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Abstract

Process algebra is a theoretical framework for the modelling and analysis of the
behaviour of concurrent discrete event systems that has been developed within com-
puter science in past quarter century. It has generated a deeper understanding of
the nature of concepts such as observable behaviour in the presence of nondetermin-
ism, system composition by interconnection of concurrent component systems, and
notions of behavioural equivalence of such systems. It has contributed fundamental
concepts such as bisimulation, and has been successfully used in a wide range of
problems and practical applications in concurrent systems.

We believe that the basic tenets of process algebra are highly compatible with
the behavioural approach to dynamical systems. In our contribution we present an
extension of classical process algebra that is suitable for the modelling and analy-
sis of continuous and hybrid dynamical systems. It provides a natural framework
for the concurrent composition of such systems, and can deal with nondetermin-
istic behaviour that may arise from the occurrence of internal switching events.
Standard process algebraic techniques lead to the characterisation of the observ-
able behaviour of such systems as equivalence classes under some suitably adapted
notion of bisimulation.
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1 Introduction

The growing interest in hybrid systems both in computer science and con-
trol theory has generated a new interest in models and formalisms that can
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be used to specify and analyse such systems. A prominent framework for
hybrid systems is provided by the family of hybrid automata models (hy-
brid automata [Alur et al., 1993, Henzinger, 1996], hybrid behavioural au-
tomata [Julius et al., 2002], hybrid input/output automata [Lynch et al.,
2003]). More recently process algebraic models have been put forward as a
vehicle for the study of hybrid systems [Cuijpers and Reniers, 2003, Bergstra
and Middelburg, 2003, van Beek et al., 2004].

Process algebra [Milner, 1989, Hoare, 1985, Bergstra and Klop, 1984, Bolog-
nesi and Brinksma, 1987] is a theoretical framework for the modelling and
analysis of the behaviour of concurrent discrete event systems that has been
developed within computer science in past quarter century. It has generated a
deeper understanding of the nature of concepts such as observable behaviour
in the presence of nondeterminism, system composition by interconnection of
concurrent component systems, and notions of behavioural equivalence of such
systems. It has contributed fundamental concepts such as bisimulation, and
has been successfully used in a wide range of problems and practical applica-
tions in concurrent systems.

We believe that the basic tenets of process algebra are highly compatible
with the behavioural approach to dynamical systems [Polderman and Willems,
1998]. In our contribution we present an extension of classical process algebra
that is suitable for the modelling and analysis of continuous and hybrid dynam-
ical systems that can be seen as a generalisation of the behavioural approach
in a hybrid setting. It provides a natural framework for the concurrent com-
position of such systems, and can deal with nondeterministic behaviour that
may arise from the occurrence of internal switching events. Standard process
algebraic techniques lead to the characterisation of the observable behaviour
of such systems as equivalence classes under some suitably adapted notion
of bisimulation, yielding a potentially interesting mathematical interpretation
of the notion of hybrid behaviour. A technical advantage of our approach is
that, in contrast to Cuijpers and Reniers [2003], Bergstra and Middelburg
[2003] strong bisimulation is a congruence relation with respect to the parallel
composition of subsystems 2 , i.e., substitution of a subsystem by a bisimilar
subsystem does not affect the behaviour of the composition.

In this chapter we propose a process algebraic calculus that extends the stan-
dard repertoire of operators that combine discrete functional behaviour with
features to also represent and compose continuous-time behaviour. As men-
tioned above, we are inspired by the so-called behavioural approach to dy-
namic systems due to Polderman and Willems [1998]. In control theory, which
is the relevant context in our case, the traditional presentation of dynamic

2 In Cuijpers and Reniers [2003] the robust and stateless bisimulations are congru-
ent.
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behaviour, assumes as given, a number of continuous-time input and output
variables, whose evolutions, respectively, influences and depend on the evolu-
tion of state variables. This evolution is typically defined in terms of differential
equations.

Although in practice most dynamical systems are ultimately described in this
format, Willems’ behavioural approach starts from a more general point of
view. System behaviour is characterised by a time-dependent relation between
the observable or manifest variables of a system. Input and output become
derived notions that depend on the constraints that the overall relation im-
poses on the individual variables. Thus behaviour can be simply seen as the
set of all allowed real-time evolutions, or trajectories, of the system variables.

The notion of input and output as derived concepts is also well-known in pro-
cess algebras with communication based on (symmetric) instantaneous syn-
chronisation. It suggests that communication on continuous-time variables can
be achieved by non-instantaneous synchronisation on (parts of) trajectories.
This leads to a calculus of actions, for discrete behaviour, and trajectories, for
continuous-time behaviour. As we will see, the calculus does not depend upon
any particular representation of sets of allowed trajectories: it simply defines
the behaviour of composed, hierarchical systems in terms of the allowed actions
and trajectories of its component systems. This leads to a natural separation
of concerns in which control theory is used to determine qualitative properties
of dynamical behaviour (e.g., stability, controllability, etc.), and the proposed
calculus describes how these propagate under complex system compositions.

Based on the above approach, this chapter introduces the concept of hybrid
transition systems and defines the related notion of strong (hybrid) bisimula-
tion that captures a natural notion of equivalent behaviour. This leads to a
branching-time interpretation of hybrid behaviour, in which behaviour is not
characterised by sets of trajectories and action traces, but by tree-like struc-
tures that capture also the moments in time when a choice between alternative
behaviours exists.

Subsequently, a basic language for the construction of hybrid transition sys-
tems is defined. The syntax of the language is presented and its operators are
explained.

2 Trajectories

We assume that trajectories are defined over bounded time intervals (0, t], and
map to a signal space to define the evolution of the system. Components of the
signal space correspond to different aspects of the continuous-time behaviour,
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like temperature, pressure, etc. They are associated with trajectories qualifiers
that identify them.

Definition 1 (Signal space) Let W be a set of signal domains (typically
⊆ R), and T be a set of trajectories qualifiers. A signal space is a tuple

W = (W1 × · · · ×Wn, t1 × · · · × tn)

with Wi ∈ W , ti ∈ T , where ti denotes the trajectory qualifier of Wi, and
ti 6= tj for i 6= j, i.e., all Wi have different trajectory qualifiers.

Definition 2 (Trajectory) Let W be the signal space. Then a trajectory is
a mapping

ϕ : (0, t] → W,

where t ∈ R+ is the duration of the trajectory, also denoted as t(ϕ). The
signal space W specifies the potentially observable continuous-time behaviour
of the system. Usually trajectories are defined over infinite time intervals (like
in Example 6). However, hybrid systems usually evolve according to some
trajectory only for a certain period of time. The restriction to interval (0, t]
allows to define such evolutions. In Section 6.3 we provide a tool to define
infinite trajectories, thus such definition does not cause any inconvenience or
loss of generality.

Notation 2.1 We will use Φ to denote a set of trajectories. For brevity rea-
sons instead of writing ϕ � (0, t] we will write ϕ � t, where ϕ is a trajectory.

