
81

Application Programming Interface (API)

The Application Programming Interface (API) of SLADE consists of three
modules defining constants, types, and actions. The API modules are:
• evalattr defines actions for the evaluation of attributes of the standard types

boolean, char, integer, real and string.
• idscope defines types, constants and actions for maintaining information of

identifiers and/or expressions.
• vimcode defines the instruction set of the VIrtual Machine (VIM) code

interpreter, and actions for generating these (optionally labelled) instructions.

The following layout is used for describing the items of the API modules:

Name names the items,

Definition defines the named items, indicating how to use them. Reserved
words are printed in boldface,

Description describes the functionality of the named items. The names of the
items are printed in italics, and

See also refers to related data types and operations. Reserved words are
printed in boldface.

Module evalattr
The API module evalattr defines actions for assigning, reading or writing

attributes, which have the basic types boolean, char, integer, real and string. The
actions with exactly one output parameter may also be used as default actions for
synthesised attributes. The arguments of the write actions are written to the standard
output.
In the remainder of this section the actions of the API module evalattr are named,
defined, and described.

Boolean type actions

Name assign_bool, clear_bool, read_bool, write_bool.

Definition actions
assign_bool (out dest: boolean; in src: boolean).
clear_bool (out dest: boolean).
read_bool (out value: boolean; in prompt: string).
write_bool (in value: boolean).

Description assign_bool assigns the boolean value src to dest.
clear_bool assigns the boolean value false to dest.
The boolean variable some_var can be set to true by calling
assign_bool(some_var, true).
read_bool prints the string prompt on standard output, reads a
boolean value from standard input and stores the result in value.
write_bool writes the boolean value value to standard output.

Reference Guide, Application Programming Interface (API)

82

See also actions
dy_op_bool(), mon_op_bool(); (Module vimcode)

Char type actions

Name assign_char, clear_char, read_char, write_char.

Definition actions
assign_char (out dest: char; in src: char).
clear_char (out dest: char).
read_char (out value: char; in prompt: string).
write_char (in value: char).

Description assign_char assigns the char value src to dest.
clear_char assigns the null-char value to dest.
read_char prints the string prompt on standard output, reads a
character value from standard input and stores the result in value.
write_char writes the char value value to standard output.

See also actions
dy_op_char(), mon_op_char(); (Module vimcode)

Integer type actions

Name assign_int, clear_int, read_int, write_int.

Definition actions
assign_int (out dest: integer; in src: integer).
clear_int (out dest: integer).
read_int (out value: integer; in prompt: string).
write_int (in value: integer).

Description assign_int assigns the value src to dest.
clear_int assigns the value 0 to dest.
read_int prints the string prompt on standard output, reads an
integer value from standard input and stores the result in value.
write_int writes the integer value value to standard output.

See also actions
dy_op_int(), mon_op_int(); (Module vimcode)

Real type actions

Name assign_real, clear_real, read_real, write_real.

Definition actions
assign_real (out dest: real; in src: real).
clear_real (out dest: real).
read_real (out value: real; in prompt: string).
write_real (in value: real).

Description assign_real assigns the real value src to dest.
clear_real assigns the real value 0.0 to dest.
read_real prints the string prompt on standard output, reads a real
value from standard input and stores the result in value.
write_real writes the real value value to standard output.

83

See also actions
dy_op_real(), mon_op_real(); (Module vimcode)

String type actions

Name assign_string, clear_string, read_string, write_string.

Definition actions
assign_string(out dest: string; in src: string).
clear_string (out dest: string).
read_string (out value: string;in prompt: string).
write_string (in value: string).

Description assign_string assigns the string value src to dest.
clear_string assigns the empty string value to dest.
read_string prints the string prompt on standard output, reads a
string from standard input and stores the result in value.
write_string writes the string value value to standard output.

Module idscope
The API module idscope defines types, constants and actions for maintaining

information of identifiers and/or expressions. The information of all identifiers is
stored in a binary tree, the identifier tree. The identifier information is found directly
via the identifier’s name. Each node of the identifier tree contains the information of
one identifier being:
• the identifier name, and
• the declaration list.

The declaration list of an identifier is a push-down list of declaration information.
The top of the declaration list contains the identifier’s declaration information for the
current (innermost) scope. Declaration information of the surrounding scope(s) is
stored below the top of the declaration list.

