
Discrete Simulation of
Behavioural Hybrid Process Calculus

Tomas Krilavičius? and Helen Schonenberg

Formal Methods and Tools, Univ. of Twente, 7500AE Enschede, The Netherlands,
(T.Krilavicius, M.H.Schonenberg)@cs.utwente.nl,

WWW home page: http://www.cs.utwente.nl/~krilaviciust

Abstract Hybrid systems combine continuous-time and discrete be-
haviours. Simulation is one of the tools to obtain insight in dynamical sys-
tems behaviour. Simulation results provide information on performance
of system and are helpful in detecting potential weaknesses and errors.
Moreover, the results are handy in choosing adequate control strategies
and parameters.

In our contribution we report a work in progress, a technique for simu-
lation of Behavioural Hybrid Process Calculus, an extension of process
algebra that is suitable for the modelling and analysis of hybrid systems.

1 Introduction

The growing interest in hybrid systems both in computer science and control
theory has generated a new interest in models and formalisms that can be used to
specify and analyse such systems. A prominent framework for hybrid systems is
provided by the family of hybrid automata models (hybrid automata [1], hybrid
behavioural automata [2], hybrid input/output automata [3]). More recently
process algebraic models have been put forward as a vehicle for the study of
hybrid systems [4,5,6,7].

Simulation is a de facto standard tool in both academia and industry for
analysis of hybrid systems. It helps to detect potential weaknesses and errors,
and provides information on performance of system. There is a number of simu-
lation tools which provide various facilities for analysis of hybrid systems. Hybrid
χ [6] provides facilities for simulation of hybrid process calculus. HyVisual [8]
is a Java based visual modeller and simulator for hierarchical continuous-time
dynamical and hybrid systems. Dymola1, Stateflow/Simulink [9] and 20-
Sim2 provide industrial strength facilities for simulation of non-causal object
oriented simulation language ModelicaTM [10], hierarchical formalism and bond
graphs [11], respectively.

? Work is partially done in the framework of the HYCON Network of Excellence,
contract number FP6-IST-511368*.

1 See http://www.Dynasim.se.
2 http://www.20sim.com/

http://www.Dynasim.se
http://www.20sim.com/

We report a work in progress, a technique for simulation of Behavioural Hy-
brid Process Calculus (BHPC) [7]. BHPC is a process calculus that extends the
standard repertoire of operators that combine discrete functional behaviour with
features to also represent and compose continuous-time behaviour. Dynamic be-
haviour is represented by the evolution of variables, which are typically defined
in terms of differential equations. Following [12], behaviour can be simply seen
as the set of all allowed real-time evolutions, or trajectories, of the system vari-
ables. The operational semantics of the calculus defines the transitions for the
simulator. An adapted version of the expansion law from [13] is used to solve
parallel composition. As a first step towards simulation of entire BHPC, we pro-
pose a discrete simulator. It abstracts from the continuous-time behaviour and
uses operational semantics rules and the expansion law to determine the next
simulation step. We design it in such a way that it should be easy extendible to
hybrid simulation.

2 Behaviour Hybrid Process Calculus

In this section we introduce main concepts of Behavioural Hybrid Process Cal-
culus. See [7] for the details and proofs.

Trajectories. The continuous behaviour of hybrid systems can be seen as the set
of continuous-time evolutions of system variables. We will call them trajectories.
We assume that trajectories are defined over bounded time intervals (0, t], and
map to a signal space to define the evolution of the system. The signal space (W)
specifies the potentially observable continuous behaviour of the system. Compo-
nents of the signal space correspond to the different aspects of the continuous
behaviour, like temperature, pressure, etc. They are associated with trajectories
qualifiers that identify them.

Hybrid Transition System. We define a hybrid transition system as a collection
HTS = 〈S, A,→,W, Φ,→c〉, where S is a state space. The discrete transition
relation →⊆ S × A × S defines discrete changes annotated by actions (a ∈ A).
The continuous-time transition relation →c⊆ S×Φ×S links continuous changes
to trajectories (ϕ ∈ Φ).

Language. We introduce a language for defining hybrid processes.