Definition 3 (Projection) Let ϕ : (0, u] → W be a trajectory, such that
W = (W1 × · · · × Wn, t1 × · · · × tn). Then a projection of trajectory to a
trajectory qualifier ti (i = 1, . . . , n) is the trajectory

πti(ϕ) : (0, u] → Wi

with Wi = (Wi, ti) from W.

Definition 4 (Trajectory qualifier) Let ϕ : (0, u] → W be a trajectory.
Then the function T : Φ → T , where Φ is a set of trajectories and T is a set
of trajectory qualifiers, collects all trajectory qualifiers of the trajectory:

T(ϕ) = {t | ∃W ∈ W , πt(ϕ) = (W, t)}.

Remark 5 (Extended projections) We will write projection for a set of
trajectory qualifiers

πT
′
(ϕ) : (0, u] → WT ′

with WT ′ = (W1 × · · · × Wm, t1 × · · · × tm), {t1, . . . , tm} = T ′ and ∀ti ∈
T ′ πti(ϕ) = πti(πT

′
(ϕ)).
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Example 6 (Trajectories and projections) Let WBB = (R+ × R,Altitude × Velocity)
be the signal space for bouncing ball example (Example 7). Then the trajectory
for the bouncing ball can be defined as a mapping

ϕ : (0, t] → (R+ × R,Altitude × Velocity) ,

and, e.g., given as

d

dt
πAltitude(ϕ) = πVelocity(ϕ)

d

dt
πVelocity(ϕ) = −g

with initial values πAltitude(ϕ)(0) = h0 and πVelocity(ϕ)(0) = v0, respectively. If
the signal types of two trajectories coincide, they can be concatenated to one
trajectory, which is not necessary continuous.

Definition 7 (Concatenation of trajectories) Let ϕ : (0, t] → W and ψ :
(0, u] → W be trajectories. The concatenation of ϕ and ψ is given by the
trajectory

φ;ψ : (0, t+ u] → W

defined by

ϕ ; ψ(t′) =

ϕ(t′), 0 < t′ 6 t

ψ(t′ − t), t < t′ 6 t+ u

Example 8 (Concatenation) Let ϕ and ψ be trajectories of duration 3 de-
picted by the solid and dotted lines in Figure 1, respectively. Then the concate-
nation ϕ ; ψ is a trajectory of duration 6 depicted in Figure 1 by a solid line.
For the convenience a time-shift operation is defined. It shifts a trajectory

0 1 2 3 4 5 6

⇐

Figure 1. Time-shift

0 2 4 6 8 10

Figure 2. Set of continuations

to “the left” by some time. An example of the time shift by 3 time units is
presented in Figure 1. The solid line represents the original function, and the
dotted line represents the function after the time-shift.
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Definition 9 (Time-shift) Let Φ be a set of trajectories and ϕ : (0, t] → W
be a trajectory. Then a time-shift operator

↑ : Φ× R>0 → Φ

defines a shift of the trajectory by some time t′ < t,

ϕ ↑ t′ : (0, t− t′] → W such that ∀u ∈ (0, t− t′] ϕ ↑ t′ (u) = ϕ(t′ + u).

If one trajectory coincides on the signal space with the initial part of the
other trajectory, it is called a prefix of trajectory.

Definition 10 (Prefix of trajectory) Let ϕ : (0, t] → W and ψ : (0, u] →
W be a trajectories, such that t 6 u. Then ϕ is a prefix of ψ (denoted ϕ � ψ),
if ϕ = ψ � t. Furthermore, if ϕ � ψ and t < u, then ϕ is called a strict
prefix of ψ and denoted ϕ ≺ ψ. As a supplement to the trajectory prefix,
we introduce a notion of trajectory continuation, the part of trajectory, the
remainder of the taken trajectory.

Definition 11 (Trajectory continuation) Let ϕ : (0, t] → W and ψ :
(0, u] → W be a trajectories such that ψ � ϕ. Then we define a trajectory
continuation of ϕ after taking ψ

ϕ\ψ : (0, t− u] → W,

such that
ϕ\ψ = ϕ ↑ u.

Trajectory continuation defines a remainder of the taken trajectory. A gen-
eralised version of it, a set of trajectory continuations, singles out a subset of
trajectory continuations, i.e., all remainders from the set of trajectories, which
have the same initial part.

Definition 12 (Set of trajectory continuations) Let Φ be a set of trajec-
tories and ψ be a trajectory or trajectory prefix of some trajectory belonging
to the set. Then a set of trajectory continuations is a set of trajectory ψ con-
tinuations

Φ\ψ = {ϕ | ψ ; ϕ ∈ Φ}.

Example 13 (Set of trajectory continuations) Let us have a set of tra-
jectories depicted in Figure 2. Let us take the trajectory prefix of duration 4,
depicted by the solid line. Then the set of trajectory continuations for this pre-
fix will include all continuations from the time point 4 depicted by the solid
line, and the trajectory depicted by the circles will be excluded.

Definition 14 (Partial prefix) Let H be a set of trajectory qualifiers, and

6



let ϕ : (0, t] → Wϕ, ψ : (0, u] → Wψ be trajectories, such that t 6 u. Let
T = T(ϕ) ∩ T(ψ) ⊆ H.

• Trajectory ϕ is a partial prefix of ψ (denoted ϕ �H ψ), if πT (ϕ) = πT (ψ �
t).

• If ϕ �H ψ and t < u, then ϕ is called a strict partial prefix of ψ and denoted
ϕ ≺H ψ.

• In case of t = u the trajectories are equal on the coinciding trajectory qual-
ifiers and are called partially equal (denoted ϕ =H ψ).

The notion of partial prefix loosens requirements put by prefix (Definition 10),
i.e., only the projections over coinciding trajectory qualifiers are compared.

Example 15 (Partial prefix) Let us have two trajectories, which define the
(altitude, velocity) and (altitude, temperature) pairs, respectively. Then one of
these trajectories is a partial prefix of another, if the altitude changes in the
same way. It allows to define different aspects of the same object separately
and then compose definitions to get a complete specification of the object.

Definition 16 (Synchronising prefix) Let H be a set of trajectory and let
ϕ : (0, t] → Wϕ and ψ : (0, u] → Wψ be trajectories. Let T = T(ϕ) ∩ T(ψ) ⊆
H. We will define a set of common prefixes as follows

CP(ϕ, ψ) = {ϕ′ �H ϕ | ∃ψ′ �H ψ ϕ′ =H ψ′}.

Furthermore, a synchronising prefix is the longest prefix in the set of common
prefixes

ϕ ↓ ψ = max�H CP(ϕ, ψ).

A set of common prefixes collects all coinciding prefixes of trajectories, and
the synchronising prefix is the longest of them.

Based on synchronising trajectory qualifiers, two trajectories can be composed
creating a new, “wider”, trajectory, such that evolutions of coinciding trajec-
tory qualifiers are merged and non-coinciding parts extend the state space.

Definition 17 (Composition of trajectories) Let H be a set of synchro-
nising trajectory qualifiers, and let ϕ : (0, u] → Wϕ and ψ : (0, u] → Wψ be
trajectories such that T(ϕ) ∩ T(ψ) ⊆ H and πT(ϕ)∩T(ψ)(ϕ) = πT(ϕ)∩T(ψ)(ψ).
Then a composition of trajectories is a relation

ϕ×H ψ : (0, u] → W,
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such that

T(ϕ×H ψ) = T(ϕ) ∪ T(ψ),

πT(ϕ)(ϕ×H ψ) = ϕ,

πT(ψ)(ϕ×H ψ) = ψ.

