Lemma 4.8

According to the induction hypothesis, TDOM(ξ)(ξ ,p)
a−→ P′ implies that there

must exist some (A1,A2) ∈ A ˘ and σ ,p′ such that a ∈ A1 ∧ TDOM(ξ)(ξ ,p)
A1−→≡

TDOM(ξ [σ])(ξ [σ],p′)∧ ξ ,p
A2−→ ξ [σ],p′ ∧ P′ ≡ TDOM(ξ)(ξ ,p′), which makes exactly the

following derivations possible (in mCRL2 and AWN, respectively):

Induction hypothesis
TDOM(ξ)(ξ ,p)

A1−→≡ TDOM(ξ [σ])(ξ [σ],p′)
CHOICE 2

TDOM(ξ)(ξ ,p)+TDOM(ξ)(ξ ,q)
A1−→≡ TDOM(ξ [σ])(ξ [σ],p′)

T9

TDOM(ξ)(ξ ,p+q)
A1−→≡ TDOM(ξ [σ])(ξ [σ],p′)

Induction hypothesis
ξ ,p

A2−→ ξ [σ],p′
CHOICE (T1-1)

ξ ,p+q
A2−→ ξ [σ],p′

and therefore

TDOM(ξ)(ξ ,p)
a−→≡ P′⇒∃(A1,A2) ∈A ,̆p′ . a ∈ A1

∧TDOM(ξ)(ξ ,p+q) A1−→≡ TDOM(ξ [σ])(ξ [σ],p′)

∧ξ ,p+q A2−→ ξ [σ],p′∧P′ ≡ TDOM(ξ [σ])(ξ [σ],p′)

Similar reasoning can be applied to TDOM(ξ)(ξ ,p)
a−→≡ P′, resulting in

TDOM(ξ)(ξ ,q)
a−→≡ P′⇒∃(A1,A2) ∈A ,̆p′ . a ∈ A1

∧TDOM(ξ)(ξ ,p+q) A1−→≡ TDOM(ξ [σ])(ξ [σ],p′)

∧ξ ,p+q A2−→ ξ [σ],p′∧P′ ≡ TDOM(ξ [σ])(ξ [σ],p′)

Combining both of those results via Equation D.1, it then becomes clear that

TDOM(ξ)(ξ ,p+q) a−→≡ P′⇒∃(A1,A2) ∈A ,̆p′ . a ∈ A1

∧TDOM(ξ)(ξ ,p+q) A1−→≡ TDOM(ξ [σ])(ξ [σ],p′)

∧ξ ,p+q A2−→ ξ [σ],p′∧P′ ≡ TDOM(ξ [σ])(ξ [σ],p′)

which is sufficient to prove this particular base case.

Appendix E

Complete proof of Lemma 4.9

Lemma: Let T̃˘ be the converse of translation relation T̃ from Equation 2.1 and let A ˘ be the
converse of relation A from Table 2.10. Then T̃˘ is a strong A -̆warped simulation of mCRL2
expressions T(P) by AWN expressions P for all AWN expressions P.
Proof: For all actions that T(P) can do, it must be shown that the resulting state is data congruent

with T(P′). A depiction of the requirements for the proof in this direction is given below:

A2 data congr.

P'' = P'P

data congr.

A1

a
T(P'')

= T(P')T(P)

translation
relation

translation
relation inverted action relation

P'
P'
P'

P'

Q

Note that data congruence is implied by the assumption that P′′ = P′. In combination with
Lemma 3.1, this means that for Definition 4.11 to apply it is sufficient to prove that

∀P,a,Q′ .T(P) a−→ Q⇒∃(A1,A2) ∈A ,̆P′ . a ∈ A1∧T(P) A1−→≡ T(P′)∧P A2−→ P′∧Q≡ T(P′)

The proof of Equation 2.20 is provided by structural induction over the translation rules of
mCRL2, which is possible because these yield all possible mCRL2 expressions that can result
from a translation by T.
Induction hypothesis: For all recursions T(P) that are part of a translation rule defining T, it

holds that

∀a,Q . T(P) a−→ Q⇒∃(A1,A2) ∈A ,̆P′ . a ∈ A1∧T(P) A1−→≡ T(P′)∧P A2−→ P′∧Q≡ T(P′)

152 Part E. Complete proof of Lemma 4.9

1 Base cases
Show for translation rules T11 and T12 that for all a and Q such that T(P) a−→ Q there is some

(A1,A2) ∈A ˘ . a ∈ A1 and some P′ such that T(P)
A1−→≡ T(P′) and P a′−→ P can be derived for all

a′ ∈ A2 and Q≡ T(P′).

Translation rule T11: This translation rule is an exceptional case because a process
definition by itself cannot do any transitions, and providing a proof for Lemma 4.9 is
therefore nonsensical. Related to T11 is process recursion, for which a proof does make
sense; see the Lemma 4.8-proof for Translation rule T8.

Translation rule T12: The translation function T is partially defined by translation rule
T12:

T(ξ ,p) = TDOM(ξ)(ξ ,p)

Suppose that TDOM(ξ)(ξ ,p)
a−→ Q. Then, according to Lemma 4.8, there exists some

(A1,A2) ∈A ˘ . a ∈ A1 and some σ ,p′ such that TDOM(ξ)(ξ ,p)
A1−→≡ TDOM(ξ [σ])(ξ [σ],p′)

and ξ ,p a′−→ ξ [σ],p′ for all a′ ∈ A2 and Q≡ TDOM(ξ [σ])(ξ [σ],p′).
Define ζ = ξ [σ]. Q is also data congruent with TDOM(ζ)(ζ ,p′) which, as stated by rule
T12, equals T(ζ ,p′). As a result, there must exist some (A1,A2) ∈A ˘ . a ∈ A1 and some p′

so that T(ξ ,p)
A1−→≡ T(ζ ,p′) and ξ ,p a′−→ ζ ,p′ for all a′ ∈ A2 and Q≡ T(ζ ,p′), proving

this particular base case.

2 Induction step 153

2 Induction step
Given only their side conditions and the induction hypothesis, show for translation rules T13 to
T16 that for all a and Q such that T(P) a−→ Q there is some (A1,A2) ∈A ˘ . a ∈ A1 and some P′

such that T(P)
A1−→≡ T(P′) and P a′−→ P′ can be derived for all a′ ∈ A2 and Q≡ T(P′).

Translation rule T13: The translation function T is partially defined by translation rule

T(P 〈〈 Q) = ∇V Γ{r|s→t}(ρ{receive→r}T(P) || ρ{send→s}T(Q)) T13

where V = {t,cast,¬uni,send,del,receive}

Consider Pairs 2.10 and 2.8 from Table 2.10:

({ receive(m) } ,
{

receive(�D,�D',U(m))
∣∣ �D,�D' ∈ T(Set(IP))

}
)

({ send(ξ (ms)) } ,
{

send(J /0K,J /0K,JTξ (ms)K)
}
)

Let R1 and S1 be defined as the second members of these pairs; that is, let

R1
def
=
{

receive(�D,�D',U(m))
∣∣ �D,�D' ∈ T(Set(IP))

}
S1

def
=
{

send(J /0K,J /0K,JTξ (ms)K)
}

for some m, ξ (ms) ∈MSG.
The following cases are distinguished:

1: T(P) does a transition a ∈ R1, T(Q) does a transition b ∈ S1, and U(m) = JTξ (ms)K.
2: T(P) does a transition a ∈ R1, T(Q) does a transition b ∈ S1, and U(m) 6= JTξ (ms)K.
3: T(P) does a transition a, T(Q) does a transition b, and a 6= receive or b 6= send or

both.
4: T(P) does a transition a where a = receive and T(Q) does not do a transition.
5: T(P) does a transition a where a 6= receive and T(Q) does not do a transition.
6: T(P) does not do a transition and T(Q) does a transition b where b = send.
7: T(P) does not do a transition and T(Q) does a transition b where b 6= send.

Note that these cases cover all combinations of behavior of T(P) and T(Q).
The proof is provided below for each of the cases:

1: Suppose that T(P) does a transition a ∈ R1, T(Q) does a transition b ∈ S1, and
U(m) = JTξ (ms)K. Following the induction hypothesis and eliminating pairs from
the action relation A in Table 2.10 that do not match the transition labels from R1
or S1, it can first be concluded that

T(P)
R1−→≡ T(P′)∧P

receive(m)−−−−−−→ P′∧T(Q)
S1−→≡ T(Q′)∧Q

send(ξ (ms))−−−−−−−→ Q′

Because U(m) = JTξ (ms)K Lemma 4.4⇐====⇒ m = ξ (ms) this becomes

T(P)
R1−→≡ T(P′)∧P

receive(m)−−−−−−→ P′∧T(Q)
S1−→≡ T(Q′)∧Q

send(m)−−−−→ Q′

The mCRL2 derivation in the Lemma 4.7-proof for Parallel (T2-3) shows how the
first and third conjunct are sufficient to prove that T(P 〈〈 Q)

a−→≡ T(P′ 〈〈 Q′) for all
a ∈ { t(U(D),U(R),U(m)) } for some D, R where R⊆ D.
On the AWN side, the second and fourth conjunct can be used as premises in

154 Part E. Complete proof of Lemma 4.9

P
receive(m)−−−−−−→ P′ Q

send(m)−−−−→ Q′
∀m∈MSG PARALLEL (T2-3)

P 〈〈 Q τ−→ P′ 〈〈 Q′

This case is proven if there exists a pair (A1,A2) ∈ A ˘ that satisfies

t(U(D),U(R),U(m)) ∈ A1 ∧ T(P 〈〈 Q)
A1−→≡ T(P′ 〈〈 Q′)∧P 〈〈 Q

A2−→ P′ 〈〈 Q′, and
the converse of Pair 2.3 satisfies this requirement.