The declaration information of an identifier with a particular scope is stored in a
definition record. Definition records have to be created during the parsing of the
defining occurrence (i.e. the occurrence in a declaration) of the identifier. Definition
records have to be deleted if the scope in which the declaration was made is left.
Some relevant information stored in the definition record is listed below (see also
Figure 11):
• the name of the identifier (which is set by insert_definition),
• the data-segment number (which is set to the current scope level by

create_definition()),
• dva (displacement (of a variable), value (of a single constant) or address (of a

procedure) set by create_definition()),
• type (set by create_definition() and put_def_type()),
• kind (set by create_definition() and put_def_kind()),
• access (set by create_definition() and put_def_access()),

Reference Guide, Application Programming Interface (API)

84

• dimension (set by create_definition() and put_def_dim(), used in dynamic and
static array definitions),

• list of bound pairs (used in static array and record definitions, set by
add_def_bound()),

• number of child definitions (e.g. number of fields/parameters in
record/procedure definitions, set by add_def_child()).

• pointer to child definition list (e.g. field/parameter list of record/procedure
definitions, set by add_def_child()).

• pointer to next (child) definition (e.g. next field/parameter definition in
record/procedure definitions, set by add_def_child()).

For each scope level a scope record is maintained. The scope record refers to a
definition list, which is a list of valid identifier definition records within a particular
scope.
The scope records are stored in a push-down list, the scope list, with the current
scope record on top.

Figure 11: The declaration list of definition record(s) inserted in a node of the identifier tree,
with default values between square brackets.

In the following example, identifiers are declared at different scope levels:

BEGIN a,b,c
BEGIN d,e

BEGIN a,g

At this point in the program text, the scope list contains two definition records of
identifier a: one at level 3 and one at level 1. In Figure 12 the corresponding scope
list is shown.
Note: Definition records can also be used as “attribute containers” of expressions; in
that case they are not inserted in the identifier tree or scope list but merely used to
pass on multiple relevant attributes (like type, kind, access, etc.) between production
rules.

surrounding scope

surrounding scope

surrounding scope

identifier name

declaration list

left right

definition record

definition record

definition record

data-segment number [0]

type [unknown_type]

kind [unknown_kind]

dimension [dim0]

access [direct_access]

child definition list [undeclared]

bound pairs [none]

nr. of child definitions[0]

dva [no_dva]

next child definiton [undeclared]

85

Figure 12: An example of a scope list, with a scope record for each scope.

Types and constants

Name def_ptr, e_access, e_kind, e_type, dim0, newline_char, no_dva,
null_def, undeclared.

Definition types
def_ptr.
e_access = (

address_access, direct_access, indirect_access,
readonly_access, unknown_access

).

e_kind = (
avar_kind, const_kind, proc_kind, ptr_kind,
rec_kind, rpar_kind, svar_kind, tdecl_kind,
unknown_kind, vpar_kind

).
e_type = (

bool_type, char_type, int_type, no_type,
string_type, unknown_type

).
constants

next identifier
surrounding scope

surrounding scope

surrounding scope

next identifier

next identifier

next identifier

next identifier

next identifier

next identifier

definition record gscope list

definition record a

(current)
scope record 3

scope record 2

scope record 1

definition record e

definition record d

definition record c

definition record a

definition record b

Reference Guide, Application Programming Interface (API)

86

dim0 : integer.
newline_char : char.
no_dva : integer.
null_def : def_ptr.
undeclared : def_ptr.

Description def_ptr is a pointer type pointing to a definition record.

e_access enumerates the available kinds of access:
• address_access to address variables and reference

arguments,
• direct_access to access a variable directly by its

segment number and displacement,
• indirect_access to de-reference pointer variables and

 reference parameters,
• readonly_access read-only access (can exist in combination

 with another access value),
• unknown_access unknown access.

e_kind enumerates the available kinds:
• avar_kind array variable,
• const_kind constant,
• proc_kind procedure,
• ptr_kind pointer,
• rec_kind record,
• rpar_kind reference parameter,
• svar_kind single variable,
• tdecl_kind type declaration,
• unknown_kind unknown kind,
• vpar_kind value parameter.

e_type enumerates the available types:
• bool_type type boolean,
• char_type type character,
• int_type type integer,
• no_type no type,
• string_type type string,
• unknown_type unknown type.

dim0 is an integer constant to be used in definition records of 0-
dimensional identifiers/expressions.
newline_char is a character constant defining the ASCII newline
character.
no_dva is an integer constant to be used in definition records
without a relevant displacement (of a variable), value (of a single
constant) or address (of a procedure)..