Several different ways will be used to define sets of trajectories.

• By listing all trajectories belonging to the set: Φ = {ϕ1, . . . , ϕn}.
• By putting restrictions on the already existing set of trajectories: Φ ↓ Pred =
{ϕ ∈ Φ | Pred(ϕ)}, where Pred is a predicate.

• Because trajectories are finite, sometimes it is useful to define conditions
on the end-points of trajectories or exit conditions . We will use ⇓ to denote
such conditions, as restrictions on set of trajectories: Φ ⇓ Pred exit = {ϕ :
(0, u] → W ∈ Φ | Pred exit(ϕ(u))}. It is illustrated in Section 7, where, e.g.,
in Example 31 h = 0 specifically requires, that the trajectory finishes at 0
altitude.

Notation 2.2 (Set of trajectories) When it is clear from the context, we
will use trajectory qualifiers to access corresponding parts of trajectories, e.g.,
ti will mean the same as πti(ϕ) for ϕ : (0, t] → W with W = (W1 × · · · ×
Wn, t1×· · ·× tn), i = 1 . . . n. Furthermore, will use ti instead of πti(ϕ)(u) with
u ∈ (0, t] as a time, when it is clear from the context.

Combination of different conditions is allowed

Φ ↓ Pred ⇓ Pred exit = {ϕ : (0, u] → W ∈ Φ | Pred(ϕ) ∧ Pred exit(ϕ(u))}

3 Hybrid transition system

Automata, state-transition diagrams and other similar models are often used
to describe the dynamic behaviour of the systems. They consist of the states
s ∈ S (with S as a set of states) and some construct, defining changes of the
states. Most of the time changes of the states are defined by the transitions ,
which are given as a relation (function) over a subset of Cartesian product of
the states (S × S). If it is possible to change from the state s to the state s′

in one step, then (s, s′) ∈ S × S tells that. Often such transitions are denoted
by an arrow, e.g., (s, s′) ∈→ or s→ s′.

In the process algebras such transitions systems are used as a labelled transition
systems . That is a class of transitions systems, where transitions are related
with some actions a ∈ A (where A is a set of actions), e.g., conditioned by
them. Therefore, the transition relation is defined over subset of S × A × S.
Then (s, a, s′) ∈→ or s

a−→ s′.
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A hybrid transition system is a labelled transition system with two types of
transitions.

Definition 18 (HTS) A hybrid transition system is a tuple HTS = 〈S,A,→
,W,Φ,→c〉, where

• S is a state space;
• A is a set of (discrete) action names;
• →⊆ S × A× S is a (discrete) transition relation;
• W is a signal space;
• Φ is a set of trajectories ϕ : (0, t] → W for t ∈ R+;
• →c⊆ S × Φ× S is a (continuous-time) transition relation.

We will write

s
a−→ s′ ⇐⇒ (s, a, s′) ∈→

s
ϕ−→ s′ ⇐⇒ (s, ϕ, s′) ∈→c .

The set of discrete action names includes a silent action, denoted τ . It does
not represent a potential communication and is not directly observable. Silent
action may be used to specify a nondeterministic behaviour (as internal actions
in Milner [1989, p.37–43]).

Remark 19 (Density) We will require density for all trajectories

s
ϕ−→ s′ ⇐⇒ ∃s′′, ϕ1, ϕ2 : ϕ = ϕ1 ; ϕ2 ∧ s

ϕ1−→ s′′ ∧ s′′
ϕ2−→ s′.

This requirement allows us to split every trajectory into arbitrarily many
parts.

Notation 3.1 We will adhere to a certain notation.

• Greek alphabet symbols (like ϕ, ψ) will be used to denote trajectories, which
are taken on a continuous transition.

• Latin alphabet (like a, b) will be used to denote actions.

Remark 20 (Labels of continuous-time transitions) Label ϕ in s
ϕ−→ s′

is a semantic object, viz. the set theoretic graph of the function ϕ.

Remark 21 (Sufficiency of density) The above property of density does
not suffice in general, because it allows pathological transition systems, see Jef-
frey et al. [1993]. However, the process calculus that we define cannot describe
such pathological cases, so that our definition suffices.

Remark 22 Note that the trajectory transitions can be non-deterministic.
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3.1 Bisimulation

One of the main tools to compare systems is a strong bisimulation. The bisim-
ulation for continuous dynamical systems is presented in van der Schaft [2004].
The process algebraic version is nicely explained in Milner [1989]. A strong
bisimulation for hybrid transition systems requires both systems to be able
to execute the same trajectories and actions and to have the same branching
structure.

Definition 23 (Strong bisimulation) A binary relation R ⊆ S×S on the
states is a bisimulation, if for all p, q ∈ S, such that pR q, holds

p
a−→ p′ =⇒ ∃q′ such that q

a−→ q′ and p′ R q′

q
a−→ q′ =⇒ ∃p′ such that p

a−→ p′ and p′ R q′

p
ϕ−→ p′ =⇒ ∃q′ such that q

ϕ−→ q′ and p′ R q′

q
ϕ−→ q′ =⇒ ∃p′ such that p

ϕ−→ p′ and p′ R q′.

The first two statements define bisimulation requirements for the discrete
actions, and the last two for the continuous-time transitions.

Definition 24 (Bisimilarity) States p and q are bisimilar (denoted p↔q),
if there exists a bisimulation R, containing the pair (p, q).

4 Language and semantics

4.1 Language

To define evolution and interaction of systems, a language, based on hybrid
transition system (Section 3) is introduced. The syntax of language is pre-
sented in BNF notation (Backus-Naur form).

B ::= 0 a . B [ϕ] . B
∑
i∈I
Bi

⊕
i∈I
Bi B ‖HA B new w . B B [σ] P

• 0 is a deadlock .
• a . B is an action-prefix , where a ∈ A is a discrete action name and B is a

process. It denotes discrete transitions in the hybrid transition system.
• [ϕ] . B is a trajectory-prefix , where ϕ is a trajectory. It denotes continuous-

time transition in the hybrid transition system.
• ∑

i∈I
Bi is an alternative composition (choice) of processes, a generalised ver-

sion of binary choice operator.
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• ⊕
i∈I
Bi is a superposition of processes, a generalised version of binary super-

position operator.
• B ‖HA B is a parallel composition of two processes with an interconnection

set H and a synchronisation set A, where H ⊆ T is a set of trajectory
qualifiers for the continuous transitions and A is a synchronisation set of
the discrete actions for the discrete transitions.

• new w . B is a hiding operator, where w is a set of discrete action names
and trajectory qualifiers to hide.

• B[σ] is a renaming operator, where σ is a renaming function.
• P , B is a recursive equation.

We will use syntactic functions L(B) and N (B) for collecting action and
trajectory qualifiers occurring in B, respectively.