2: Suppose that T(P) does a transition a ∈ R1, T(Q) does a transition b ∈ S1, and
U(m) 6= JTξ (ms)K. Following the induction hypothesis and eliminating pairs from
the action relation A in Table 2.10 that do not match the transition labels from R1
or S1, it can first be concluded that

T(P)
R1−→≡ T(P′)∧P

receive(m)−−−−−−→ P′∧T(Q)
S1−→≡ T(Q′)∧Q

send(ξ (ms))−−−−−−−→ Q′

where U(m) 6= JTξ (ms)K Lemma 4.4⇐====⇒ m 6= ξ (ms).
The mCRL2 derivation below shows where the attempt to generate behavior for
T(P 〈〈 Q) fails:

Induction hypothesis
T(P)

receive(�D,�D',U(m))−−−−−−−−−−−→≡ T(P′)
Choose �D= �D'= /0

T(P)
receive(J /0K,J /0K,U(m))−−−−−−−−−−−−−→≡ T(P′)

RENAME 2
ρ{receive→r}T(P)

{receive→r}•receive(J /0K,J /0K,U(m))−−−−−−−−−−−−−−−−−−−−−→≡ ρ{receive→r}T(P′)
Apply {receive→ r}•

ρ{receive→r}T(P)
r(J /0K,J /0K,U(m))−−−−−−−−−→≡ ρ{receive→r}T(P′)

Induction hypothesis

T(Q)
send(J /0K,J /0K,JTξ (ms)K)
−−−−−−−−−−−−−−→≡ T(Q′)

RENAME 2
ρ{send→s}T(Q)

{send→s}•send(J /0K,J /0K,JTξ (ms)K)
−−−−−−−−−−−−−−−−−−−−→≡ ρ{send→s}T(Q′)

Apply {send→ s}•
ρ{send→s}T(Q)

s(J /0K,J /0K,JTξ (ms)K)
−−−−−−−−−−−−→≡ ρ{send→s}T(Q′)

(see above)
ρ{receive→r}T(P)

r(J /0K,J /0K,U(m))−−−−−−−−−→≡ ρ{receive→r}T(P′)
(see above)

ρ{send→s}T(Q)
s(J /0K,J /0K,JTξ (ms)K)
−−−−−−−−−−−→≡ ρ{send→s}T(Q′)

PAR 3
ρ{receive→r}T(P) || ρ{send→s}T(Q)

r(J /0K,J /0K,U(m))|s(J /0K,J /0K,JTξ (ms)K)
−−−−−−−−−−−−−−−−−−−−→≡ ρ{receive→r}T(P′) || ρ{send→s}T(Q′)

COMM 2
Γ{r|s→t}(ρ{receive→r}T(P) || ρ{send→s}T(Q))

γ{r|s→t}(r(J /0K,J /0K,U(m))|s(J /0K,J /0K,JTξ (ms)K))
−−−−−−−−−−−−−−−−−−−−−−−−−→≡ Γ{r|s→t}(ρ{receive→r}T(P′) || ρ{send→s}T(Q′)) Apply γ

Γ{r|s→t}(ρ{receive→r}T(P) || ρ{send→s}T(Q))
r(J /0K,J /0K,U(m))|s(J /0K,J /0K,JTξ (ms)K)
−−−−−−−−−−−−−−−−−−−−→≡ Γ{r|s→t}(ρ{receive→r}T(P′) || ρ{send→s}T(Q′))

The ALLOW 2 operator cannot be applied next (like in the previous case) because
r|s /∈V ∪{τ}. Since this means that T(M 〈〈 N) cannot do a transition in mCRL2
under the circumstances specified in this particular case, there is no behavior for
AWN to mimic.

3: Suppose that T(P) does a transition a, T(Q) does a transition b, and a 6= receive or
b 6= send or both.
This situation fails to generate behavior for T(P 〈〈 Q) because no derivation similar
to the one in the Lemma 4.7-proof for Parallel (T2-3) is possible:

a. The a action may be able to be converted to an r action and the b action may
be able to be converted to an s action, but never both at the same time;

b. The a|b action produced by ρ{receive→r}T(P) || ρ{send→s}T(Q) is (without
arguments) never equal to r|s (that is, a|b 6= r|s);

2 Induction step 155

c. Because there is never an r|s action, the communication operator Γ{r|s→t} does
not generate an t action but leaves a|b intact;

d. Among others, the allow operator ∇V blocks all multi-actions, and so a|b is
blocked.

Since T(P) 〈〈 T(Q) cannot do a transition in mCRL2 under the circumstances
specified in this particular case, there is no behavior for AWN to mimic.

4: Suppose that T(P) does a transition a with a = receive and T(Q) does not do a
transition.
This situation fails to generate behavior for T(P 〈〈 Q) because no derivation similar
to the one in the Lemma 4.7-proof for Parallel (T2-3) is possible:

a. The a action of T(P) is renamed to an r action by the renaming operator
ρ{receive→r};

b. Because r 6= r|s, the communication operator Γ{r|s→t} does not generate an t
action but leaves the r action intact;

c. The allow operator ∇V cannot be applied because r /∈V ∪{τ}.
Since T(P) 〈〈 T(Q) cannot do a transition in mCRL2 under the circumstances
specified in this particular case, there is no behavior for AWN to mimic.

5: Suppose that T(P) does a transition a with a 6= receive and T(Q) does not do a
transition. The induction hypothesis states that

∃(A1,A2) ∈A ˘ . a ∈ A1∧T(P)
A1−→≡ T(P′)∧P

A2−→ P′

Define A ′ as a subset of A ˘ that contains the possible values of (A1,A2) ∈ A ˘
where A1 are actions that T(P 〈〈 Q) can perform in mCRL2 and where A2 are the
actions that AWN should use to mimic the actions in A1 in order for this case to be
proven:

A ′ def
=
{
(A1,A2)

∣∣∣ (A1,A2) ∈A ,̆ T(P 〈〈 Q)
A1−→≡ T(P′ 〈〈 Q)

}
The following derivation is possible in mCRL2 for all a ∈ A1 such that (A1,A2) ∈
A ′:

Induction hypothesis
T(P) a−→≡ T(P′)

RENAME 2
ρ{receive→r}T(P)

{receive→r}•a−−−−−−−−→≡ ρ{receive→r}T(P′)
Apply {receive→ r}•

ρ{receive→r}T(P)
a−→≡ ρ{receive→r}T(P′)

PAR 2
ρ{receive→r}T(P) || ρ{send→s}T(Q)

a−→ ρ{receive→r}T(P′) || ρ{send→s}T(Q)
COMM 2

Γ{r|s→t}(ρ{receive→r}T(P) || ρ{send→s}T(Q))
γ{r|s→t}(a)−−−−−−→≡ Γ{r|s→t}(ρ{receive→r}T(P′) || ρ{send→s}T(Q))

Apply γ

Γ{r|s→t}(ρ{receive→r}T(P) || ρ{send→s}T(Q))
a−→≡ Γ{r|s→t}(ρ{receive→r}T(P′) || ρ{send→s}T(Q))

a ∈V ∪{τ} ALLOW 2
∇V ρ{t→t}Γ{r|s→t}(ρ{receive→r}T(P) || ρ{send→s}T(Q))

a−→≡ ∇V ρ{t→t}Γ{r|s→t}(ρ{receive→r}T(P′) || ρ{send→s}T(Q))
T13

T(P 〈〈 Q)
a−→≡ T(P′ 〈〈 Q)

The derivation above is valid only for a ∈ A1 such that a ∈ V ∪{τ}. Under the
constraints of this case, the derivation is also a representative derivation without
alternatives (see Definition 4.3). Consequently, A ′ is as follows:

156 Part E. Complete proof of Lemma 4.9

{

({ t(U(D),U(R),U(m)) } ,{ τ }),
(
{

cast(JUIPK,�D,JTξ (ms)K)
∣∣ �D ∈ T(Set(IP))

}
,{ broadcast(ξ (ms)) }),

(
{

cast(JTξ (dests)K,�D,JTξ (ms)K)
∣∣ �D ∈ T(Set(IP))

}
,{ groupcast(ξ (dests),ξ (ms)) }),

(
{

cast(JTξ ({dest})K,JTξ ({dest})K,JTξ (ms)K)
}
,{ unicast(ξ (dest),ξ (ms)) }),

(
{
¬uni(JTξ ({dest})K,JTξ ({dest})K,JTξ (ms)K)

}
,{ ¬unicast(ξ (dest),ξ (ms)) }),

(
{

send(J /0K,J /0K,JTξ (ms)K)
}
,{ send(ξ (ms)) }),

(
{

del(î,JTξ (data)K)
∣∣ î ∈ T(IP)

}
,{ deliver(ξ (data)) })

| m,ξ (ms) ∈MSG; dest ∈ IP; ξ (data) ∈ DATA; dests,R,D ∈ Set(IP); R⊆ D }
For all (A1,A2) ∈A ′ the actions A1 in mCRL2 can be mimicked by the actions A2
in AWN by means of the inference rule

P a’−→ P′∀a′ 6= receive(m) PARALLEL (T2-1)
P 〈〈 Q a’−→ P′ 〈〈 Q

which is valid for all a′ ∈ A2. Therefore the induction hypothesis holds for this case.
6: Suppose that T(P) does not do a transition and T(Q) does a transition b with

b = send.
This situation fails to generate behavior for T(P 〈〈 Q) because no derivation similar
to the one in the Lemma 4.7-proof for Parallel (T2-3) is possible:

a. The a action of T(P) is renamed to an s action by the renaming operator
ρ{send→s};

b. Because s 6= r|s, the communication operator Γ{r|s→t} does not generate an t
action but leaves the s action intact;

c. The allow operator ∇V cannot be applied because s /∈V ∪{τ}.
Since T(P) 〈〈 T(Q) cannot do a transition in mCRL2 under the circumstances
specified in this particular case, there is no behavior for AWN to mimic.

7: Suppose that T(P) does not do a transition and T(Q) does a transition b with
b 6= send. The induction hypothesis states that

∃(B1,B2) ∈A ˘ . b ∈ B1∧T(Q)
B1−→≡ T(Q′)∧Q

B2−→ Q′

Define A ′ as a subset of A ˘ that contains the possible values of (B1,B2) ∈ A ˘
where B1 are actions that T(P 〈〈 Q) can perform in mCRL2 and where B2 are the
actions that AWN should use to mimic the actions in B1 in order for this case to be
proven:

A ′ def
=
{
(B1,B2)

∣∣∣ (B1,B2) ∈A ,̆ T(P 〈〈 Q)
B1−→ T(P 〈〈 Q′)

}

2 Induction step 157

The following derivation is possible in mCRL2 for all b ∈ B1 such that (B1,B2) ∈
A ′:

Induction hypothesis
T(Q)

b−→≡ T(Q′)
RENAME 2

ρ{send→s}T(Q)
{send→s}•b−−−−−−−→≡ ρ{send→s}T(Q′)

Apply {send→ s}•
ρ{send→s}T(Q)

b−→≡ ρ{send→s}T(Q′)
PAR 5

ρ{receive→r}T(P) || ρ{send→s}T(Q)
b−→≡ ρ{receive→r}T(P′) || ρ{send→s}T(Q)

COMM 2
Γ{r|s→t}(ρ{receive→r}T(P) || ρ{send→s}T(Q))

γ{r|s→t}(b)−−−−−−→≡ Γ{r|s→t}(ρ{receive→r}T(P′) || ρ{send→s}T(Q))
Apply γ

Γ{r|s→t}(ρ{receive→r}T(P) || ρ{send→s}T(Q))
b−→≡ Γ{r|s→t}(ρ{receive→r}T(P′) || ρ{send→s}T(Q))

b ∈V ∪{τ} ALLOW 2
∇V ρ{t→t}Γ{r|s→t}(ρ{receive→r}T(P) || ρ{send→s}T(Q))

b−→≡ ∇V ρ{t→t}Γ{r|s→t}(ρ{receive→r}T(P′) || ρ{send→s}T(Q))
T13

T(P 〈〈 Q)
b−→≡ T(P′ 〈〈 Q)

The derivation above is valid only for b ∈ B1 such that b ∈ V ∪{τ}. Under the
constraints of this case, the derivation is also a representative derivation without
alternatives (see Definition 4.3). Consequently, A ′ is as follows:
{

({ t(U(D),U(R),U(m)) } ,{ τ }),
(
{

cast(JUIPK,�D,JTξ (ms)K)
∣∣ �D ∈ T(Set(IP))

}
,{ broadcast(ξ (ms)) }),

(
{

cast(JTξ (dests)K,�D,JTξ (ms)K)
∣∣ �D ∈ T(Set(IP))

}
,{ groupcast(ξ (dests),ξ (ms)) }),

(
{

cast(JTξ ({dest})K,JTξ ({dest})K,JTξ (ms)K)
}
,{ unicast(ξ (dest),ξ (ms)) }),

(
{
¬uni(JTξ ({dest})K,JTξ ({dest})K,JTξ (ms)K)

}
,{ ¬unicast(ξ (dest),ξ (ms)) }),

(
{

receive(�D,�D',U(m))
∣∣ �D,�D' ∈ T(Set(IP))

}
,{ receive(m) }),

(
{

del(î,JTξ (data)K)
∣∣ î ∈ T(IP)

}
,{ deliver(ξ (data)) })

| m,ξ (ms) ∈MSG;dest ∈ IP; ξ (data) ∈ DATA; dests,R,D ∈ Set(IP); R⊆ D }
For all (B1,B2) ∈A ′ the actions B1 in mCRL2 can be mimicked by the actions B2
in AWN by means of the inference rule

Q b’−→ Q′∀b′ 6= send(m) PARALLEL (T2-2)
P 〈〈 Q b’−→ P 〈〈 Q′

which is valid for all b′ ∈ B2. Therefore the induction hypothesis holds for this case.
The derivations in mCRL2 from the cases listed above are representative derivations
that collectively have no alternatives (see Definition 4.3): there are no other derivations
with different or differently ordered one-way steps that yield different behavior of pro-
cess expression T(P 〈〈 Q). Therefore the induction hypothesis generally holds for this
expression.