87

null_def is a pointer constant (of type def_ptr) pointing to a
definition record describing the null pointer.
undeclared is a pointer constant (of type def_ptr) pointing to a
definition record with all fields set to their default value.

See also actions
chk_def_access(), chk_def_dim(), chk_def_kind(),
chk_def_type(), get_def_access(), get_def_dim(),
get_def_kind(), get_def_type(), put_def_access(),
put_def_dim(), put_def_kind(), put_def_type();

(Module idscope)
emit_load(), emit_store() (Module vimcode)

Scope administration actions

Name current_scope, enter_scope, exit_scope, list_scope.

Definition actions

current_scope (out level: integer).

enter_scope ().

exit_scope ().

list_scope ().

Description current_scope returns in parameter level the scope level of the
program text currently being parsed.
enter_scope creates a new scope record on top of the scope list and
initialises the corresponding definition list.
exit_scope deletes the definition records of all identifiers present in
the definition list of the current scope record. The current scope
record itself is also deleted and the scope list is pointed to the scope
record of the surrounding scope, which now becomes the current
scope record. If the action exit_scope is called without a preceding
enter_scope(), the error message: No current scope, exit_scope()
failed is reported.
If definition records are not used (that is they are not used as an
argument of emit_load(), emit_call() or use_definition()), the
warning: Identifier <name> defined, but never set or used is
reported.
list_scope reports a brief summary of the contents of all valid
definition records at the current scope level on the standard output.
The option test parser should be passed through to the built
compiler; if not, this action has no effect.

See also actions

emit_load(), emit_call(); (Module vimcode)

use_definition(); (Module idscope)

Reference Guide, Application Programming Interface (API)

88

Definition record actions

Name add_def_bound, add_def_child, create_definition,
delete_definition, find_definition, find_field, if_definition,
insert_definition, list_definition, of_type, use_definition.

Definition actions

add_def_bound (in def: def_ptr;

in low: integer; in up: integer).

add_def_child (in parent: def_ptr;

in child: def_ptr).

create_definition (out def: def_ptr;

in dva: integer; in t: e_type;

in k: e_kind; in dim: integer).

delete_definition (in def: def_ptr).

find_definition (out def: def_ptr;

in idname: string).

find_field (out def: def_ptr;

in idname: string;

in recdef: def_ptr).

if_definition (out result: def_ptr;

in then_def: def_ptr;

in else_def: def_ptr).

insert_definition (in idname: string;

in def: def_ptr).

list_definition (in def: def_ptr).

of_type (out def: def_ptr;

in typdef: def_ptr;

in dpl: integer).

use_definition (in def: def_ptr).

Description add_def_bound adds a bound pair low, up to the bound pair list of
the definition record pointed to by def, the dimension field of def is
incremented also. If low is greater then up the error message:
Lower bound low exceeds upper bound up is reported.
This action is to be called when parsing static array declarations
(dynamic arrays do not have any bound pairs because the bounds of
dynamic arrays are not known at compile-time).

add_def_child adds a definition record child, created with
create_definition(), to the end of the child definition list of
definition record parent.
This action is to be called when parsing record/procedure
declarations to add field/parameter definition records to the
corresponding record/procedure definition record.

89

create_definition creates a new definition record pointed to by the
output parameter def. The data segment number field of def is set to
the current scope level. The parameters dva, t, k, and dim are
assigned to the corresponding fields of def. If k equals const_kind,
proc_kind or tdecl_kind the access field of def is set to
readonly_access, and if k equals rpar_kind the access field of def is
set to indirect_access. The remaining definition fields are set to
their default values (see also Figure 11).

In Table 2 and Table 3 an overview is given how to fill the
definition record for the defined and used occurrences of different
kinds of identifiers.

access dimension kind
array direct_access > 0 avar_kind
array type readonly_access > 0 tdecl_kind
constant readonly_access dim0 const_kind
constant array readonly_access > 0 avar_kind
constant record readonly_access 1 rec_kind
field variable direct_access dim0 rec_kind
pointer direct_access dim0 ptr_kind
procedure readonly_access dim0 proc_kind
record direct_access 1 rec_kind
record type readonly_access 1 tdecl_kind
reference parameter indirect_access dim0 rpar_kind
single variable direct_access dim0 svar_kind
value parameter direct_access dim0 vpar_kind

Table 2: Defined occurrence table.

access dimension kind
address of variable address_access dim0 svar_kind
array variable direct_access > 0 avar_kind
contents of address indirect_access dim0 ptr_kind or

rpar_kind
field variable direct_access dim0 rec_kind
indexed variable indirect_access or

direct_access
dim0 avar_kind

procedure call readonly_access dim0 proc_kind
record variable direct_access > 0 rec_kind
reference parameter
used as argument

address_access dim0 rpar_kind

reference parameter
used in expression

indirect_access dim0 rpar_kind

single variable direct_access dim0 svar_kind

Table 3: Used occurrence table.