B ::= 0 | a . B | [ϕ] . B |
⊕
i∈I

Bi | B ‖H
A B | P

Action-prefix a.B defines a process that starts with action a and afterwards
engages in B. Silent actions[13] (denoted τ) are used to specify nondeterministic
behaviour.

Trajectory-prefix [ϕ].B models the behaviour of a process that executes a
continuous trajectory ϕ and then continues as B.

Superposition
⊕

i∈I Bi is a generalised operator on sets of behavioural
expression. For action prefixes the interpretation of the operator is the same

as the ordinary choice operator Σ from classical process algebras. However, the
choice among trajectories is made at the moment when the trajectories start
bifurcating.

Parallel composition B1 ‖H
A B1 specifies the behaviour of two parallel

processes. The operator explicitly attaches the sets of synchronising action names
A and of synchronising trajectory qualifiers H. Synchronisation on actions has
an interleaving semantics. Trajectory-prefixes can evolve in parallel only if the
evolution of coinciding trajectory qualifiers is equal.

Recursion allows to define processes in terms of each other, as in the equa-
tion B , P , where B is the process identifier and P is a process expression that
may only contain actions and signal types of B.

One of the main tools to compare systems is a strong bisimulation. The
bisimulation for continuous dynamical systems is presented in [14]. The process
algebraic version is discussed in [13]. A strong bisimulation for hybrid transi-
tion systems requires both systems to be able to execute the same trajectories
and actions and to have the same branching structure. Strong bisimulation for
BHPC is a congruence relation w.r.t. all operations defined above. See [7] for
details.

BHPC is an assembly language for a modelling of hybrid systems. We add
auxiliary constructs to increase usability of the language.

We introduce parametrised action-prefix av . B(v) ,
⊕

v∈V av . B(v) for con-
venience (as in [13, 53–58]).

We will use a symbolic trajectory-prefix, which extends a notion of ordinary
trajectory-prefix by providing a set of continuous behaviours conforming to the
certain conditions. We will define a set of trajectory-prefixes [f | Φ] . B(f) ,⊕
ϕ∈Φ

([ϕ] . B(ϕ)) where Φ is a set of trajectories and f is a trajectory variable for

a trajectory. Furthermore, we will use [t1, . . . , tm | Φ ↓ Pred ⇓ Predexit] to define
extended version of set of trajectory-prefixes, where t1, . . . , tm are trajectory
qualifiers, which can be used to access corresponding parts of trajectories. Two
types of restrictions on the set of trajectories are used: ↓ states restrictions on the
whole duration of trajectories and ⇓ define the exit conditions, i.e., restrictions
on the end-points.

Sometimes it is useful to check some conditions explicitly, and if they are not
satisfied, to stop the progress of process. With the guard construct 〈Pred〉 . B,
these conditions can be given as a predicate.

Idling in BHPC is defined as idle =
[
t
∣∣ ṫ = 0

]
, where t is a reserved variable.

It does not manifest any observable behaviour, but reacts as soon, as it is invoked
by another process, which communicates with the process, which follows the
idling period.

Application of BHPC. Bouncing ball [7] is a simplified model of an elastic ball
that is bouncing and losing a fraction of its energy with every bounce. The
altitude of the ball is h, and v is a vertical speed, c is a coefficient for the lost
energy. The ball moves according to the flow conditions and at the bounce time
the variables are reassigned. In BHPC it can be defined in the following way:

BB(h0, v0) ,
[
h, v

∣∣ Φ(h0, v0)
w� h = 0

]
. BB(0,−c ∗ v)

Φ(h0, v0) = {h, v : (0, t] → R | h(0) = h0, v(0) = v0, ḣ = v, v̇ = −g, h > 0}

Symbolic trajectory-prefix
[
h, v

∣∣ Φ(h0, v0)
w� h = 0

]
defines the dynamics of the

ball until the bounce, and then the process continuous recursively calling itself
with updated continuous variables BB(0,−c ∗ v). We extend the given specifica-
tion by adding discrete actions to sense the elasticity of the bounce and increase
the ball’s kinetic energy, and a compensating controller (CC).