158 Part E. Complete proof of Lemma 4.9

Translation rule T14: The translation function T is partially defined by translation rule

T(ip : P : R) = ∇V ΓC(T(P) || G(tU(ip), tU(R))) T14

where V = {t,starcast,arrive,deliver,connect,disconnect}

where C = {cast|cast→ starcast,¬uni|¬uni→ t,del|del→ deliver,receive|receive→ arrive}
where G(ip,R) = ∑D,D':T(Set(IP)),msg:T(MSG)(R∩D= D')→ cast(D,D',msg).G(ip,R)

+∑d:T(IP),msg:T(MSG)(d /∈ R)→¬uni({d}, /0,msg).G(ip,R)

+∑data:DATA del(ip,data).G(ip,R)

+∑D,D':T(Set(IP)),msg:T(MSG)(ip ∈ D')→ receive(D,D',msg).G(ip,R)

+∑D,D':T(Set(IP)),msg:T(MSG)(ip /∈ D')→ arrive(D,D',msg).G(ip,R)

+∑ip':T(IP) connect(ip,ip').G(ip,R∪{ip'})

+∑ip':T(IP) connect(ip',ip).G(ip,R∪{ip'})

+∑ip',ip�:T(IP)(ip /∈ {ip',ip�})→ connect(ip',ip�).G(ip,R)

+∑ip':T(IP) disconnect(ip,ip').G(ip,R\{ip'})

+∑ip':T(IP) disconnect(ip',ip).G(ip,R\{ip'})

+∑ip',ip�:T(IP)(ip /∈ {ip',ip�})→ disconnect(ip',ip�).G(ip,R)

Process expressions T(ip : P : R) produced by this translation rule have by design a ∇V
operator on the outside. As a consequence of mCRL2 inference rule ALLOW 2, if T(ip : P :
R) a−→≡ Q then a ∈V ∪{τ}= {τ, t,starcast,arrive,deliver,connect,disconnect}. The
induction hypothesis must be proven for each of these actions:

1: Proof for τ actions.
There is no scenario in which τ actions can be produced by a T(ip : P : R) expression,
and therefore the induction hypothesis is established automatically.

2: Proof for t actions.
There are exactly two possible sources for t actions in T14: synchronizing a ¬uni
action and ¬uni action into a t action or leaving a t action performed by T(P)
unchanged and unblocked. Pair 2.3 is the only pair in A that matches the t, and
therefore it must be proven that AWN can always mimic a t with a τ .
A case distinction is made based on the source:
• The first source corresponds with the derivation found in the Lemma 4.7-proof

for Unicast (T3-2), which is a representative derivation without alternatives
(see Definition 4.3): there are no other derivations that produce a conclu-
sion of the form T(ip : P : R) in which a a ¬uni action and ¬uni action are
synchronized into a t action.
The induction hypothesis states that under these circumstances there must

be some (A1,A2) ∈ A ˘ . t ∈ A1∧T(P)
A1−→≡ T(P′) such that P a′−→ P′ for all

a′ ∈ A2. Clearly,

(A1,A2) = (
{
¬uni(JTξ (dest)K,JTξ (ms)K)

}
,{ ¬unicast(ξ (dest),ξ (ms)) })

and therefore P
¬unicast(dip,m)−−−−−−−−−→ P′. Additionally, from the assumption that

JtU(dip) /∈ tU(R)K = true in the derivation follows that dip /∈ R. It then becomes
clear that inference rule UNICAST (T3-2) can be used to reach the conclusion
that ip : P : R τ−→ ip : P′ : R.

2 Induction step 159

• The second source for t corresponds with the derivation found in the
Lemma 4.7-proof for Internal (T3), which is a representative derivation with-
out alternatives (see Definition 4.3): there are no other derivations that produce
a conclusion of the form T(ip : P : R) in which a t action performed by T(P)
is left unchanged and unblocked.
The induction hypothesis states that under these circumstances there must

be some (A1,A2) ∈ A ˘ . t ∈ A1∧T(P)
A1−→≡ T(P′) such that P a′−→ P′ for all

a′ ∈ A2. Clearly,

({ t(U(D),U(R),U(m)) } ,{ τ })

and therefore P τ−→ P′. Inference rule INTERNAL (T3) can then be used to
reach the conclusion that ip : P : R τ−→ ip : P′ : R.

Having covered all possibilities for T(ip : P : R) to do a t action, Lemma 4.9 has
been proven for this particular case.

3: Proof for starcast actions.
In order for T(ip : P : R) to produce a starcast action, T(P) must produce a cast
action that synchronizes with a cast action of G. The induction hypothesis states that
– if that is the case – there must be some (A1,A2) ∈A ˘ . cast(U(D),U(R),U(m)) ∈
A1∧T(P)

A1−→≡ T(P′) such that P a′−→ P′ for all a′ ∈ A2. These are the candidates
for (A1,A2):

(
{

cast(JUIPK,�D,JTξ (ms)K)
∣∣ �D ∈ T(Set(IP))

}
,{ broadcast(ξ (ms)) })

(
{

cast(JTξ (dests)K,�D,JTξ (ms)K)
∣∣ �D ∈ T(Set(IP))

}
,{ groupcast(ξ (dests),ξ (ms)) })

(
{

cast(JTξ ({dest})K,JTξ ({dest})K,JTξ (ms)K)
}
,{ unicast(ξ (dest),ξ (ms)) })

In other words, one of the following premises must hold:

P
broadcast(ξ (ms))−−−−−−−−−−→ P′ or P

groupcast(ξ (dests),ξ (ms))−−−−−−−−−−−−−−→ P′ or P
unicast(ξ (dest),ξ (ms))−−−−−−−−−−−−→ P′

A case distinction is made for these premises:

• Suppose that P
broadcast(ξ (ms))−−−−−−−−−−→ P′. This leads to a derivation that can be

found in the Lemma 4.7-proof for Broadcast (T3). Since no other derivations
that are based on the premise and that lead to a conclusion of the form
T(ip : P : R) a−→≡ Q are possible (the derivation is a representative derivation
without alternatives, see Definition 4.3), AWN must be able to do the transition

ip : P : R
R:*cast(ξ (ms))−−−−−−−−→ ip : P′ : R

for some ip in order to mimic mCRL2. Indeed, applying inference rule
BROADCAST (T3) produces the required conclusion.

• Suppose that P
groupcast(ξ (dests),ξ (ms))−−−−−−−−−−−−−−−→ P′. This leads to a derivation that can be

found in the Lemma 4.7-proof for Groupcast (T3). Since no other derivations
that are based on the premise and that lead to a conclusion of the form

160 Part E. Complete proof of Lemma 4.9

T(ip : P : R) a−→≡ Q are possible (the derivation is a representative derivation
without alternatives, see Definition 4.3), AWN must be able to do the transition

ip : P : R
R∩D:*cast(ξ (ms))−−−−−−−−−−→ ip : P′ : R

for some ip in order to mimic mCRL2. Indeed, applying inference rule
GROUPCAST (T3) produces the required conclusion.

• Suppose that P
unicast(ξ (dest),ξ (ms))−−−−−−−−−−−−−→ P′. This leads to a derivation that can be

found in the Lemma 4.7-proof for Unicast (T3-1). Since no other derivations
that are based on the premise and that lead to a conclusion of the form
T(ip : P : R) a−→≡ Q are possible (the derivation is a representative derivation
without alternatives, see Definition 4.3), AWN must be able to do the transition

ip : P : R
{dip}:*cast(ξ (ms))−−−−−−−−−−−→ ip : P′ : R

for some ip in order to mimic mCRL2. Indeed, applying inference rule UNI-
CAST (T3-1) produces the required conclusion, but only under the condition
that dip∈ R. This follows from JtU(R)∩ tU({dip}) = tU({dip})K= true, an assump-
tion that is necessary for the derivation in the Lemma 4.7-proof for Unicast
(T3-1).

Having covered all possibilities for T(ip : P : R) to do a starcast action, Lemma 4.9
has been proven for this particular case.

4: Proof for arrive actions.
There are exactly two possible sources for arrive actions in T14: letting G generate
an arrive action on its own or converting a receive action performed by T(P)
through synchronization with G.
A case distinction is made based on the source:
• The first source corresponds with the derivation found in the Lemma 4.7-proof

for Arrive (T3-2), which is a representative derivation without alternatives (see
Definition 4.3): there are no other derivations that produce a conclusion of the
form T(ip : P : R) in which G generates an arrive action on its own.
AWN can copy the behavior via inference rule ARRIVE (T3-2); Lemma 4.9
applies because

(

 arrive(�D,�D',U(m))

∣∣∣∣∣∣
�D,�D'∈T(Set(IP))

�D'⊆�D
U(H)⊆�D'

U(K)∩�D'= /0

 ,{ H¬K : arrive(m) })

can be chosen as (A1,A2) ∈A ˘ . arrive(�D,�D',U(m)) ∈ A1∧T(P)
A1−→≡ T(P′)

such that P a′−→ P′ for all a′ ∈ A2.
• The second source for arrive corresponds with the derivation found in the

Lemma 4.7-proof for Arrive (T3-1), which is a representative derivation with-
out alternatives (see Definition 4.3): there are no other derivations that produce
a conclusion of the form T(ip : P : R) in which a receive action is converted
through synchronization with G.

2 Induction step 161

In this particular case, the induction hypothesis states that there must be some

(A1,A2) ∈ A ˘ . receive(J�DK,J�D'K,U(m)) ∈ A1 ∧ T(P)
A1−→≡ T(P′) such that

P a′−→ P′ for all a′ ∈ A2. Clearly,

(
{

receive(�D,�D',U(m))
∣∣ �D,�D' ∈ T(Set(IP))

}
,{ receive(m) })

and therefore P
receive(m)−−−−−−→ P′. Inference rule ARRIVE (T3-1) can then be used

to reach the conclusion that ip : P : R
{ip}¬ /0:arrive(m)−−−−−−−−−−→ ip : P′ : R.

Having covered all possibilities for T(ip : P : R) to do an arrive action, Lemma 4.9
has been proven for this particular case.