In Table 2 the following assumptions are made:
• Before declaring an identifier of kind array or record, a type

definition record should be created in which the array or record
type is defined.

Reference Guide, Application Programming Interface (API)

90

• The moment the array or record identifier is declared, the
corresponding type definition record can be retrieved using
find_definition(). The found type definition record should then
be passed through as the second argument of of_type().

• Records should be defined as 1-dimensional identifiers having
one bound pair with lower bound 0 and upper bound equal to
the number of fields (see add_def_bound()).

delete_definition deletes a definition record pointed to by def,
which was previously created by create_definition. Note that def
will point to an undefined value afterwards.
Definition records which are already inserted in the identifier tree
(by insert_definition()), cannot be deleted by calling
delete_definition() (this is done by exit_scope()). Procedure
parameter definition records can only be deleted by deleting the
procedure definition record.

find_definition searches the identifier tree for the name idname and
returns a copy of the found definition record pointed to by def. If
the definition record of identifier idname is not found, the error
Identifier <name> not found is reported and def is assigned the
value undeclared.

find_field searches the child definition list of the definition record
pointed to by recdef. If a field with name idname is found, then def
will be pointed to a copy of the found definition record. If no field
is found the error No such field in this record is reported and def
is assigned the value undeclared.
Note: recdef should point to a definition record defining a record
variable, not a record type.

if_definition is to be used to derive the definition record of a
conditional if-statement from the definition record(s) of the then-
part and the (optional) else-part of that if-statement.
If the type fields of the definition records pointed to by then_def
and else_def differ, the type of then_def will be set to no_type.
If the dimension fields of the definition records pointed to by
then_def and else_def differ, the dimension of then_def will be set
to dim0.
At last the parameter then_def is assigned to the output parameter
result and the parameter else_def is deleted by calling
delete_definition().

91

insert_definition inserts a definition record pointed to by def in the
identifier tree. def is also inserted in front of the definition list of the
current scope record (on top of the scope list).
If a definition record already exists for the identifier idname within
the current scope, the error Double defined identifier: <name> is
reported.
If there is no current scope (i.e. enter_scope() has not been called),
the error Insertion of <name> failed, no current scope is
reported.
If the insertion was successful the name field of the definition
record pointed to by def will be set to idname.
By calling exit_scope() the corresponding definition records will be
deleted.

list_definition reports a brief summary of the contents of the
definition record pointed to by def on standard output.
The option test parser should be passed through to the built
compiler, if not this action has no effect.

of_type is to be used when declaring identifiers of a structured (i.e.
array or record) type, of_type will copy the definition record
pointed to by typdef into the definition record pointed to by def.
Then the data segment number of def will be set to the current
scope level; the displacement of def will be set to dpl (the
displacement of the child definitions of def are derived recursively),
and the kind field of def will be set to rec_kind if the type field of
typdef is no_type else it will be set to avar_kind.

use_definition marks the definition record pointed to by def as
“being used”. By doing so exit_scope() can be prevented from
complaining about defined but unused identifiers.

See also types
def_ptr, e_access, e_kind, e_type (Module idscope)

actions
emit_bound(), emit_descr(); (Module vimcode)
enter_scope(), exit_scope(); (Module idscope)

Get definition information actions

Name get_def_access, get_def_dim, get_def_kind, get_def_type.

Definition actions

get_def_access (out a: e_access; in def: def_ptr).

get_def_dim (out d: integer; in def: def_ptr).

get_def_kind (out k: e_kind; in def: def_ptr).

get_def_type (out t: e_type; in def: def_ptr).

Reference Guide, Application Programming Interface (API)

92

Description These actions get (retrieve) the field values of the definition record
pointed to by def.
get_def_access returns in a the value of the access field of def.
get_def_dim returns in d the value of the dimension field of def.
get_def_kind returns in k the value of the kind field of def.
get_def_type returns in t the value of the type field of def.