BB(h0, v0) ,
[
h, v

∣∣ Φ(h0, v0)
w� h = 0

]
. bounce(c : [0, 1]).[

h, v
∣∣ Φ(0,−cv)

w� v = 0
]

. push(v : R) . BB(h, v)

CC(v0) , idle . bounce(c : [0, 1]) . idle . push ((1− c) v0) . CC ((1− c) v0)

Sys(h0, v0) , BB(h0, v0) ‖v
push,bounce CC(v0)

3 Simulating BHPC

As the first step, we will focus on the simulation of discrete behaviour of BHPC.
Discrete simulation can give a lot of valuable insight on the system. It helps to
detect potential deadlocks. Discrete abstraction of the system can be verified and
error-traces can be used in an hybrid simulator to investigate potential faults.
Moreover, it comes handy in the early stages of modelling or prototyping.

To get discrete abstraction we make some choices concerning continuous-time
behaviours. We discuss diverse choices for the operators individually.

– Parametrised action-prefix is left unchanged, only the parameters related
with trajectories are ignored.

– We will interpret (symbolic) trajectory-prefix as a special type of action-
prefix. Several options are possible. It can be seen as a silent (unobservable)
action, just like the τ action described in [13]. A special action can be in-
troduced to denote any trajectory-prefix. Then trajectory-prefixes can be
treated like ordinary action-prefixes.

– Guard is treated as usually, but with all trajectories-related predicates eval-
uated to true or false, depending on the simulation purpose.

– With the trajectory-prefix reduced to a discrete action, the superposition
operator is equal to the choice operator from ordinary process algebra.

– Without the set of synchronising trajectory qualifiers, the parallel composi-
tion operator from BHPC becomes equal to the parallel composition operator
from ordinary process algebra.

Operational semantics for the language already define the transitions the sim-
ulator can take, only parallel composition requires additional reshaping. It is
provided by the expansion law [7], which expresses parallel composition as a
superposition of processes.

4 Future Plans

Future plans for the simulation of BHPC and the calculus include several direc-
tions.

The discrete simulator is being designed in such a way that extending it
to the hybrid simulation should be doable without completely reshaping the
discrete simulation part. Principally, it means adding support for continuous-
time behaviour: interpretation of trajectory qualifiers, interface to solvers, etc.

Moreover, we are building the current tool not as a prototype of an in-
dustrial tool, but more as a hybrid ”sand-box”, a place to experiment with
BHPC and related developments. Consequently, the architecture and imple-
mentation of the tool are being designed in such a way that it is easy to ac-
commodate the changes in the calculus and to test the algorithms developed
for hybrid systems in BHPC framework. Adaptable and well documented in-
terfaces for ODE/DAE solvers should be provided for experimenting with dif-
ferent approaches for continuous-time behaviour simulation. Co-simulation also
takes place in the plans. Theoretical and practical issues of the co-simulation
of BHPC and Simulink3 are explored as a part of WP3 of HYCON4. Further-
more, the means to export a restricted subset of BHPC to ModelicaTM [10] are
investigated.

Examination of different simulation results visualisation techniques are of
interest too. Just ordinary graphs (plots) usually used to display continuous-
time simulation results do not provide sufficient information about switching
behaviour. Event-traces and the message sequence charts [15] are appropriate
and even beneficial when discrete behaviour should be visualised. However both
techniques become inadequate when combination of continuous-time and discrete
behaviour should be visualised. It calls for a combination of the aforementioned
techniques or even new unconventional approaches.

One more interesting development of BHPC is model-based testing of hybrid
systems [16]. In model-based testing we use a formal specification (a model) of
the desired behaviour of the system under test (SUT). The model is used to
select the input for the SUT. The model is also used to check the correctness
of the output of the SUT after a certain input. One of the great advantages
of model-based testing is that tools can explore the model and automatically
generate and execute tests cases from the model. BHPC and the simulation
tool can be extended to generate required information for a well-known on-the-
fly testing tool TorX [17], and in combination with it form a hybrid systems
testing framework.