5: Proof for deliver actions.
In order for T(ip : P : R) to produce a deliver action, T(P) must produce a del action
that synchronizes with a del action of G. This corresponds with the derivation found
in the Lemma 4.7-proof for Deliver (T3), which is a representative derivation
without alternatives (see Definition 4.3): there are no other derivations that produce
a conclusion of the form T(ip : P : R) in which del and del are synchronized.
The induction hypothesis states that under these circumstances there must be some

(A1,A2) ∈A ˘ . del(U(ip),U(d)) ∈ A1∧T(P)
A1−→≡ T(P′) such that P a′−→ P′ for all

a′ ∈ A2. There is only one candidate for (A1,A2), namely

(
{

del(î,JTξ (data)K)
∣∣ î ∈ T(IP)

}
,{ deliver(ξ (data)) })

It follows that P
deliver(ξ (data))−−−−−−−−−→ P′, which can serve as the premise for inference rule

DELIVER (T3) to prove that ip : P : R
ip:deliver(ξ (data))−−−−−−−−−−→ ip : P′ : R. This covers all

possibilities for T(ip : P : R) to do a deliver action, thus proving Lemma 4.9 for
this particular case.

6: Proof for connect actions.
Process expressions T(ip : P : R) can only produce connect actions if they are
generated by G such as in the derivation found in the Lemma 4.7-proof for Connect
(T3-1). This derivation as well as the comparable derivations from the proofs for
CONNECT (T3-2) and CONNECT (T3-3) are representative derivations without
alternatives (see Definition 4.3): there are no other derivations that produce a
conclusion of the form T(ip : P : R) in which G generates a connect action.
AWN can copy the behavior of mCRL2 via inference rules CONNECT (T3-1),
CONNECT (T3-2), and CONNECT (T3-3); Lemma 4.9 applies because

({ connect(U(ip’),U(ip”)) } ,{ connect(ip’, ip”) })

can be chosen as (A1,A2) ∈ A ˘ . connect(U(ip),U(ip’)) ∈ A1∧T(P)
A1−→≡ T(P′)

such that P a′−→ P′ for all a′ ∈ A2.
This covers all possibilities for T(ip : P : R) to do a connect action, thus proving
Lemma 4.9 for this particular case.

7: Proof for disconnect actions.
This proof is analogous to the proof for connect actions.

162 Part E. Complete proof of Lemma 4.9

Translation rule T15: The translation function T is partially defined by translation rule

T(M || N) = ρR∇V Γ{arrive|arrive→a}ΓC(T(M) || T(N)) T15

where R = {a→ arrive,c→ connect,d→ disconnect,s→ starcast}
where V = {a,c,d,deliver,s, t}
where C = {starcast|arrive→ s,connect|connect→ c,disconnect|disconnect→ d}

Consider several pairs from Table 2.10:

({ τ } ,{ t(U(D),U(R),U(m)) })
({ R : *cast(m) } ,{ starcast(U(D),U(R),U(m)) })

({ ip : deliver(d) } ,{ deliver(U(ip),U(d)) })

({ H¬K : arrive(m) } ,

 arrive(�D,�D',U(m))

∣∣∣∣∣∣
�D,�D'∈T(Set(IP))

�D'⊆�D
U(H)⊆�D'

U(K)∩�D'= /0

)

({ connect(ip’, ip”) } ,{ connect(U(ip’),U(ip”)) })
({ disconnect(ip’, ip”) } ,{ disconnect(U(ip’),U(ip”)) })

Let T1, S1, L1, A1, C1, and D1 be defined as the second members of these pairs; that is, let

T1
def
= { t(U(D),U(R),U(m)) })

S1
def
= { starcast(U(D),U(R),U(m)) }

L1
def
= { deliver(U(ip),U(d)) }

A1
def
=

 arrive(�D,�D',U(m))

∣∣∣∣∣∣
�D,�D'∈T(Set(IP))

�D'⊆�D
U(H)⊆�D'

U(K)∩�D'= /0

)

C1
def
= { connect(U(ip’),U(ip”)) }

D1
def
= { disconnect(U(ip’),U(ip”)) }

for some d ∈ DATA, ip, ip’, ip” ∈ IP, D,R,H,K ∈ Set(IP), and m ∈MSG.
The following cases are distinguished:

1: T(M) or T(N) does a transition a ∈ T1; the other process does not do a transition.
2: T(M) or T(N) does a transition a ∈ L1; the other process does not do a transition.
3: T(M) or T(N) does a transition a where a /∈ {t,deliver}; the other process does

not do a transition.
4: T(M) and T(N) both do the same transition a ∈ A1.
5: T(M) and T(N) both do the same transition a ∈C1.
6: T(M) and T(N) both do the same transition a ∈ D1.
7: T(M) and T(N) both do the same transition a where a must satisfy the requirement

that a /∈ {arrive,connect,disconnect}.
8: T(M) does a transition a ∈ S1 and T(N) does a transition b ∈ A1, or vice versa.

2 Induction step 163

9: T(M) does a transition a ∈ S1 and T(N) does a transition b /∈ A1 where b = arrive,
or vice versa.

10: T(M) does a transition a and T(N) does a transition b 6= a where a and b must
satisfy the requirement that {a,b} 6= {starcast,arrive}.

Note that these cases cover all combinations of behavior of T(M) and T(N).
The proof is provided below for each of the cases:

1: Suppose that T(M) or T(N) does a transition a ∈ T1; the other process does not
do a transition. Following the induction hypothesis and eliminating pairs from the
action relation A in Table 2.10 that do not match the transition labels from T1, it
can first be concluded that

T(M)
T1−→≡ T(M′)∧M τ−→M′

The mCRL2 derivation below shows how the first conjunct is sufficient to prove
that T(M || N)

T1−→≡ T(M′ || N):
Induction hypothesis

T(M)
t(U(D),U(R),U(m))−−−−−−−−−−→≡ T(M′)

PAR 2
T(M) || T(N)

t(U(D),U(R),U(m))−−−−−−−−−−→≡ T(M′) || T(N)
COMM 2

ΓC(T(M) || T(N))
γC(t(U(D),U(R),U(m)))−−−−−−−−−−−−−→≡ ΓC(T(M′) || T(N))

Apply γC

ΓC(T(M) || T(N))
t(U(D),U(R),U(m))−−−−−−−−−−→≡ ΓC(T(M′) || T(N))

COMM 2
Γ{arrive|arrive→a}ΓC(T(M) || T(N))

γ{arrive|arrive→a}(t(U(D),U(R),U(m)))
−−−−−−−−−−−−−−−−−−−−−→≡ Γ{arrive|arrive→a}ΓC(T(M′) || T(N))

Apply γ{arrive|arrive→a}
Γ{arrive|arrive→a}ΓC(T(M) || T(N))

t(U(D),U(R),U(m))−−−−−−−−−−→≡ Γ{arrive|arrive→a}ΓC(T(M′) || T(N))
τ ∈V ∪{τ} ALLOW 2

∇V Γ{arrive|arrive→a}ΓC(T(M) || T(N))
t(U(D),U(R),U(m))−−−−−−−−−−→≡ ∇V Γ{arrive|arrive→a}ΓC(T(M′) || T(N))

RENAME 2
ρR∇V Γ{arrive|arrive→a}ΓC(T(M) || T(N))

R•t(U(D),U(R),U(m))−−−−−−−−−−−−→≡ ρR∇V Γ{arrive|arrive→a}ΓC(T(M′) || T(N))
Apply R•

ρR∇V Γ{arrive|arrive→a}ΓC(T(M) || T(N))
t(U(D),U(R),U(m))−−−−−−−−−−→≡ ρR∇V Γ{arrive|arrive→a}ΓC(T(M′) || T(N))

T15

T(M || N)
t(U(D),U(R),U(m))−−−−−−−−−−→≡ T(M′ || N)

On the AWN side, the second conjunct can be used as premise in

M τ−→M′ INTERNAL (T4-1)
M || N τ−→M′ || N

This case is proven if there exists a pair (A1,A2) ∈ A ˘ that satisfies

t(U(D),U(R),U(m)) ∈ A1∧T(M || N)
A1−→≡ T(M′ || N)∧M || N A2−→M′ || N, and

the converse of Pair 2.3 satisfies this requirement.
The proof for when N does the t action is similar.

2: Suppose that T(M) or T(N) does a transition a ∈ L1; the other process does not
do a transition. Following the induction hypothesis and eliminating pairs from the
action relation A in Table 2.10 that do not match the transition labels from L1, it
can first be concluded that

T(M)
L1−→≡ T(M′)∧M

ip:deliver(d)−−−−−−−→M′

The mCRL2 derivation in the Lemma 4.7-proof for Deliver (T4-1) shows how the
first conjunct is sufficient to prove that T(M || N)

L1−→≡ T(M′ || N).

164 Part E. Complete proof of Lemma 4.9

On the AWN side, the second conjunct can be used as premise in

M
ip:deliver(d)−−−−−−−→M′ DELIVER (T4-1)

M || N ip:deliver(d)−−−−−−−→M′ || N

This case is proven if there exists a pair (A1,A2) ∈ A ˘ that satisfies a ∈ A1 ∧
T(M || N)

A1−→≡ T(M′ || N)∧M || N A2−→ M′ || N, and the converse of Pair 2.12
satisfies this requirement.
The proof for when N does the deliver action is similar.

3: Suppose that T(M) or T(N) does a transition a where a /∈ {t,deliver}; the other
process does not do a transition.
This situation fails to generate behavior for T(M || N) because no derivation similar
to the one in the Lemma 4.7-proof for Deliver (T4-1) is possible:

a. The condition a /∈ {t,deliver} implies that

a ∈ {cast,¬uni,receive,send,del,starcast,arrive,connect,disconnect,newpkt}

because these are all action labels from the right-hand side of the action
relation A ;

b. T(M) || T(N) does not produce multi-actions because only one of T(M) and
T(N) does a transition;

c. The communication operator ΓC has no effect because T(M) || T(N) does not
produce multi-actions, and therefore no c, d, or s actions are generated;

d. The communication operator Γ{arrive|arrive→a} has no effect because
ΓC(T(M) || T(N)) does not produce multi-actions, and therefore no a action
is generated;

e. The allow operator ∇V blocks all actions except a, c, d, deliver, s, or t, none
of which can be produced by Γ{arrive|arrive→a}ΓC(T(M) || T(N)).

Since T(M) || T(N) cannot do a transition in mCRL2 under the circumstances
specified in this particular case, there is no behavior for AWN to mimic.

4: Suppose that T(M) and T(N) both do the same transition a ∈ A1. Following the
induction hypothesis and eliminating pairs from the action relation A in Table 2.10
that do not match the transition labels from A1, it can first be concluded that

T(M)
A1−→≡ T(M′)∧M

H¬K:arrive(m)−−−−−−−−→M′∧T(N)
A1−→≡ T(N′)∧N

H’¬K’:arrive(m)−−−−−−−−−→ N′

The mCRL2 derivation in the Lemma 4.7-proof for Cast (T4-3) shows how the first

and third conjunct are sufficient to prove that T(M || N)
A1−→≡ T(M′ || N).

On the AWN side, the second and fourth conjunct can be used as premise in

M
H¬K:arrive(m)−−−−−−−−→M′ N

H’¬K’:arrive(m)−−−−−−−−−→ N′ CAST (T4-3)
M || N (H∪H’)¬(K∪K’):arrive(m)−−−−−−−−−−−−−−−→M′ || N′

This case is proven if there exists a pair (A1,A2) ∈ A ˘ that satisfies a ∈ A1 ∧
T(M || N)

A1−→≡ T(M′ || N)∧M || N A2−→ M′ || N, and the converse of Pair 2.13
satisfies this requirement.