Definition 25 (Consistent signal flow) We will require a consistent sig-
nal flow, i.e., only the parallel composition is allowed to change the set of tra-
jectory qualifiers in the process. Renaming operation can only renames them,
but not change their type.

Let P is a set of processes and T is a set of trajectory qualifiers, then N is
syntactical function N : P → T , that collects trajectory qualifiers occuring in
the process. We define N recursively with given static constraints.

• N (a . B) = N (B);
• N (B) = T(ϕ), and if B 6= 0 then T(ϕ) = N (B);

• N
(⊕
i∈I
Bi

)
= N (Bi) for all i ∈ I, with static constraint ∀ i, j ∈ I N (Bi) =

N (Bi);

• N
(
B ‖HA C

)
= N (B) ∪N (C);

• N (B [σ]) = N (B) ∪ σnew \ σrepl, where σnew and σrepl are sets of new and
replaced qualifiers, and each new qualifier has the same type as the qualifier
replaced by it;

• N (P ) = T(P ), where T a set of qualifiers associated with process name, if
P , B and T(B) = N (B).

Notation 4.1 When it is clear from the context we will use trajectory quali-
fiers to access the corresponding components of trajectories. Therefore, in the
trajectory-prefix definition [ti, tj | ϕ] trajectory qualifiers ti and tj are explicitly
used to refer to πti(ϕ) and πtj(ϕ), respectively. Furthermore, we will use tra-
jectory qualifiers to denote values of trajectory at a current time ( snapshots),
e.g, t instead of πt(ϕ)(u) with u as a time, when it is clear from the context.
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4.2 Behavioural Hybrid Process Calculus operators

In this section we explain main BHPC operators.

4.2.1 Action-prefix a . B

The ordinary well-known action-prefix. Process a .B describes a process which
engages in the action a and then behaves as described by B.

A special silent action, denoted τ , is introduced. It does not represent a poten-
tial communication and is not directly observable. Silent action may be used
to specify a nondeterministic behaviour (as internal actions in Milner [1989,
p.37–43]).

a . B
a−→ B (1)

In Section 6.1 we define a parametrised version of action-prefix. The use of
both ordinary and parameterised action-prefixes are illustrated in Section 7.

4.2.2 Trajectory-prefix [ϕ] . B

Trajectory-prefix defines the hybrid behaviour that starts with a continuous
trajectory denoted by ϕ and is followed by the behaviour specified by B.

[ϕ] . B
ϕ−→ B (2a)

[ϕ] . B
ψ−→ [ϕ\ψ] . B for all ψ � ϕ (2b)

In (2a) a process engages in the trajectory ϕ, completes it and then behaves
as described by B. While in (2b) only a part of the trajectory is taken, and
then the process will continue with the remainder of the trajectory (ϕ \ ψ).

We define a symbolic version of trajectory-prefix in Section 6.2 and illustrate
it in examples from Section 7.

4.2.3 Concatenation

Let ϕ : (0, t] → V and ψ : (0, u] → W be trajectories. If the signal spaces
of both trajectories coincide (V = W), they can be concatenated. A final
trajectory is not necessary continuous.

Concatenation can be illustrated by Figure 1. Let ϕ and ψ be trajectories
depicted by the solid and dotted lines in the interval (0, 3], respectively. Then
the concatenation of trajectories ϕ and φ is depicted by the solid line in the
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interval (0, 6].

B
ψ−→ B′

[ϕ] . B
ϕ;ψ−−→ B′

(3)

4.2.4 Superposition
⊕{B(v) | v ∈ I}

�
ϕ

+
@ψ
” = ”

�
ϕ

or

@ψ

choice made
6

�
ϕ

⊕
@ψ
” = ” �ϕ+ ψ

@

choice made
6

Figure 3. Superposition

Superposition is a generalised operator on sets of behaviour expressions. To
generate the set we allow arbitrary index sets I. It can be thought of as a
generalisation of the choice or summation operator

∑
in ordinary process

algebra. Indeed, if all arguments are of the form av . B(v) then the intended
interpretation of

⊕{B(v) | v ∈ I} or
⊕
v∈I

B(v) is
∑
v∈I

B(v)

The inactive process 0 or STOP can be introduced as
⊕∅.

The difference between
⊕

and
∑

becomes apparent in the case of trajectory-
prefixes: when two trajectories are superposed the choice between them is not
made at the time of superposition, but at the time when the trajectories start
bifurcating, as is illustrated in Fig. 3. If it is necessary to make a choice at
the beginning, it can be done using silent action, like in, e.g. τ . [ϕ] ⊕ τ . [ψ],
where choice is made before engaging in the trajectory.

B(w)
a−→ B′⊕

v∈I
B(v)

a−→ B′
w ∈ I (4a)

{B(v)
ϕ−→ B′(v) | v ∈ I}, {B(w)��

ϕ−→ | w ∈ J}, I 6= ∅⊕
v∈I∪J

B(v)
ϕ−→ ⊕

v∈I
B′(v)

(4b)

In (4a) a superposition for action-prefixes is defined. Actually, it coincides with
general choice or summation

∑
v∈I

B(v) operator. Rule (4b) tells, that we can not

distinguish between two signal transitions, if they can take the same trajectory,
and if some processes can evolve according to a certain trajectory, and another
set can not, then the choice is resolved in the favour of the processes, which
can take the trajectory.

Remark 26 Use of rule (4b) in BHPC requires infinitary SOS derivation
trees and transfinite induction as a proof principle. Use of superposition is
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illustred in examples from Section 7 and in extensions of basic process calculus
operators in Section 6.

4.2.5 Parallel composition B1 ‖HA B2

Parallel composition models concurrent evolution of several processes. During
the evolution they may interact with each other via synchronisation on discrete
and continuous-time transitions. In BHPC synchronisation on identical names
is assumed as the basic synchronisation concept. In order to avoid context-
dependent interpretations of operators, the set of action names A and the
set of trajectory qualifiers H that are subject to synchronisation, are made
explicit in the parallel operator ‖HA .

This form of synchronisation implies that parallel components jointly execute
identical actions or trajectories with common signal evolutions that occur in
their transitions and are subject to synchronisation.

The basic idea of synchronising trajectories is not much different than that
of synchronising on actions. Let B1 and B2 are the processes which can take
trajectories

ϕ : (0, t] → Wϕ and ψ : (0, t] → Wψ,

respectively. The static constraint is imposed, that B1 ‖HA B2 is only well-
formed iff L(B1) ∩ L(B2) ⊆ A and N (B1) ∩ N (B2) ⊆ H. Let W be a set of
signal domains and let

T′ = T(ϕ) ∩ T(ψ). (5)

If a set of coinciding trajectory quantifiers is a subset of the synchronisation
set

T′ ⊆ H (6a)

and trajectories are the same on the coinciding quantifiers

πT′
(ϕ) = πT′

(ψ), (6b)

then the resulting trajectory is a synchronised trajectory of B1 ‖HA B2 that
simultaneously changes the states of B1 and B2, defined as

χ : (0, t] → W

such that

T(χ) = T(ϕ) ∪ T(ψ),

πT′
(ϕ) = πT′

(ψ) = πT′
(χ),

ϕ = πT(ϕ)(χ),

ψ = πT(ψ)(χ).
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It can be also defined composition of trajectories (Definition 17), i.e., χ =
ϕ×H ψ.