See also types

def_ptr, e_access, e_kind, e_type (Module idscope)

Put definition information actions

Name put_def_access, put_def_dim, put_def_kind, put_def_type.

Definition actions

put_def_access (in a: e_access; in def: def_ptr).

put_def_dim (in d: integer; in def: def_ptr).

put_def_kind (in k: e_kind; in def: def_ptr).

put_def_type (in t: e_type; in def: def_ptr).

Description These actions put (update) the field values of the definition record
pointed to by def. If def equals undeclared or null_def, no fields are
updated.
put_def_access copies a into the access field of def. The
readonly_access value can exist in combination with other values
of type e_access. So if a equals readonly_access, the (old) value of
the access field of def remains intact and the read-only flag of def
will be set. If a equals unknown_access, the read-only flag of def is
cleared.
put_def_dim copies d into the dimension field of def.
put_def_kind copies k into the kind field of def, if k equals
const_kind, proc_kind or tdecl_kind the readonly_access bit of def
is set, else it is cleared.
put_def_type copies t into the type field of def.

See also types

def_ptr, e_access, e_kind, e_type (Module idscope)

Check actions

Name check_access, check_definition, check_dim, check_kind,
check_type, chk_def_access, chk_def_dim, chk_def_kind,
chk_def_type, pointer_check, positive_check, result_access,
result_definition, result_kind, result_type, zero_check,.

Definition actions

check_access (in a1: e_access; in a2: e_access;

in equal: boolean).

93

check_definition (in def1: def_ptr;

in def2: def_ptr;

in equal: boolean).

check_dim (in d1: integer; in d2: integer;

in equal: boolean).

check_kind (in k1: e_kind; in k2: e_kind;

in equal: boolean).

check_type (in t1: e_type; in t2: e_type;

in equal: boolean).

chk_def_access (in a: e_access; in def: def_ptr;

in equal: boolean).

chk_def_dim (in d: integer; in def: def_ptr;

in equal: boolean).

chk_def_kind (in k: e_kind; in def: def_ptr;

in equal: boolean).

chk_def_type (in t: e_type; in def: def_ptr;

in equal: boolean).

pointer_check (in defp: def_ptr;

in def: def_ptr).

positive_check (in nr: integer; in k: e_kind).

result_access (out ra: e_access;

in a: e_access; in def: def_ptr).

result_definition (out rd: def_ptr; in def1: def_ptr;

in def2: def_ptr).

result_kind (out rk: e_kind; in k: e_kind;

in def: def_ptr).

result_type (out rt: e_type; in t: e_type;

in def: def_ptr).

zero_check (in nr: integer; in k: e_kind).

Description The check_* actions report an error message if their first argument
does (not) match their second argument.

check_access reports the error message Access conflict: a1 ↔ a2 if
equal is true and the access values a1 and a2 are not equal.
If equal is false and a1 equals a2 the error message Access a1 not
allowed here is reported.

check_definition() compares two definition records def1 and def2
and reports an error message if equal is true and def1 and def2 are
not equal or if equal is false and def1 and def2 are equal.
Two definition records are considered to be equal if their types,
(derived) kinds and dimensions are equal.
If def1 or def2 equals undeclared no comparisons are made and no
errors reported.

Reference Guide, Application Programming Interface (API)

94

check_dim reports the error message Dimension conflict: d1 ↔ d2
if equal is true and the integer values d1 and d2 are not equal.
If equal is false and d1 equals d2, the error message Dimension d1
not allowed here is reported.

check_kind reports the error message Kind conflict: k1 ↔ k2 if
equal is true and the kind values k1 and k2 are not equal.
If equal is false and k1 equals k2, the error message Kind k1 not
allowed here is reported.

check_type reports the error message Type conflict: t1 ↔ t2 if
equal is true and the type values t1 and t2 are not equal.
If equal is false and t1 equals t2, the error message Type t1 not
allowed here is reported.