2 Induction step 165

5: Suppose that T(M) and T(N) both do the same transition a ∈C1. Following the
induction hypothesis and eliminating pairs from the action relation A in Table 2.10
that do not match the transition labels from C1, it can first be concluded that

T(M)
C1−→≡ T(M′)∧M

connect(ip’,ip”)−−−−−−−−−→M′∧T(N)
C1−→≡ T(N′)∧N

connect(ip’,ip”)−−−−−−−−−→ N′

The mCRL2 derivation in the Lemma 4.7-proof for Connect (T4-1) shows how the

first and third conjunct are sufficient to prove that T(M || N)
C1−→≡ T(M′ || N).

On the AWN side, the second and fourth conjunct can be used as premise in

M
connect(ip’,ip”)−−−−−−−−−→M′ N

connect(ip’,ip”)−−−−−−−−−→ N′ CONNECT (T4-1)
M || N connect(ip’,ip”)−−−−−−−−−→M′ || N′

This case is proven if there exists a pair (A1,A2) ∈ A ˘ that satisfies a ∈ A1 ∧
T(M || N)

A1−→≡ T(M′ || N)∧M || N A2−→ M′ || N, and the converse of Pair 2.14
satisfies this requirement.

6: Suppose that T(M) and T(N) both do the same transition a ∈ D1. Following the
induction hypothesis and eliminating pairs from the action relation A in Table 2.10
that do not match the transition labels from D1, it can first be concluded that

T(M)
D1−→≡ T(M′)∧M

disconnect(ip’,ip”)−−−−−−−−−−→M′∧T(N)
D1−→≡ T(N′)∧N

disconnect(ip’,ip”)−−−−−−−−−−→ N′

The mCRL2 derivation below shows how the first and third conjunct are sufficient
to prove that T(M || N)

D1−→ T(M′ || N):

Induction hypothesis
T(M)

disconnect(U(ip),U(ip’))−−−−−−−−−−−−−−→≡ T(M′)
Induction hypothesis

T(N)
disconnect(U(ip),U(ip’))−−−−−−−−−−−−−−→≡ T(N′)

PAR 3
T(M) || T(N)

disconnect(U(ip),U(ip’))|disconnect(U(ip),U(ip’))−−−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ T(M′) || T(N′)
COMM 2

ΓC(T(M) || T(N))
γC(disconnect(U(ip),U(ip’))|disconnect(U(ip),U(ip’)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ ΓC(T(M′) || T(N′)) Apply γC

ΓC(T(M) || T(N))
d(U(ip),U(ip’))−−−−−−−−→≡ ΓC(T(M′) || T(N′))

COMM 2
Γ{arrive|arrive→a}ΓC(T(M) || T(N))

γ{arrive|arrive→a}(d(U(ip),U(ip’)))
−−−−−−−−−−−−−−−−−−→≡ Γ{arrive|arrive→a}ΓC(T(M′) || T(N′)) Apply γ{arrive|arrive→a}

Γ{arrive|arrive→a}ΓC(T(M) || T(N))
d(U(ip),U(ip’))−−−−−−−−→≡ Γ{arrive|arrive→a}ΓC(T(M′) || T(N′))

d ∈V ∪{τ} ALLOW 2
∇V Γ{arrive|arrive→a}ΓC(T(M) || T(N))

d(U(ip),U(ip’))−−−−−−−−→≡ ∇V Γ{arrive|arrive→a}ΓC(T(M′) || T(N′))
RENAME 2

ρR∇V Γ{arrive|arrive→a}ΓC(T(M) || T(N))
R•d(U(ip),U(ip’))−−−−−−−−−−→≡ ρR∇V Γ{arrive|arrive→a}ΓC(T(M′) || T(N′))

Apply R•
ρR∇V Γ{arrive|arrive→a}ΓC(T(M) || T(N))

disconnect(U(ip),U(ip’))−−−−−−−−−−−−−−→≡ ρR∇V Γ{arrive|arrive→a}ΓC(T(M′) || T(N′))
T15

T(M || N)
disconnect(U(ip),U(ip’))−−−−−−−−−−−−−−→≡ T(M′ || N′)

On the AWN side, the second and fourth conjunct can be used as premise in

M
disconnect(ip’,ip”)−−−−−−−−−−→M′ N

disconnect(ip’,ip”)−−−−−−−−−−→ N′ DISCONNECT (T4-1)
M || N disconnect(ip’,ip”)−−−−−−−−−−→M′ || N′

This case is proven if there exists a pair (A1,A2) ∈ A ˘ that satisfies a ∈ A1 ∧
T(M || N)

A1−→≡ T(M′ || N)∧M || N A2−→ M′ || N, and the converse of Pair 2.15
satisfies this requirement.

166 Part E. Complete proof of Lemma 4.9

7: Suppose that T(M) and T(N) both do the same transition a where a /∈
{arrive,connect,disconnect}. The mCRL2 derivation below shows where the
attempt to generate behavior for T(P 〈〈 Q) under these circumstances fails:

Induction hypothesis
T(M)

a−→≡ T(M′)
Induction hypothesis

T(N)
a−→≡ T(N′)

PAR 3
T(M) || T(N)

a|a−→≡ T(M′) || T(N′)
COMM 2

ΓC(T(M) || T(N))
γC(a|a)−−−−→≡ ΓC(T(M′) || T(N′)) Apply γC

ΓC(T(M) || T(N))
a|a−→≡ ΓC(T(M′) || T(N′))

COMM 2
Γ{arrive|arrive→a}ΓC(T(M) || T(N))

γ{arrive|arrive→a}(a|a)−−−−−−−−−−−−→≡ Γ{arrive|arrive→a}ΓC(T(M′) || T(N′)) Apply γ{arrive|arrive→a}
Γ{arrive|arrive→a}ΓC(T(M) || T(N))

a|a−→≡ Γ{arrive|arrive→a}ΓC(T(M′) || T(N′))

The ALLOW 2 operator cannot be applied next (like in Case 6) because a|a /∈
V ∪{τ}. Since this means that T(M || N) cannot do a transition in mCRL2 under
the circumstances specified in this particular case, there is no behavior for AWN to
mimic.

8: Suppose that T(M) does a transition a ∈ S1 and T(N) does a transition b ∈ A1, or
vice versa. Following the induction hypothesis and eliminating pairs from the action
relation A in Table 2.10 that do not match the transition labels from S1 or A1, it can
first be concluded that

T(M)
S1−→≡ T(M′)∧M

R:*cast(m)−−−−−−→M′∧T(N)
A1−→≡ T(N′)∧N

H¬K:arrive(m)−−−−−−−−→ N′

The mCRL2 derivation in the Lemma 4.7-proof for Cast (T4-1) shows how the first

and third conjunct are sufficient to prove that T(M || N)
S1−→≡ T(M′ || N).

On the AWN side, the second and fourth conjunct can be used as premise in

M
R:*cast(m)−−−−−−→M′ N

H¬K:arrive(m)−−−−−−−−→ N′H⊆ R∧K∩R = /0 CAST (T4-1)
M || N R:*cast(m)−−−−−−→M′ || N′

This case is proven if there exists a pair (A1,A2) ∈ A ˘ that satisfies a ∈ A1 ∧
T(M || N)

A1−→≡ T(M′ || N)∧M || N A2−→ M′ || N, and the converse of Pair 2.11
satisfies this requirement.
The proof for when T(M) does the arrive action and T(N) does the starcast action
is similar.

9: Suppose that T(M) does a transition a∈ S1 and T(N) does a transition b /∈ A1 where
b = arrive, or vice versa. The mCRL2 derivation below shows where the attempt
to generate behavior for T(P 〈〈 Q) under these circumstances fails:

Induction hypothesis
T(M)

a−→≡ T(M′)
Induction hypothesis

T(N)
b−→≡ T(N′)

PAR 3
T(M) || T(N)

a|b−→≡ T(M′) || T(N′)
COMM 2

ΓC(T(M) || T(N))
γC(a|b)−−−−→≡ ΓC(T(M′) || T(N′)) Apply γC

ΓC(T(M) || T(N))
a|b−→≡ ΓC(T(M′) || T(N′))

COMM 2
Γ{arrive|arrive→a}ΓC(T(M) || T(N))

γ{arrive|arrive→a}(a|b)−−−−−−−−−−−−→≡ Γ{arrive|arrive→a}ΓC(T(M′) || T(N′)) Apply γ{arrive|arrive→a}
Γ{arrive|arrive→a}ΓC(T(M) || T(N))

a|b−→≡ Γ{arrive|arrive→a}ΓC(T(M′) || T(N′))

2 Induction step 167

The ALLOW 2 operator cannot be applied next (like in Case 6) because a|b /∈V ∪{τ}.
Note that the communication operator ΓC has no effect because a and b have
different arguments.
In conclusion, T([M]) cannot do a transition in mCRL2 under the circumstances
specified in this particular case, and therefore there is no behavior for AWN to
mimic.

10: Suppose that T(M) does a transition a and T(N) does a transition b 6= a where
{a,b} 6= {starcast,arrive}. Generating behavior for T(P 〈〈 Q) under these circum-
stances fails for a similar reason as in Case 9: the communication operator ΓC has
no effect because a 6= b (rather than that just their arguments are different) and
therefore it is not possible to eventually apply the ALLOW 2 operator.

The derivations in mCRL2 from the cases listed above are representative derivations
that collectively have no alternatives (see Definition 4.3): there are no other derivations
with different or differently ordered one-way steps that yield different behavior of pro-
cess expression T(M || N). Therefore the induction hypothesis generally holds for this
expression.

168 Part E. Complete proof of Lemma 4.9

Translation rule T16: The translation function T is partially defined by translation rule

T([M]) = ∇V ρ{starcast→t}ΓC(T(M) || H) T16

where V = {t,newpkt,deliver,connect,disconnect}
where C = {newpkt|arrive→ newpkt}
where H = ∑ip:T(IP),data:T(DATA),dest:T(IP) newpkt({ip},{ip},newpkt(data,dest)).H

Consider two pairs from Table 2.10:

({ H¬K : arrive(m) } ,

 arrive(�D,�D',U(m))

∣∣∣∣∣∣
�D,�D'∈T(Set(IP))

�D'⊆�D
U(H)⊆�D'

U(K)∩�D'= /0

),

({ ip : newpkt(d,dip) } ,{ newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip))) })

Let A1 and N1 be defined as the second members of these pairs; that is, let

A1
def
=

 arrive(�D,�D',U(m))

∣∣∣∣∣∣
�D,�D'∈T(Set(IP))

�D'⊆�D
U(H)⊆�D'

U(K)∩�D'= /0


N1

def
= { newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip))) }

and let

N1
def
=
{

newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))
}

for some d ∈ DATA, ip ∈ IP, H,K ∈ Set(IP), and m ∈MSG.
The following cases are distinguished:

1: T(M) does a transition a ∈ A1 and H does a transition b ∈ N1.
2: T(M) does a transition a /∈ A1 and H does a transition b ∈ N1.
3: T(M) does nothing and H does a transition b ∈ N1.
4: T(M) does a transition a . a = starcast and H does nothing.
5: T(M) does a transition a . a ∈ {t,newpkt,deliver,connect,disconnect} and H

does nothing.
6: T(M) does a transition a . a /∈ {t,starcast,newpkt,deliver,connect,disconnect}

and H does nothing.
Note that these cases cover all combinations of behavior of T(M) and H (H can only do
newpkt actions; see the first part of the derivation in the Lemma 4.7-proof for Newpkt
(T4), which is a representative derivation without alternatives).
The proof is provided below for each of the cases:

1: T(M) does a transition a ∈ A1 and H does a transition b ∈ N1. Following the
induction hypothesis and eliminating pairs from the action relation A in Table 2.10
that do not match the transition labels from A1, it can first be concluded that

T(M)
L1−→≡ T(M′)∧M

H¬K:arrive(m)−−−−−−−−→M′

2 Induction step 169

The mCRL2 derivation in the Lemma 4.7-proof for Newpkt (T4) shows how the first
conjunct is sufficient to prove that T([M])

L1−→≡ T([M′]). Under the constraints
of this case, the derivation is a representative derivation without alternatives (see
Definition 4.3) and so all related behavior of T([M]) is covered.
On the AWN side, the second conjunct can be used as premise in

M
{ip}¬K:arrive(newpkt(d,dip))−−−−−−−−−−−−−−−−−→M′ NEWPKT (T4)
[M]

ip:newpkt(d,dip)−−−−−−−−−→ [M′]

This case is proven if there exists a pair (A1,A2) ∈ A ˘ that satisfies a ∈ A1 ∧
T([M])

A1−→≡ T([M′])∧ [M]
A2−→ [M′], and the converse of Pair 2.16 satisfies this

requirement.
2: T(M) does a transition a /∈ A1 and H does a transition b ∈ N1. This situation fails

to generate behavior for T([M]) because no derivation similar to the one in the
Lemma 4.7-proof for Newpkt (T4) is possible:

T(M)
a−→≡ T(M′) H

newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−→ H
PAR 3

T(M) || H a|newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ T(M′) || H
COMM 2

ΓC(T(M) || H)
γC(a|newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip))))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ ΓC(T(M′) || H)

Apply γC

ΓC(T(M) || H)
a|newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ ΓC(T(M′) || H)

RENAME 2
ρ{starcast→t}ΓC(T(M) || H)

{starcast→t}•a|newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ ρ{starcast→t}ΓC(T(M′) || H)
Apply {starcast→ t}•

ρ{starcast→t}ΓC(T(M) || H)
a|newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−−→≡ ρ{starcast→t}ΓC(T(M′) || H)

The ALLOW 2 operator cannot be applied next because a|newpkt /∈V ∪{τ}. Since
this means that T([M]) cannot do a transition in mCRL2 under the circumstances
specified in this particular case, there is no behavior for AWN to mimic.

3: T(M) does nothing and H does a transition

newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip))) ∈ N1

This situation fails to generate behavior for T([M]) because no derivation similar
to the one in the Lemma 4.7-proof for Newpkt (T4) is possible:

H
newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−→ H PAR 5

T(M) || H newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−→ T(M) || H
COMM 2

ΓC(T(M) || H)
γC(newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip))))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ΓC(T(M) || H)

Apply γC

ΓC(T(M) || H)
newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−→ ΓC(T(M) || H)

RENAME 2
ρ{starcast→t}ΓC(T(M) || H)

{starcast→t}•newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ρ{starcast→t}ΓC(T(M) || H)
Apply {starcast→ t}•

ρ{starcast→t}ΓC(T(M) || H)
newpkt({U(ip)},{U(ip)},newpkt(U(d),U(dip)))−−−−−−−−−−−−−−−−−−−−−−−−−−→ ρ{starcast→t}ΓC(T(M) || H)

The ALLOW 2 operator cannot be applied next because newpkt /∈V ∪{τ}. Since
this means that T([M]) cannot do a transition in mCRL2 under the circumstances
specified in this particular case, there is no behavior for AWN to mimic.

4: T(M) does a transition a . a = starcast and H does nothing.

170 Part E. Complete proof of Lemma 4.9

Following the induction hypothesis and eliminating pairs from the action relation A
in Table 2.10 that do not match the transition label starcast, it can first be concluded
that

T(M)
starcast(U(D),U(R),U(m))−−−−−−−−−−−−−−→≡ T(M′)∧M

R:*cast(m)−−−−−−→M′

for all D,R ∈ Set(IP) and m ∈MSG where R⊆ D.
The mCRL2 derivation in the Lemma 4.7-proof for Cast (T4-4) shows how the

first conjunct is sufficient to prove that T([M])
t(U(D),U(R),U(m))−−−−−−−−−−→≡ T([M′]). Under

the constraints of this case, the derivation is a representative derivation without
alternatives (see Definition 4.3) and so all related behavior of T([M]) is covered.
On the AWN side, the second conjunct can be used as premise in

M
R:*cast(m)−−−−−−→M′ CAST (T4-4)

[M]
τ−→ [M′]

This case is proven if there exists a pair (A1,A2) ∈ A ˘ that satisfies a ∈ A1 ∧
T([M])

A1−→≡ T([M′])∧ [M]
A2−→ [M′], and the converse of Pair 2.11 satisfies this

requirement.
5: T(M) does a transition a . a ∈ {t,newpkt,deliver,connect,disconnect} and H

does nothing. The induction hypothesis states that

∃(A1,A2) ∈A ˘ . a ∈ A1∧T(P)
A1−→≡ T(P′)∧P

A2−→ P′

Define A ′ as a subset of A ˘ that contains the possible values of (A1,A2) ∈ A ˘
where A1 are actions that T(P 〈〈 Q) can perform in mCRL2 and where A2 are the
actions that AWN should use to mimic the actions in A1 in order for this case to be
proven:

A ′ def
=
{
(A1,A2)

∣∣∣ (A1,A2) ∈A ,̆ T(P 〈〈 Q)
A1−→≡ T(P′ 〈〈 Q)

}
The following derivation is possible in mCRL2 for all a ∈ A1 such that (A1,A2) ∈
A ′:

Induction hypothesis
T(M)

a−→≡ T(M′)
PAR 2

T(M) || H a−→≡ T(M′) || H
COMM 2

ΓC(T(M) || H)
γC(a)−−−→≡ ΓC(T(M′) || H)

Apply γC
ΓC(T(M) || H)

a−→≡ ΓC(T(M′) || H)
RENAME 2

ρ{starcast→t}ΓC(T(M) || H)
{starcast→t}•a−−−−−−−−−→≡ ρ{starcast→t}ΓC(T(M′) || H)

Apply {starcast→ t}•
ρ{starcast→t}ΓC(T(M) || H)

a−→≡ ρ{starcast→t}ΓC(T(M′) || H)
a ∈V ∪{τ} ALLOW 2

∇V ρ{starcast→t}ΓC(T(M) || H)
a−→≡ ∇V ρ{starcast→t}ΓC(T(M′) || H)

T16
T([M])

a−→≡ T([M′])

This derivation is valid only for a ∈ A1 such that a ∈V ∪{τ}. Under the constraints
of this case, the derivation is also a representative derivation without alternatives

2 Induction step 171

(see Definition 4.3). Finally it must be observed that it is impossible for T(M) to
produce a newpkt action independent of H, meaning that a 6= newpkt.
Consequently, A ′ is as follows:
{

({ t(U(D),U(R),U(m)) } ,{ τ }),
({ deliver(U(ip),U(d)) } ,{ ip : deliver(d) }),

({ connect(U(ip’),U(ip”)) } ,{ connect(ip’, ip”) }),
({ disconnect(U(ip’),U(ip”)) } ,{ disconnect(ip’, ip”) })

| m ∈MSG; ip, ip’, ip” ∈ IP; d ∈ DATA; dests,R,D ∈ Set(IP); R⊆ D }
For all (A1,A2) ∈A ′ the actions A1 in mCRL2 can be mimicked by the actions A2
in AWN by means of the inference rules

M τ−→M′ INTERNAL (T4-3)
[M]

τ−→ [M′]

M
ip:deliver(d)−−−−−−−→M′ DELIVER (T4-3)

[M]
ip:deliver(d)−−−−−−−→ [M′]

M
connect(ip,ip′)−−−−−−−−→M′ CONNECT (T4-2)

[M]
connect(ip,ip′)−−−−−−−−→ [M′]

M
disconnect(ip,ip’)−−−−−−−−−−→M′ DISCONNECT (T4-2)

[M]
disconnect(ip,ip’)−−−−−−−−−−→ [M′]

respectively. Therefore the induction hypothesis holds for this case.
6: T(M) does a transition a . a /∈ {t,starcast,newpkt,deliver,connect,disconnect}

and H does nothing. This situation fails to generate behavior for T([M]) because
no derivation similar to the one in the Lemma 4.7-proof for Newpkt (T4) is possible:

T(M)
a−→≡ T(M′)

PAR 2
T(M) || H a−→≡ T(M′) || H

COMM 2
ΓC(T(M) || H)

γC(a)−−−→≡ ΓC(T(M′) || H)
Apply γC

ΓC(T(M) || H)
a−→≡ ΓC(T(M′) || H)

RENAME 2
ρ{starcast→t}ΓC(T(M) || H)

{starcast→t}•a−−−−−−−−−→≡ ρ{starcast→t}ΓC(T(M′) || H)

The ALLOW 2 operator cannot be applied next because a /∈ V ∪{τ}. Since this
means that T([M]) cannot do a transition in mCRL2 under the circumstances
specified in this particular case, there is no behavior for AWN to mimic.

Appendix F

Operators of the AWN input language
The AWN input language has the following unary and binary operators:

Signature Operator description
+ Number Returns the operand.
! Boolean Returns the logical negation of the operand.
! Set Returns the complement of the operand.
- Number Returns the arithmetic negation of the operand.
Number + Number Returns the sum of two numbers.
List + List Returns the concatenation of two lists.
Set + Set Returns the union of two sets.
Number - Number Returns the second operand subtracted from the first.
Set - Set Returns the first operand without the members of the first.
Number * Number Returns the product of two numbers.
Number / Number Returns the quotient of two numbers.
Number div Number Returns the quotient of two numbers, rounded down.
Number mod Number Returns the remainder after calculating the quotient.
Number ^ Number Calculates the exponentiation of two numbers.
Boolean && Boolean Returns true if both of the operands are true.
Boolean || Boolean Returns true if one of the operands is true.
Boolean ^^ Boolean Returns true if exactly one of the operands is true.
Type in Set Returns true if both the first operand is a member of the second.
Type in List Returns true if both the first operand is a member of the second.
Set cap Set Returns the intersection of two sets.
Set cup Set Returns the union of two sets.
Set oplus Set Returns the symmetric difference of two sets.
Type == Type Returns true if the operands are equal (requires the same type).
Type <> Type Returns true if the operands are not equal (requires the same type).
Number > Number Returns true if the the first operand is greater than the second one.
Number < Number Returns true if the the second operand is greater than the first one.
Number >= Number Returns true if the the first operand is greater than or equal to the second one.
Number <= Number Returns true if the the second operand is greater than or equal to the first one.
Set subset Set Returns true if the the first operand is a proper subset of the second operand.
Set supset Set Returns true if the the second operand is a proper subset of the first operand.
Set subseteq Set Returns true if the the first operand is a subset of the second operand.
Set supseteq Set Returns true if the the second operand is a subset of the first operand.