We define the following SOS rules for parallel composition

B1
a−→ B′

1, B2
a−→ B′

2

B1 ‖HA B2
a−→ B′

1 ‖HA B′
2

a ∈ A (7a)

B1
a−→ B′

1

B1 ‖HA B2
a−→ B′

1 ‖HA B2

B2 ‖HA B1
a−→ B2 ‖HA B′

1

a /∈ A (7b)

B1
ϕ−→ B′

1, B2
ψ−→ B′

2

B1 ‖HA B2
ϕ×Hψ−−−→ B′

1 ‖HA B′
2

(5) and (6) hold (7c)

Rule (7b) explains interleaving semantics for the discrete behaviour, when
discrete actions names do not coincide. Synchronisation on actions is defined
in (7a). Rule (7c) defines the parallel composition of similar trajectories. No-
tice, that because of density (Remark 19) we do not have to gives rules for the
trajectories with different durations.

Parallel composition is illustrated in Examples 31,33 and 35.

4.2.6 Hiding new w . B

Following the conventions of the process calculus a hiding is introduced as
a scope restriction operator. new w . B restricts the use of the names w to
B. Hiding for discrete actions is just an ordinary hiding. It is worth empha-
sising, that hiding (especially in continuous case) should be used carefully,
because two different trajectories can easily become observably equivalent, if
only equivalent parts of the behaviour are visible. Hiding may easily influence
the outcome of parallel composition and superposition.

B
a−→ B′

new w . B
τ−→ new w . B′

a ∈ w (8a)

B
a−→ B′

new w . B
a−→ new w . B′

a /∈ w (8b)

B
ϕ−→ B′

new w . B
πT(ϕ)\w(ϕ)−−−−−−→ new w . B′

(8c)

The first rule states, that if an action should be hidden, it is renamed to τ
(silent) action. Otherwise (the second rule) nothing changes. The third rules
defines hiding for the continuous behaviour, i.e., some continuous trajectories
are not visible any more.
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4.2.7 Renaming B [σ]

Renaming operator B [σ], where σ is a renaming function, is defined. Re-
naming of both action and signal names is allowed. The renaming function σ
changes only trajectory qualifiers, but not their type.

B
a−→ B′

B[σ]
σ(a)−−→ B′[σ]

B
ϕ−→ B′

B[σ]
σ(ϕ)−−→ B′[σ]

(9)

4.2.8 Recursion

The ordinary process algebraic recursion extended to work with trajectory
prefix. It allows to define processes in terms of each other, like in equation
P , B, where P is a process identifier and actions and signal types of B are
only allowed actions and signal types in P .

B
a−→ B′

P
a−→ B′

B , P
B

ϕ−→ B′

P
ϕ−→ B′

P , B (10)

4.3 Congruence property

The bisimulation relation (equivalence) defined for the HTSs in Section 3.1
is a congruence relation w.r.t. all operations defined in Section 4.2. We show
it using the existing meta-theory [Middelburg, 2001] of congruence formats
for the transition systems defined by means of SOS rules, including the use
of binding operators. It can be done because the definition of bisimulation
for HTSs coincides with the bisimulation relation induced by the transition
relations used in SOS rules.

Theorem 27 Strong bisimulation equivalence on HTSs is a congruence w.r.t.
the operations of BHPC defined by the in Section 4.2.

PROOF. It is not difficult to see that all SOS rules are in the panth for-
mat [Aceto et al., 2001, Middelburg, 2001, Mousavi, 2005]. Indeed, in each
rule, all transitions in the premises end with distinct variables that do not oc-
cur in the left-hand-sides of the conclusions. The only difficulty resides in the
fact that the superposition operator is potentially infinitary. This is resolved
by interpreting it as a family of binding operators, with the index variable as
binder and the index set as an index of the operator (name). In this inter-
pretation, for each rule, the left-hand-sides of the conclusions have just one
(binding) operator symbol occurrence, parameterised by distinct variables,
which suffices.
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It is also not difficult to see that a stratification mapping [Aceto et al., 2001,
p.214] can be found for our system of SOS rules. The only rule where negative
premises occur is rule (4b). By counting the number of nested occurrences of⊕

symbol we get the stratification mapping for all of the rules except (10).
To cover this recursion rule as well, we apply the same trick as in C.Verhoef
[1995] for process algebra with discrete time and recursion, namely, we count
each unguarded process name occurrence in a recursive specification with ω.

According to Middelburg [2001] these two facts suffice to prove the statement
of this theorem.

5 Expansion law

Expansion law (Theorem 28) expresses the parallel composition as a superpo-
sition of processes (where parallel composition of discrete actions is resolved
in interleaving manner).

It is possible to reduce any process in BHPC to a basic form. For processes
that do not involve parallel composition it is trivial. Below we show how the
parallel composition can be eliminated.

Theorem 28 (Expansion law) Let

B =
⊕
i∈I

bi . Bi ⊕
⊕
j∈J

[ϕj] . Bj, C =
⊕
k∈K

ck . Ck ⊕
⊕
l∈L

[ψl] . Cl

for some process Bi, Bj, Ck and Cl, actions bi and ck, trajectories-prefixes [ϕj]
and [ψl], index sets I ∩ J = K ∩ L = ∅. Then

B ‖HA C = (11a)⊕
i∈I

bi /∈A

bi .
(
Bi ‖HA C

)
⊕ (11b)

⊕
k∈K
ck /∈A

ck .
(
B ‖HA Ck

)
⊕ (11c)

⊕
a=bi=ck∈A

a .
(
Bi ‖HA Ck

)
⊕ (11d)
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⊕
ϕj=

Hψl

[ϕj ×H ψl] .
(
Bj ‖HA Cl

)
⊕ (11e)

⊕
ϕj�Hψl

[ϕj ×H (ψl ↓ ϕj)] .
(
Bj ‖HA [ψl ↑ t(ϕj)] . Cl

)
⊕ (11f)

⊕
ψl�Hϕj

[(ϕj ↓ ψl)×H ψl] .
(
[ϕj ↑ t(ψl)] . Bj ‖HA Cl

)
⊕ (11g)

⊕
¬

(
ϕj=

Hψl,

ϕj�Hψl,

ψl�Hϕj

)[(ϕj ↓ ψl)×H (ψl ↓ ϕj)] . 0 (11h)

PROOF. Components (11b), (11c) and (11d) define the expansion law for
the discrete components. Nice explanation and detailed proof of the expansion
law for discrete actions are given in Milner [1989, p.96-97].

The expansion law for continuous behaviour is slightly more complicated. If
both processes in the parallel composition take trajectories of the same dura-
tion, we get (11e). When durations of the trajectories are different, we get (11f)
and (11g), respectively for the left shorter and the right shorter trajectories.
Superposition (11h) defines situation, when both sides take trajectories, which
lead them to the deadlock.

The proof of expansion law can be split into several steps.