5 Results

In this paper we proposed a simulation technique for Behavioural Hybrid Process
Calculus. The calculus and transitions system were introduced, operators for the
3 http://www.mathworks.com/products/simulink/.
4 WP3, HYCON, http://wp3.hycon.bci.uni-dortmund.de/.

http://www.mathworks.com/products/simulink/
http://wp3.hycon.bci.uni-dortmund.de/

calculus were explained. We focussed discussion on the discrete simulation of
selected operators, by abstracting from the continuous-time behaviour so that
all operators from our calculus have corresponding interpretation in ordinary
process algebra. The expansion law is used to resolve parallel composition. The
operational semantics defines the possible transitions for the simulator.

The work in progress will have to evaluate the conceptual and practical im-
plications of our approach. Currently we are developing techniques and tools for
discrete and hybrid simulation of the calculus.

Acknowledgements. The authors thank H. Brinksma for his comments.

References

1. Alur, R., Courcoubetis, C., Henzinger, T., Ho, P.H.: Hybrid automata: An algorith-
mic approach to the specification and verification of hybrid systems. In Grossman,
R.L., Nerode, A., Ravn, A.P., Rischel, H., eds.: Hybrid Systems. Volume 736 of
LNCS., Springer (1993) 209–229

2. Julius, A.: On Interconnection and Equivalence of Continuous and Discrete Sys-
tems: A Behavioral Perspective. PhD thesis, SSCG, Univ. of Twente (2005)

3. Lynch, N., Segala, R., Vaandrager, F.: Hybrid I/O automata. Information and
Computation 185 (2003) 105–157

4. Cuijpers, P.J.L., Reniers, M.A.: Hybrid process algebra. Technical report, Dept.
of Math. and Comp. Science, Tech. Univ. of Eindhoven (TU/e), Eindhoven (2003)

5. Bergstra, J., Middelburg, C.: Process algebra for hybrid systems. Technical report,
Dept. of Math. and Comp. Science, Tech. Univ. of Eindhoven (TU/e), Eindhoven
(2003)

6. van Beek, D., Man, K., Reniers, M., Rooda, J., Schiffelers, R.: Syntax and con-
sistent equation semantics of hybrid chi. Report CS-Report 04-37, Tech. Univ. of
Eindhoven (TU/e), Eindhoven (2004)

7. Brinksma, E., Krilavičius, T.: Behavioural hybrid process calculus. Technical
Report TR-CTIT-05.45, CTIT, University of Twente (2005)

8. Lee, E., Zheng, H.: Operational semantics of hybrid systems. In: Hybrid Systems:
Computation and Control. LNCS (2005) 25–53

9. Hamon, G., Rushby, J.: An operational semantics for Stateflow. In Wermelinger,
M., Margaria-Steffen, T., eds.: FASE 2004. LNCS (2004) 229–243

10. Modelica Association: Modelica - A Unified Object Oriented Language for Physical
Systems Modeling: Language Specification. (2005)

11. van Amerongen, J., Breedveld, P.: Modelling of physical systems for the design
and control of mechatronic systems. Annual Reviews in Control 27 (2003) 87–117

12. Polderman, J., Willems, J.C.: Introduction to Mathematical Systems Theory: a
behavioral approach. Springer (1998)

13. Milner, R.: Communication and concurrency. Prentice-Hall, Inc. (1989)
14. van der Schaft, A.: Bisimulation of dynamical systems. In Alur, R., Pappas, G.J.,

eds.: HSCC. Volume 2993 of LNCS., Springer (2004) 555–569
15. ITU-T: Recommendation Z.120. Message Sequence Charts. Technical Report Z-

120, Int. Tel. Union, Genève (2000)
16. Berkenkötter, K., Kirner, R.: Real-Time and Hybrid Systems Testing. In: Model-

based Testing of Reactive Systems. Volume 3472 of LNCS. Springer (2005) 355–387
17. Bohnenkamp, H., Belinfante, A.: Timed testing with TorX. In: Formal Methods

Europe. Volume 3582 of LNCS., Springer (2005) 173 – 188

	Discrete Simulation of Behavioural Hybrid Process Calculus
	Tomas Krilavicius (University of Twente), Helen Schonenberg (University of Twente)