Appendix G

Source files for leader election protocol
1 leader.awn

1 protocol LeaderProtocol;

2

3 type IP = struct(ip : Integer) extends $IP;

4 type B = struct(sip: IP, sn: Integer) extends $MSG;

5 type Trace = struct(ip: IP, lip: IP, lno: Integer) extends $TRACE;

6

7 //Main process

8 process Voting(lip: IP, lno: Integer, voted: Boolean, ip: IP, no: Integer)

9 uses m: $MSG, sip: IP, sn: Integer

10 = receive(m) . [B(m) == new B(sip, sn)]

11 Eval(sip, sn, lip, lno, voted, ip, no) /* receive ballot */

12 + [!voted] (

13 broadcast(new B(ip, no)) .

14 Eval(ip, no, lip, lno, true, ip, no) /* cast a ballot */

15 + receive(m) . [B(m) == new B(sip, sn)]

16 Eval(sip, sn, lip, lno, voted, ip, no) /* receive ballot */

17)

18 + trace(new Trace(ip, lip, lno)) . Voting(lip, lno, voted, ip, no)

19 ;

20

21 //Helper process

22 process Eval(sip: IP, sn: Integer, lip: IP,

23 lno: Integer, voted: Boolean, ip: IP, no: Integer)

24 = [sn >= lno] Voting(sip, sn, voted, ip, no) /* vote better */

25 + [sn < lno] Voting(lip, lno, voted, ip, no) /* vote worse */

26 ;

27

28 const ALL_NODES: set of IP = {

29 new IP(1), new IP(2), new IP(3), new IP(4), new IP(5)

30 };

31

32 network

33 NETWORK =

34 new IP(1) : Voting(new IP(1), 8, false, new IP(1), 8) : ALL_NODES

35 || new IP(2) : Voting(new IP(2), 2, false, new IP(2), 2) : ALL_NODES

36 || new IP(3) : Voting(new IP(3), 5, false, new IP(3), 5) : ALL_NODES

37 || new IP(4) : Voting(new IP(4), 4, false, new IP(4), 4) : ALL_NODES

38 || new IP(5) : Voting(new IP(5), 8, false, new IP(5), 8) : ALL_NODES

39 ;

Appendix H

Source files for AODV protocol
Here are some (partial) files that give an impression of the implementation of the AODV protocol:

1 main.awn

1 protocol MAIN;

2

3 import data;

4 import aodvProcess;

5 import qmsg;

6

7 network NETWORK =

8 new IP(1):AODV(new IP(1), 1, [] of Route, [] of RouteRequest, [] of StoreEntry)

9 << QMSG([new NewPkt(new Data(10), new IP(3))] of $MSG):{new IP(2)}

10 || new IP(2):AODV(new IP(2), 1, [] of Route, [] of RouteRequest, [] of StoreEntry)

11 << QMSG([new NewPkt(new Data(20), new IP(3))] of $MSG):{new IP(1), new IP(3)}

12 || new IP(3):AODV(new IP(3), 1, [] of Route, [] of RouteRequest, [] of StoreEntry)

13 << QMSG([] of $MSG):{new IP(2)}

14 ;

2 aodv.awn

1 library aodvProcess;

2

3 import data;

4 import newpktProcess;

5 import pktProcess;

6 import rreqProcess;

7 import rrepProcess;

8 import rrerProcess;

9

10 sequential process AODV(ip: IP, sn: SQN, routeTable: RouteTable,

11 rreqs: RouteRequests, store: Store)

12 uses msg: $MSG, dip: IP, data: Data, dests: Dests,

13 pre, pre2: set of IP, rreqid: RouteRequestID

14 = receive(msg) . (

15 [msg is NewPkt]

16 trace(new Trace(ip, msg)) .

17 NEWPKT(NewPkt(msg), ip, sn, routeTable, rreqs, store)

18 + [msg is Pkt] PKT(Pkt(msg), ip, sn, routeTable, rreqs, store)

19 + [msg is RouteRequestMsg]!

20 [[routeTable := update(routeTable,

21 new Route(RouteRequestMsg(msg).sip, 0, K::unknown,

22 F::valid, 1, RouteRequestMsg(msg).sip, {} of IP))]]

23 RREQ(RouteRequestMsg(msg), ip, sn, routeTable, rreqs, store)

24 + [msg is RouteReplyMsg]

25 [[routeTable := update(routeTable,

178 Part H. Source files for AODV protocol

26 new Route(RouteReplyMsg(msg).sip, 0, K::unknown,

27 F::valid, 1, RouteReplyMsg(msg).sip, {} of IP))]]

28 RREP(RouteReplyMsg(msg), ip, sn, routeTable, rreqs, store)

29 + [msg is RouteErrorMsg]

30 [[routeTable := update(routeTable,

31 new Route(RouteErrorMsg(msg).sip, 0, K::unknown,

32 F::valid, 1, RouteErrorMsg(msg).sip, {} of IP))]]

33 RERR(RouteErrorMsg(msg), ip, sn, routeTable, rreqs, store)

34) + [dip in (qD(store) cap vD(routeTable))] (

35 [[data := head(getQueue(store, dip))]]

36 unicast(nextHop(routeTable, dip), new Pkt(data, dip, ip)) . (

37 [[store := drop(dip, store)]]

38 AODV(ip, sn, routeTable, rreqs, store)

39) > (

40 [[dests := [new Dest(rip, inc(getSN(routeTable, rip)))

41 | rip in vD(routeTable)

42 @ nextHop(routeTable, rip) == nextHop(routeTable, dip)]]]

43 [[routeTable := invalidate(routeTable, dests)]]

44 [[store := setRRF(store, dests)]]

45 [[pre := with init x := {} of IP, dest in dests do

46 x + precs(routeTable, dest.ip)

47 end]]

48 [[dests := [d | d in dests @ precs(routeTable, d.ip) != {} of IP]]]

49 groupcast(pre, new RouteErrorMsg(dests, ip)) .

50 AODV(ip, sn, routeTable, rreqs, store)

51)

52) + [dip in (qD(store) - vD(routeTable)) && getP(store, dip) == P::req] (

53 [[store := unsetRRF(store, dip)]]

54 [[sn := inc(sn)]]

55 [[rreqid := nrreqid(rreqs, ip)]]

56 [[rreqs := rreqs + [new RouteRequest(ip, rreqid)]]]

57 broadcast(new RouteRequestMsg(0, rreqid, dip, getSN(routeTable, dip),

58 getK(routeTable, dip), ip, sn, ip)) .

59 AODV(ip, sn, routeTable, rreqs, store)

60);

3 qmsg.awn

1 sequential process QMSG(msgs: list of $MSG) uses msg: $MSG

2 = receive(msg) . QMSG(msgs + [msg])

3 + [msgs != [] of $MSG] (

4 send(head(msgs)) . QMSG(tail(msgs))

5 + receive(msg) . QMSG(msgs + [msg])

6)

7 ;

4 data.awn 179

4 data.awn

1 library data;

2

3 //Basic data types:

4 type SQN = Integer;

5 type Nat = Integer;

6 type RouteRequestID = Integer;

7 type K = enum(known, unknown);

8 type F = enum(valid, invalid);

9 type P = enum(req, no_req, undef);

10 type Data = struct(d: Integer) extends $DATA;

11

12 //More complicated data types:

13 type IP = struct(address: Integer) extends $IP;

14 type Route = struct(ip: IP, sqn: SQN, k: K, f: F,

15 hopCount: Nat, nip: IP, precursors: set of IP);

16 type RouteTable = list of Route;

17 type Queue = list of Data;

18 type StoreEntry = struct(ip: IP, p: P, queue: Queue);

19 type Store = list of StoreEntry;

20 type RouteRequest = struct(ip: IP, id: RouteRequestID);

21 type RouteRequests = list of RouteRequest;

22 type Dest = struct(ip: IP, sqn: SQN);

23 type Dests = list of Dest;

24

25 //Traces:

26 type Trace = struct(ip: IP, msg: $MSG) extends $TRACE;

27

28 //Messages:

29 type NewPkt = struct(data: Data, dip: IP) extends $MSG;

30 type Pkt = struct(data: Data, dip, sip: IP) extends $MSG;

31 type RouteRequestMsg = struct(hopCount: Integer, id: RouteRequestID, dip: IP,

32 dsn: SQN, dsk: K, oip: IP, osn: SQN, sip: IP) extends $MSG;

33 type RouteReplyMsg = struct(hopCount: Integer, dip: IP,

34 dsn: SQN, oip: IP, sip: IP) extends $MSG;

35 type RouteErrorMsg = struct(dests: Dests, sip: IP) extends $MSG;

36 type Msg = struct() extends $MSG;

37

38 function drop(dst: IP, store: Store): Store

39 = with q := getQueue(store, dst) do

40 if |q| <= 1 then [s | s in store @ s.ip != dst] else

41 [if s.ip == dst then s else

42 new StoreEntry(s.ip, s.p, tail(s.queue))

43 end | s in store]

44 end

45 end;

46

47 //adds a packet to the queued data packets

48 function add(data: Data, dst: IP, store: Store): Store

49 = ifexists s in store @ s.ip == dst then

50 store - [s] + [new StoreEntry(dst, P::no_req, s.queue)]

51 else

52 store + [new StoreEntry(dst, P::req, [data])]

53 end;

54

180 Part H. Source files for AODV protocol

55 //set the request-required flag to no-req

56 function unsetRRF(store: Store, dst: IP): Store

57 = ifexists s in store @ s.ip == dst then

58 store - [s] + [new StoreEntry(dst, P::no_req, s.queue)]

59 else

60 store

61 end;

62

63 //set the request-required flag to req

64 function setRRF(store: Store, dsts: Dests): Store

65 = [if exists(dst in dsts @ dst.ip == s.ip) then

66 new StoreEntry(s.ip, P::req, s.queue)

67 else s end | s in store];

68

69 //selects the data queue for a particular destination

70 function getQueue(store: Store, dst: IP): Queue

71 = ifexists s in store @ s.ip == dst then s.queue else [] of Data end;

72

73 //selects the flag for a destination from the store

74 function getP(store: Store, dst: IP): P

75 = ifexists s in store @ s.ip == dst then s.p else P::undef end;

76

77 //selects the route for a particular destination

78 partial function getRoute(routeTable: RouteTable, dst: IP): Route

79 = ifexists r in routeTable @ r.ip == dst then r else undefined Route end;

80

81 //increments the sequence number

82 function inc(sqn: SQN): SQN

83 = if sqn != 0 then sqn + 1 else sqn end;

84

85 //returns the larger sequence number

86 function max(sqn1, sqn2: SQN): SQN

87 = if sqn1 > sqn2 then sqn1 else sqn2 end;

88

89 //returns the sequence number of a particular route

90 function getSN(routeTable: RouteTable, dst: IP): SQN

91 = ifexists r in routeTable @ r.ip == dst then r.sqn else 0 end;

92

93 //determines whether the sequence number is known

94 function getK(routeTable: RouteTable, dst: IP): K

95 = ifexists r in routeTable @ r.ip == dst then r.k else K::unknown end;

96

97 ...

Appendix I

TxtGen language
1 Files

In the translation framework, models are translated to text by means of a custom-built model-
to-text converter. This converter is driven by the .txtgen files, plain-text files written in the
TxtGen language.
Model-to-text conversions must be specified in files that have the .txtgen extension. Files

must start with a header that specifies their identifier, as in
1 library mCRL22text;

Files can import other files with the import syntax:
1 import "mCRL22text.txtgen";

2 Metamodels
TxtGen files work with models and must be given information about those models, which is
contained in their metamodel. The code snippet below gives an example of how a metamodel in
a given file is imported and linked to an identifier:

1 metamodel "mCRL2.ecore" as mCRL2;

Classes and other types contained within the metamodel are referenced by writing the identifier
of the metamodel followed by :: followed by the name of the type.