It is easy to see, that

[ϕ] . B ‖HA [ψ] . C =



[ϕ×H ψ] .
(
B ‖HA C

)
ϕ =H ψ,

[ϕ×H (ψ ↓ ϕ)] .
(
B ‖HA [ψ ↑ t(ϕ)] . C

)
ϕ �H ψ,

[(ϕ ↓ ψ)×H ψ] .
(
[ϕ ↑ t(ψ)] . B ‖HA C

)
ψ �H ϕ,

[(ϕ ↓ ψ)×H (ψ ↓ ϕ)] . 0 otherwise.

(12)

The next step is ⊕
i∈I

(
B ‖HA [ψ] . Ci

)
= B ‖HA

⊕
i∈I

[ψ] . Ci (13)

We have two cases in Equation (13)

(1) B starts only with an action-prefix or a superposition of action-prefixes,
then it is a deadlock on both sides of equality, because a trajectory-prefix
can only be composed in parallel with other trajectory-prefix.

(2) B starts with a trajectory-prefix or a superposition of trajectory-prefixes
and action-prefixes. Then by the definition of superposition (Definition 4)
on both sides the same trajectories are selected.
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From the definition of superpositions (Definition 4) follows⊕
i∈I

⊕
j∈J

Bi,j =
⊕

i∈I,j∈J
Bi,j (14)

Then we get⊕
j∈J

[ϕi] . Bi ‖HA
⊕
l∈L

[ψl] . Cl = (Equation (13) and Equation (14))

⊕
j∈J, l∈L

(
[ϕi] . Bi ‖HA [ψl] . Cl

)
= (Equation (12))

⊕
j∈J, l∈L
ϕj=

Hψl

[ϕj ×H ψl] .
(
Bj ‖HA Cl

)
⊕

⊕
j∈J, l∈L
ϕj�Hψl

[ϕj ×H (ψl ↓ ϕj)] .
(
Bj ‖HA [ψl ↑ t(ϕj)] . Cl

)
⊕

⊕
j∈J, l∈L
ψl�Hϕj

[(ϕj ↓ ψl)×H ψl] .
(
[ϕj ↑ t(ψl)] . Bj ‖HA Cl

)
⊕

⊕
j∈J, l∈L

¬

(
ϕj=

Hψl,

ϕj�Hψl,

ψl�Hϕj

)[(ϕj ↓ ψl)×H (ψl ↓ ϕj)] . 0

and in the expansion law formulation we omit j ∈ J, l ∈ L in the super-
position’s index, because it is captured by the partial prefix and the partial
equality relations (Definition 14).

6 Extensions of BHPC

BHPC is an assembly language for a specification of hybrid systems. We add
auxiliary constructs to increase usability of the language.

We introduce parametrisation of action-prefix in Section 6.1.

In Section 6.2 we define a symbolic trajectory-prefix, which allows to extend
the use of trajectory-prefix.

Trajectories defined in Section 2 are finite. To overcome this limitation in
Section 6.3 we provide a tool to define infinite trajectories.

In Sections 6.4 and 6.5 we introduce two useful operators, idle and ∆(delay),
defining a trajectory-prefix without any observable behaviour and delay, re-
spectively.

The bisimulation relation (equivalence) defined for the HTSs in Section 3.1 is
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a congruence relation w.r.t. the operations defined in this section. The proof
is the same, as in Theorem 4.3.

6.1 Parametrisation of action-prefix

We will use parametrisation of action-prefix like in Milner [1989, p.53–58]

a(v : V ) . B(v) ,
∑
v∈V

a(v) . B(v) (16)

6.2 Symbolic trajectory-prefix

We introduce a symbolic trajectory-prefix, which extends notion of ordinary
trajectory-prefix by providing a set of continuous behaviours conforming to
the certain conditions.

The trajectory-prefix defines a trajectory with fixed duration. To define a set of
trajectories additional construct is introduced. It defines a set of trajectories,
for which certain conditions hold.

Definition 29 (Set of trajectories)

[f | Φ] . B(f) ,
⊕
ϕ∈Φ

([ϕ] . B(ϕ))

where Φ is a set of trajectories, defined in one of the ways, described in Sec-
tion 2 and f is a placeholder (trajectory variable) for a trajectory.

Notation 6.1 (Symbolic trajectory-prefix) We will extend notation to
make use of trajectory-prefix more convenient

[t1, . . . , tm | Φ ↓ Pred ⇓ Pred exit]

where

• t1, . . . , tm are trajectory qualifiers, which can be used to access corresponding
parts of trajectories.

• As explained in Notation 2.2, the set of trajectories can be defined in a
several different ways. We will allow such notation in symbolic trajectory-
prefix definition to bring out conditions on the set of trajectories.

Furthermore, we will allow to define the set of trajectories directly in the def-
inition of trajectory prefix, where commas will be used to separate conditions.
We will use ⇓ to separate exit conditions, when it is required.
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6.3 Infinite continuous behaviour

Trajectory-prefix defines only finite continuous behaviour. To define an infinite
continuous behaviour additional construct is necessary.

Definition 30 (Infinite continuous behaviour) Let ϕ : R+ → W then an
infinite continuous behaviour can be defined as

[ϕ] ,
⊕
t>0

[ϕ � (0, t]]t . 0

where 0 ,
⊕∅.

6.4 Idling

Idling in BHPC should be treated as a continuous signal without any observ-
able behaviour. Then it can be defined as

idle =
[
t
∣∣∣ 0
]
.

where t is a reserved variable. It does not manifest any observable behaviour,
but reacts as soon, as it is invoked by another process, which communicates
with the process, which follows the idling period.

6.5 Delays

In BHPC time and time related constructs, e.g., delays, should be treated as
a continuous signals with rate 1. We define delay in a following way

∆(delay) ,
[
t
∣∣∣ t(0) = 0, ṫ = 1

ww� t = delay
]
, (17)

where t is a reserved variable. Such process does not manifest any observable
behaviour for delay time units. After delay time units the systems progresses
with the process following delay.
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6.6 Guard

Sometimes it is useful to check some conditions explicitly, and if they are not
satisfied, to stop the progress of process. Guard is one of such constructs.

B
a−→ B′

〈Pred〉 . B a−→ B′
|= Pred

B
ϕ−→ B′

〈Pred〉 . B ϕ−→ B′
|= Pred (18)

The rules are very simple. They just state, that if a transition can be done,
then it is done, if and only if the guard is satisfied (holds).

7 Application of BHPC

To illustrate the application of BHPC several examples are given.

7.1 Bouncing ball

Example 31 (Bouncing ball) A bouncing ball [Schutter and Heemels, 2004],
[van der Schaft and J.M.Schumacher, 2000, p.37–38] is a simple example of
hybrid systems. This is a simplified model of an elastic ball that is bouncing
and losing a fraction of its energy with every bounce. The altitude of the ball
is h, and v is a vertical speed, c is a coefficient for the lost energy. The ball
moves according to the flow conditions and at the bounce time the variables
are reassigned. In BHPC it can be defined in the following way:

BB(h0, v0) , [h, v | Φ(h0, v0)
w� h = 0] . BB(0,−c ∗ v)

Φ(h0, v0) = {h, v : (0, t] → R |
h(0) = h0, v(0) = v0, ḣ = v, v̇ = −g, h > 0}

Symbolic trajectory-prefix [h, v | Φ(h0, v0)
w� h = 0] defines the dynamics of the

ball until the bounce, and then the process continuous recursively calling itself
with updated continuous variables BB(0,−c ∗ v).
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Given specification of the bouncing ball can be extended. We add discrete ac-
tions to sense the elasticity of the bounce and increase the ball’s kinetic energy,
and add a compensating controller.