The chk_def_* actions report an error message if the first argument
does (not) match the corresponding field of the definition record
pointed to by def.

chk_def_access calls check_access(a, a2, equal) with a2 being the
access field of the definition record pointed to by def.
chk_def_dim calls check_dim(d, d2, equal) with d2 being the
dimension field of the definition record pointed to by def.
chk_def_kind calls check_kind(k, k2, equal) with k2 being the kind
field of the definition record pointed to by def.
chk_def_type calls check_type(t, t2, equal) with t2 being the type
field of the definition record pointed to by def.

pointer_check reports the error message Possible dangling pointer
reference if the kind of defp equals pointer_kind and the scope
level (data segment number) of defp is less than the scope level of
def.

positive_check is used to check the number of arguments/indices of
a procedure call/array. If nr is greater than 0 an error message: Too
few <items> is reported, if k equals proc_kind <items> stands for
arguments else it stands for indices.

result_access returns in parameter ra the value a, if a matches the
access field of def. Otherwise, ra is assigned the value
unknown_access and the error message Access conflict: a1 ↔ a2
is reported.
result_definition calls the action check_definition() to compare the
definition records def1 and def2. Afterwards delete_definition() is
called to delete def2. The name field of def1 (if set) will be cleared

95

and rd is assigned the value of def1. This action can be used if def1
and def2 are used as attribute containers to pass on type, kind and
dimension in one call, instead of assigning them separately. Note: If
either def1 or def2 equals undeclared no checks are performed and
the output parameter rd is assigned undeclared.

result_kind returns in parameter rk the value k, if k matches the kind
field of def. Otherwise, rk is assigned the value unknown_kind and
the error message Kind conflict: k1 ↔ k2 is reported.

result_type returns in parameter rt the type t, if t matches the type
field of def. Otherwise, rt is assigned the value unknown_type and
the error message Type conflict: t1 ↔ t2 is reported.

zero_check is used to check the number of arguments/indices of a
procedure call/array. If nr is equal to 0 an error message: Too
many <items> is reported, if k equals proc_kind <items> stands for
arguments else it stands for indices.

See also types
def_ptr, e_access, e_kind, e_type (Module idscope)

Call actions

Name arg_access, arg_check, first_parm, next_parm.

Definition actions

arg_access (out a: e_access; in pardef: def_ptr).

arg_check (out argdef: def_ptr; in pardef: def_ptr).

first_parm (out pardef: def_ptr; out npars: integer;

in procdef: def_ptr).

next_parm (out pardef: def_ptr);

Description arg_access returns in a the kind of access needed for an argument
of a procedure call depending on the corresponding parameter
definition pardef. It should be called before an argument is parsed.
If the kind field of pardef equals the value rpar_kind then a is
assigned the value address_access, else a is assigned the value
unknown_access.

arg_check is used to check if an argument definition argdef is
consistent with the corresponding parameter definition pardef of a
procedure call. It should be called after an argument is parsed.
The action check_type() is called to compare the type values of
argdef and pardef.
If the access value of argdef is readonly_access and the kind value
of pardef is rpar_kind, the error message: Illegal reference
argument, <name> is read-only is reported.

Reference Guide, Application Programming Interface (API)

96

first_parm returns in pardef the definition of the first parameter of
the procedure definition procdef, if procdef has no parameters
pardef is assigned the value undeclared. The number of parameters
of procdef is returned in the output parameter npars.

next_parm returns in pardef (which is both an input and an output
parameter of next_parm) the definition of the next parameter
following pardef. If the last parameter definition has already been
reached pardef is assigned the value undeclared.

Assignment actions

Name assign_access, assign_definition, assign_kind, assign_type,
clear_access, clear_definition, clear_kind, clear_type.

Definition actions

assign_access (out dest: e_access; in src: e_access).

assign_definition (out dest: def_ptr; in src: def_ptr).

assign_kind (out dest: e_kind; in src: e_kind).

assign_type (out dest: e_type; in src: e_type).

clear_access (out dest: e_access).

clear_definition (out dest: def_ptr).

clear_kind (out dest: e_kind).

clear_type (out dest: e_type).

Description assign_access assigns the e_access value src to dest.
assign_definition assigns the def_ptr value src to dest.
assign_kind assigns the e_kind value src to dest.
assign_type assigns the e_type value src to dest.
clear_access assigns unknown_access to dest.
clear_definition assigns undeclared to dest.
clear_kind assigns unknown_kind to dest.
clear_type assigns unknown_type to dest.

See also types

def_ptr, e_access, e_kind, e_type (Module idscope)

Module vimcode
The API module vimcode defines actions for generating VIrtual Machine (VIM)

instructions. See page 107 and further for a more detailed description of the VIM
instruction set.
With the emit* actions it is possible to generate VIM instructions. Each instruction is
defined as an optional label, followed by an operation value, followed by zero or
more arguments. The optional label is retrieved from the internal variable CurLabel,
which can be set by the action emit_label().