3 Rules
TxtGen files contains a number of rules, at least one of which must be a main rule – the TxtGen
converter will look for one of these rules as a starting point for exporting a given model to text.
TxtGen rules follow this grammar:

rule ::= (ε |main) ruleName(ruleParam, · · · , ruleParam) = ruleExpr;
ruleParam ::= paramName:(primitiveType | importedType)

primitiveType ::= Boolean | Integer | String
importedType ::= metamodelName :: typeName

Each rule has a name (which does not have to be unique) and a number of typed parameters.
Main rules must have exactly one parameter, namely one with the model type that it converts to
text. How rules are referenced, is discussed in Section 4.2.
The body of a rule consists of an expression from which a text can be constructed. The following

section describes the different expression types.

182 Part I. TxtGen language

4 Rule expressions
The body of rules consists of a rule expression. Such expressions adhere to the following
grammar:

ruleExpr ::= seqExpr | · · · | seqExpr
seqExpr ::= multExpr seqExpr | ε

multExpr ::= operand | operand ? | operand * | operand +

operand ::= literal
| out(dataExpr)
| ruleName(dataExpr, · · · ,dataExpr)
| newline | indent | unindent
| newdir(string) | newfile(string)
| equal(dataExpr, dataExpr) | !equal(dataExpr, dataExpr)
| enum(dataExpr, dataExpr))
| error(string, dataExpr, · · ·, dataExpr))
| (ruleExpr))

4.1 Literals
The simplest scenario is where the expression generates literal text. For example, the rule

1 Sort(sort: mCRL2::IntSort) = "Int";

does not do anything with the contents of its parameter sort, but simply writes the text "Int"
to the current file (without the quotes).

4.2 Primitive types
The contents of fields that have a primitive type can be written to the current file with the out
function (the default Java toString() method is used for this purpose; more sophisticated
value-to-text conversion is not supported). For example, let map be an object with the String
field name and let that field contain the value Hello world!. The expression out(map.name)

then writes "Hello world!" to the current file (without the quotes).
If the field provided as parameter of the out function has been assigned the value null, the

expression fails and the TxtGen converter moves on to the next alternative. The concept of
alternatives is discussed in Section 4.6.

4 Rule expressions 183

4.3 Non-primitive types
If the field has a class – or any other non-primitive type – as type, it is typically exported to text
by referencing another rule. Suppose, for example, that one uses the following rule to write
mCRL2 mappings to the current file:

1 Map(m: mCRL2::Mapping) = "map " out(m.name) ": " Sort(m.sort) ";";

This expression depends on the existence of some rule named Sort that takes an mCRL2 sort
as input.
If there are multiple rules that match the reference to a rule, TxtGen selects the one with

parameter types that are as close to the types of the input values as possible. This means that it is
possible to overload methods:

1 Sort(sort : M::Sort) = error("Missing support for sort ", type(sort));

2 Sort(sort : M::BoolSort) = "Bool";

3 Sort(sort : M::IntSort) = "Int";

In the code snippet above, M::BoolSort and M::IntSort are subclasses of M::Sort. If
a reference to the Sort rule is made, the TxtGen converter selects the closest match: if the
parameter is of type M::BoolSort, the second definition of the rule is chosen; if the parameter
is of type M::IntSort, the third definition is chosen; and if the parameter is not a subtype of
M::BoolSort or M::IntSort and there are no other matching definitions, the first definition is
chosen, which generates an error (see Section 4.6).

4.4 Whitespace
TxtGen provides special expressions for inserting whitespace characters: the indent and unin-
dent expressions set the current level of indentation, and the newline expression writes a newline
character to the current file. A new line will be indented automatically as soon as more text is
generated; before that, indent and unindent can be used to change the indentation of the line.

4.5 Directories and files
There are two expressions that allow the user to create directories and files, namely newdir
and newfile. They both require a path string as input. Note that files can only be created in an
existing directory.
The most recently created file is the file to where text is written. This means that a file must be

created before any text is generated!

184 Part I. TxtGen language

4.6 Alternatives
There are several situations in which a TxtGen expression ‘fails’, which means that it did not
correctly generate text. One of these situations is when the contents of a field is converted to
text with the out function and the contents is null (see Section 4.2. Another example involves
guards:
• The equal function takes two parameters. Both parameters must be null or both param-

eters must have the same value as determined by the default Java equals() method in
order for the current expression to succeed. The !equal function behaves opposite to the
equal function.
• The enum function takes two parameters, the first of which must be the field of an object

with an enumerable as its type, and the second must be one of the enumerable values. The
function succeeds if and only if the field has been assigned the given value. The !enum
function behaves opposite to the enum function.
• The error function always fails. It is useful for assisting the user by providing more

information on what part of the model-to-text conversion failed with a message and the
values of a number of objects.

It is important to note that the algorithm that checks whether an expression fails is not recursive.
In other words, references to rules only fail if one of their parameters cannot be evaluated; they
do not fail if the body of the rules to which they refer fail!
Expressions in TxtGen of the form seqExpr | · · · | seqExpr denote lists of expressions that are

explored from left to right, and the first sub-expression that does not fail is applied. The entire
expression fails if there is all sub-expressions fail. The different sub-expressions are called
alternatives.

4.7 Kleene operators
Expressions can be used as the parameter of the Kleene star operator or a related unary operator:
• The Kleene star denotes that its operand can occur zero or more times. For TxtGen, this

means that the operand is repeated until it fails after which the converter continues with
the subsequent expression. The operand with the Kleene star can therefore never fail (see
Section 4.6), because the converter will simply continue with the subsequent expression
even if the operand already fails at its first evaluation.
• The + operator behaves the same as the Kleene star operator, except that it requires the

operator to be applied at least once: if the operator was not applied successfully at least
one time, the expression fails.
• The ? operator means that its operand is optional. Just like the Kleene star operator, it

cannot fail.

5 Data expressions 185

5 Data expressions
Data expressions are used in the parameters of the functions of rule expressions. They follow the
grammar

dataExpr ::= dataOperand selectFieldExpr
selectFieldExpr ::= ε | dataExpr.fieldName selectFieldExpr

dataOperand ::= paramName
| boolLiteral | intLiteral | stringLiteral
| type(dataExpr)
| first(dataExpr)
| next(dataExpr)

First, the parameters and their fields can be used directly as a data expression; literal values of
booleans, integers, and strings are also valid data expressions; and the type function converts the
type of its parameter to a string (this is primarily used for debugging).
Second, each list in a model is given its own iterator that can be manipulated with the first

and next functions: the first function selects the first element of the list, and the next function
selects the next element of the list. These functions can fail – for example when a list is empty or
when a list contains no more elements – which makes the rule expression that contains them fail
(see Section 4.6). This means that the functions can be used in combination with the Kleene star
operator * (see Section 4.7) in order to export the elements of a list:

1 NamedProcess(p: M::NamedProcess)

2 = "proc" out(p.name) ("(" Variable(first(p.parameters))

3 (", " Variable(next(p.parameters)))* ")")?

4 " = " Process(p.rootProcess) ";";

5 Variable(v: M::Variable) = ...

6 Process(p: M::Process) = ...

The code snippet above shows how a rule traverses all parameters of a named process and
exports each one. If there are no parameters, no brackets are exported either.

	Introduction
	Motivation
	Why mCRL2?
	Why MDE?

	Formal translation
	AWN semantics
	Sequential process level
	Parallel process level
	Node level
	Network level
	AWN examples

	mCRL2 semantics
	Grammar
	Inference rules
	Special operators
	mCRL2 data language
	mCRL2 examples

	Translation function
	Translating sequential process expressions
	Translating higher-level process expressions
	Totalness
	Translation relation
	Action relation

	Correctness proof
	Representative derivations
	Data congruence
	Auxiliary lemmas
	Proof for strong warped bisimulation
	Proof for strong bisimulation modulo renaming

	AWN input language
	Files
	Header
	Body

	Type declarations
	Primitive types
	Enumerable types
	Range types
	List types
	Set types
	Struct types
	Function types

	Data expressions
	Literals
	Variables
	Function calls
	Casting
	Operations
	Partial function construction
	Predefined functions
	Lambda functions
	Collection expressions
	Struct construction
	Conditional expression
	Quantified expressions
	Ifexists expression
	With expression
	With-init expression
	Undefined expression
	Arbitrary expression

	Constants
	Functions
	Sequential processes
	Parallel processes
	Networks

	Implementation
	Translation framework
	AWN-to-mCRL2 translation
	Compiling AWN
	Transformation from Raw-AWN to AWN
	Transformation from AWN to mCRL2
	mCRL2 to text

	Use cases
	Leader protocol
	AODV protocol

	Conclusions
	Results summary
	Discussion
	Future work

	Appendix Proof of Theorem 4.1
	Appendix Complete proof of Lemma 4.6
	Base case
	Translation rule T8

	Induction step
	Translation rule T1
	Translation rule T2
	Translation rule T3
	Translation rule T4
	Translation rule T5
	Translation rule T6
	Translation rule T7
	Translation rule T9
	Translation rule T10

	Appendix Complete proof of Lemma 4.7
	Base cases
	Broadcast (T1)
	Groupcast (T1)
	Unicast (T1-1)
	Unicast (T1-2)
	Send (T1)
	Deliver (T1)
	Receive (T1)
	Assignment (T1)
	Guard (T1)
	Arrive (T3-2)
	Connect (T3-1)
	Connect (T3-2)
	Connect (T3-3)
	Disconnect (T3-1)
	Disconnect (T3-2)
	Disconnect (T3-3)

	Induction step
	Recursion (T1)
	Choice (T1-1)
	Choice (T1-2)
	Parallel (T2-1)
	Parallel (T2-2)
	Parallel (T2-3)
	Broadcast (T3)
	Groupcast (T3)
	Unicast (T3-1)
	Unicast (T3-2)
	Deliver (T3)
	Internal (T3)
	Arrive (T3-1)
	Cast (T4-1)
	Cast (T4-2)
	Cast (T4-3)
	Cast (T4-4)
	Deliver (T4-1)
	Deliver (T4-2)
	Deliver (T4-3)
	Internal (T4-1)
	Internal (T4-2)
	Internal (T4-3)
	Connect (T4-1)
	Connect (T4-2)
	Disconnect (T4-1)
	Disconnect (T4-2)
	Newpkt (T4)

	Appendix Complete proof of Lemma 4.8
	Base cases
	Translation rule T1
	Translation rule T2
	Translation rule T3
	Translation rule T4
	Translation rule T5
	Translation rule T6
	Translation rule T7
	Translation rule T10

	Induction step
	Translation rule T8
	Translation rule T9

	Appendix Complete proof of Lemma 4.9
	Base cases
	Translation rule T11
	Translation rule T12

	Induction step
	Translation rule T13
	Translation rule T14
	Translation rule T15
	Translation rule T16

	Appendix Operators of the AWN input language
	Appendix Source files for leader election protocol
	leader.awn

	Appendix Source files for AODV protocol
	main.awn
	aodv.awn
	qmsg.awn
	data.awn

	Appendix TxtGen language
	Files
	Metamodels
	Rules
	Rule expressions
	Literals
	Primitive types
	Non-primitive types
	Whitespace
	Directories and files
	Alternatives
	Kleene operators

	Data expressions