BB(h0, v0) , [h, v | Φ(h0, v0)
w� h = 0] . bounce(c : [0, 1]).

[h, v | Φ(0,−cv)
w� v = 0] . push(v : R) . BB(h, v)

Control(v0) , idle . bounce(c : [0, 1]).

idle . push ((1− c) v0) . Control ((1− c) v0)

System(h0, v0) , BB(h0, v0) ‖vpush,bounce Control(v0)

7.2 Thermostat

Example 32 (Thermostat) A thermostat [Henzinger, 1996] is one of the
main introductory examples of hybrid systems. The room temperature is con-
trolled by a thermostat, which continuously senses the temperature and switches
a heater on and off. The temperature changes are defined by the differential
equations. When the heater is off, the temperature decreases according to the
exponential function l(t) = θeKt, where t is time, l is the temperature in the
room, θ is the initial temperature, and K is a constant determined by the
room. When the heater is on, the temperature increases according to the func-
tion l(t) = θe−Kt + h(1 − e−Kt), where h is a constant, that depends on the
power of the heater. The temperature should be maintained between tempmin

and tempmax. Temperatures tempon and tempoff are the minimal and maxi-
mal thresholds, when the heater can be turned on and off, respectively. Using
BHPC we get a following specification:

ThOff(l0) , [l | ΦOff(l0)
w� tempOn > l > tempMin] . on . ThOn(l)

ThOn(l0) , [l | ΦOn(l0)
w� tempOff 6 l 6 tempMax ] . off . ThOff(l)

ΦOff(l0) = {l : (0, t] → R | l(0) = l0, l̇ = −Kl}
ΦOn(l0) = {l : (0, t] → R | l(0) = l0, l̇ = K(h− l)}

It consists of two process.

• In process ThOff the heater is off and the symbolic trajectory-prefix defines
the temperature fall. When the temperature reaches the interval [tempOn, tempMin],
the process can perform action on and switch to the process ThOn.

• Process ThOn analogously defines the period of heating.
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Figure 7. Dry friction

7.3 Two masses and a spring

Example 33 (Two masses and a spring) Consider a simple system, de-
picted in the Figure 6, consisting of the two masses and a spring. Let weights
be m1 and m2, displacements from the reference points be s1 and s2, and speeds
be v1 and v2, respectively, of the first mass and the second mass. The length
of spring in the state of rest is l, and C is an elasticity of the spring. Then the
system can be modelled as follows.

Mass(m, s0, v0) , [s, v, f | s(0) = s0, v(0) = v0, ṡ = v, v̇ = mf ]

Spring(l, c) , [sl, sr, fl, fr | fl = c(sr − sl − l), fr = −fr]
System , Mass(m1, s01, v01)[sl/s, vl/v, fl/f ]

‖sl,fl
Spring(l0, C) ‖sr,fr

Mass(m2, s02, v02)[sl/s, vl/v, fl/f ]

Processes Mass and Spring define continuous behaviour of the mass and the
spring, respectively. In the process System Mass processes are instantiated to
represent the left and right masses, respectively, and composed in parallel with
an instantiated Spring process.

7.4 Dry friction

Example 34 (Dry Friction) In Figure 7 a dry friction [van Beek et al.,
2004] phenomenon is depicted. A driving force Fd is applied to a body on a
flat surface with frictional force Ff . When the body is moving with positive
velocity v, the frictional force is Ff = µFn (Fn = mg). When the velocity is
zero and |Fd| < µ0FN , the frictional force neutralises the driving force.

Here we provide BHPC version of it. Three processes are defined, each corre-
sponding to a certain mode of behaviour:

• Process BodyStop defines a behaviour, when the driving force is neutralised
by the friction. Corresponding dynamics are defined in ΦStop. Guards 〈Fd > µ0FN〉
and 〈Fd 6 −µ0FN〉 limit the choice, i.e., if the driving force is positive, then
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the system switches to the process BodyPos, and if it is negative, then to
the process BodyNeg.

• Processes BodyPos and BodyNeg define movement of the body with positive
or negative velocity, respectively. Corresponding dynamics are defined in
ΦPos and ΦNeg, respectively. If the driving force becomes to small and is
neutralised by the friction, then the system switches to the process BodyStop.

BodyStop(x0, v0, F
0
d ) , [x, v, Fd | ΦStop

w� v 6= 0, Fd > |µ0FN |] .(
〈Fd > µ0FN〉 . BodyPos(x, v, Fd) ⊕

〈Fd 6 −µ0FN〉 . BodyNeg(x, v, Fd)
)

BodyPos(x0, v0, F
0
d ) , [x, v, Fd | ΦPos ⇓ v = 0, Fd 6 µFN ] .

〈v = 0, Fd < µ0FN〉 . BodyStop(x, v, Fd)

BodyNeg(x0, v0, F
0
d ) , [t, x, v, Fd | ΦNeg

w� v = 0, Fd > −µFN ] .

〈v = 0, Fd > −µ0FN〉 . BodyStop(x, v, Fd)

ΦStop(x0, v0, F
0
d ) = {x, v, Fd, Fn : (0, t] → R |

x(0) = x0, v(0) = v0, Fd(0) = F 0
d ,

ẋ = v, Fd = sin(t)}
ΦPos(x0, v0, F

0
d ) = {x, v, Fd, Fn : (0, t] → R |

x(0) = x0, v(0) = v0, Fd(0) = F 0
d ,

ẋ = v, Fd = sin(t),mv̇ = Fd − µFN}
ΦNeg(x0, v0, F

0
d ) = {x, v, Fd, Fn : (0, t] → R |

x(0) = x0, v(0) = v0, Fd(0) = F 0
d ,

ẋ = v, Fd = sin(t),mv̇ = Fd + µFN}

It is easy to see, that by bringing conditions out in the trajectory prefix we can
easily increase readability and clarity of specifications in some cases.

7.5 Railroad gate control

Example 35 (Railroad gate control) A railroad gate control models a train
on a circular track with a controlled gate. A controller issues open and close de-
pending on information about the train movement. A version from Henzinger
[1996] is presented below.

The initial speed of the train is between 40 and 50 metres per second. At the
distance, which is represented by a variable x, of 1000 meters from the gate,
the train issues an approach event and may slow down to 30 meters per second.
At the distance of 100 meters past the gate it issues an exit event. The circular
track is between 2 and 5 kilometres long. When an approach event is received,
the controller issues a lower event with a u seconds delay, and when an exit
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event is received, the controller issues a raise event within u seconds. The
elapsed time is represented by variable z. Initially the gate is open. A position
of the gate, which is represented by a variable y, is measured in degrees, and
initially is 90. When a lower event is received, the gate starts closing at the
rate of 9 degrees per second, and when raise event is received, the gate starts
opening at the same rate. The purpose of the model is to find u - the reaction
delay.

Specification consists of several processes. The main process Railway is a par-
allel composition of Train,Gate and Controller processes.

Railway ,
(
Train(x0) ‖ Gate(p0)

)
‖{lower,raise,approach,exit} Controller

The Gate process defines behaviour of the gate. The gate can operate in four
modes

• Processes OpenGate and ClosedGate define periods, when the gate is not
moving, i.e., open or closed, respectively. Corresponding actions lower and
raise can change these modes.

• Processes LowerGate and RaiseGate define periods, when the gate is being
lowered or raised, respectively. These processes finish when the gate reaches
the required position or command to change the behaviour to the opposite is
issued by an external process (in this case it is Controller).

Gate(p0) , 〈p0 = 90〉 .OpenGate(p0) ⊕
〈p0 = 0〉 . ClosedGate(p0)

OpenGate(p0) , [p | p(0) = p0, ṗ = 0, p = 90] .(
lower . LowerGate(p) ⊕ raise .OpenGate(p)

)
ClosedGate(p0) , [p | p(0) = p0, ṗ = 0, p = 0] .(

lower . ClosedGate(p) ⊕ raise . RaiseGate(p)
)

LowerGate(p0) , [p | p(0) = p0, ṗ = −9, p > 0] .(
〈p = 0〉 . ClosedGate(p) ⊕

raise . RaiseGate(p) ⊕

lower . LowerGate(p)
)

RaiseGate(p0) , [p | p(0) = p0, ṗ = 9, p 6 90] .(
〈p = 90〉 .OpenGate(p) ⊕

raise . RaiseGate(p) ⊕

lower . LowerGate(p)
)

The Controller process tracks the train and issues corresponding commands to
the gate if necessary. It operates in three modes
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• In Controller mode it just waits for the train to enter or exit the dan-
gerous zone, then issues a corresponding command and switches to the
OpenController or CloseController process, correspondingly.

• The OpenController process imitates the delay of the controller and then
issues a lower command to the Gate process and returns to the Controller.

• The CloseController process imitates the delay of the controller and then is-
sues raise command to the Gate process and returns to the Controller. If dur-
ing delay an approach is issued by the train, it switches to the OpenController.

Controller , idle .
(
exit .OpenController(0) ⊕

approach.CloseController(0)
)

OpenController(z0) , [z | z(0) = z0, ż = 1, z 6 u] .(
〈z = u〉 . raise . Controller ⊕

exit .OpenController(z) ⊕

approach . CloseController(0)
)

CloseController(z0) , [z | z(0) = t0, ż = 1, z 6 u] .(
〈z = u〉 . lower . Controller ⊕

(exit ⊕ approach) . CloseController(z)
)

The Train process models a train moving on a circular track. It moves far from
the railroad crossing, then it reaches the dangerous zone, issues an approach
command, passes the crossing, and leaves the dangerous zone by issuing an
exit command.

Train(x0) , [x | x(0) = x0, ẋ = [−50;−40], x > 1000
w� x = 1000] . approach.

[x | ẋ = [−50;−30], x > 0
w� x = 0] .

[x | ẋ = [−50;−30], x > −100
w� x = −100] . exit.

Train(x0)

Conditions x > 1000, x > 0 and x > −100 in trajectory-prefixes are not really
necessary, because they are encoded in the behaviour definitions and initial
conditions, but we bring them out for the clarity reasons.

8 Related Work

The interest in hybrid systems has generated a set of interesting frameworks
to specify and analyse such systems. In this section we compare some of them
with BHPC.
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HyPA Cuijpers and Reniers [2003] is an ACP version, extended with a reini-
tialisation clause, a disrupt and a flow to handle the hybrid phenomena. Al-
ternative composition in HyPA is non-deterministic for both discrete and con-
tinuous actions. The passage of time influences the valuation of the model
variables and can introduce choices in the system behaviour. Choice is done
before action. In parallel composition flow-clauses are forced to synchronise,
and can only do it if they accept the same solutions. In contrast to our calculus
the strong bisimulation is not a congruence relation with respect to the par-
allel composition of subsystems, however it robust and stateless bisimulations
in HyPA are congruent.

Hybrid χ van Beek et al. [2004] and BHPC have some similarities, and some
differences. Both of them are not extensions of any process algebras. Hybrid χ
and hybrid automata Alur et al. [1993], Henzinger [1996] share the ‘consistent
equation semantics’ van Beek et al. [2004], in contrast to BHPC. Alternative
composition has some similarities to superposition in BHPC, i.e., only the time
progress does not resolve choice between trajectories. But in BHPC choice is
made, when the trajectories bifurcate and in χ it leads to the deadlock. Parallel
composition for continuous part is the same for both process algebras. For
discrete communication different paradigms were chosen: in χ communication
is carried out via directed channels, in contrast to BHPC, where direction is
not important. In both process algebras interleaving semantics are used for
parallel composition of discrete actions.

ACPsrt
hs Bergstra and Middelburg [2003] is an ACP extension for hybrid sys-

tems. One of the main differences is in the choice of operations. The definition
of hybrid transition system is almost the same. But instead of having a trajec-
tory prefix operation, a continuous signal insertion operator (ϕ ∩H x) is used,
in order to decorate the process x by a logical formula. It defines a class of
trajectories the process can follow by remaining in the initial state location
(state) of x. (σrrel(x)) denotes a relative time delay of r time units, during
which the continuous signal could be emitted. In contrast with BHPC , the
strong bisimulation is not a congruence relation with respect to the parallel
composition of subsystems.

One of the most popular approaches to model and analyse hybrid systems
is hybrid automata Alur et al. [1993], Henzinger [1996]. It can be shown,
that hybrid automaton can be translated to BHPC. Inverse translation may
be a lot more complex, if possible at all, because there are no corresponding
constructs for the superposition and a continuous part of the parallel composi-
tion in hybrid automata. In Julius [2005] hybrid behavioral automata (HBA),
a modification of hybrid automata, based on use of behavioral theory and
interconnection is presented.

In Lynch et al. [2003] a well known Input/Output Automata approach is
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extended to cope with hybrid systems resulting in Hybrid Input/Output Au-
tomata.

9 Conclusions

In this chapter we have introduced the hybrid process calculus BHPC and the
underlying concept of a hybrid transition system, and illustrated their appli-
cation by a number of small examples. Together with a suitable adaptation of
the classical notion of bisimulation this approach yields a mathematical inter-
pretation of hybrid behaviour, viz. as equivalence classes of hybrid transition
systems modulo bisimulation, that can been interpreted as a generalisation of
the behavioural approach to classical dynamic systems. In particular, this in-
troduces a notion of nondeterminism into (hybrid) behaviour that has proved
indispensable for the study of discrete concurrent systems in computer science.

Future work will have to evaluate the conceptual and practical implications
of our approach. In particular, our plans include:

• Detailed comparison with related models and formalisms, such as hybrid
automata and other applications of process algebra to hybrid systems;

• Development of analytical techniques for hybrid systems in the BHPC frame-
work;

• Simulation of BHPC.
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