97

The integer representation (int_repr*) actions are supplied to allow indirect usage of
the types boolean, char and string (because VIM code only knows the type integer).
There are also some actions concerning manipulation and generation of the
(segment) length table and the string table.

Instruction set

Name operation.

Definition types

operation =(

abs_, add, and, call, crseg, descr, dlseg, dvi,

eq, eqn, ge, gt, halt, jiff, jift, jump, ldcon,

ldind, ldnvar, ldvar, ldxvar, le, lt, mdl, mul,

ne, neg, nen, noop, not, or, pop, popn, rdbool,

rdchar, rdint, rdstring, return_, stind, stnvar,

stvar, stxvar, sub, swap, varaddr, wrbool, wrchar,

wrint, wrstring, xvaraddr

).

Description The type operation defines the operation values of the VIM
instruction set recognised by the VIM code interpreter. See page
107 and further for more information about the instruction set.

Initialise and finalise actions

Name initialise_vimcode, finalise_vimcode.

Definition actions

initialise_vimcode ().

finalise_vimcode ().

Description initialise_vimcode initialises the generation of VIM instructions. An
output file is opened, which will contain the generated instructions.
The output filename consists of the input filename with the
extension .vim. If the output file is already open the error message
VIM code already initialised is reported.
finalise_vimcode generates the halt instruction. The length table
and the string table are written to the output file, and the output file
is closed. If the output file was not open the error message VIM
code not initialised or already finalised is reported.

See also actions

get_index(), enter_length(), int_repr_string()

(Module vimcode)

Assignment actions

Name assign_op, clear_op.

Definition actions

Reference Guide, Application Programming Interface (API)

98

assign_op (out dest:operation; in src:operation).

clear_op (out dest:operation).

Description The action assign_op assigns the operation value src to dest.
The action clear_op assigns the operation value noop (= no
operation) to dest.

See also types

operation (Module vimcode)

Operation actions

Name dy_op_bool, dy_op_char, dy_op_int, dy_op_real, mon_op_bool,
mon_op_char, mon_op_int, mon_op_real.

Definition actions

dy_op_bool (out dest: boolean;

in op: operation; in src: boolean).

dy_op_char (out dest: char;

in op: operation; in src: char).

dy_op_int (out dest: integer;

in op: operation; in src: integer).

dy_op_real (out dest: real;

in op: operation; in src: real).

mon_op_bool (out dest: boolean; in op: operation).

mon_op_char (out dest: char; in op: operation).

mon_op_int (out dest: integer; in op: operation).

mon_op_real (out dest: real; in op: operation).

Description The operation actions can be used to perform some arithmetic
operations at compile-time. If the specified operation op cannot be
performed for the specified type of operands the mon_op*() actions
leave dest unchanged and the dy_op*() actions copy the value of src
into dest. If operation op is monadic the dy_op*() actions perform
op on src and the result is stored in dest.

dy_op_bool performs the dyadic operation op on dest and src and
stores the boolean typed result in dest.
dy_op_char performs the dyadic operation op on dest and src and
stores the character typed result in dest.
dy_op_int performs the dyadic operation op on dest and src and
stores the integer typed result in dest.
dy_op_real performs the dyadic operation op on dest and src and
stores the real typed result in dest.
mon_op_bool performs the monadic operation op on dest and stores
the boolean typed result in dest.
mon_op_char performs the monadic operation op on dest and
stores the character typed result in dest.

99

mon_op_int performs the monadic operation op on dest and stores
the integer typed result in dest.
mon_op_real performs the monadic operation op on dest and stores
the real typed result in dest.

See also types

operation (Module vimcode)

Checked instruction generation actions

Name emit, emit_call, emit_jump, emit_opn, update_dpl.

Definition actions

emit (in op: operation).

emit_call (in def: def_ptr).

emit_jump (in op: operation; in labelnr:integer).

emit_opn (in op: operation; in def:def_ptr).

update_dpl (out newdpl: integer; in def: def_ptr).

Description emit is used to generate parameter-less instructions. If operation op
requires an argument, the error message Cannot emit operation
‘op’ without arguments is reported.

emit_call is used to generate the call instruction. The argument of
the call instruction is the value of the dva field of the definition
record pointed to by def. emit_call itself calls
chk_def_kind(proc_kind, def, true) to check whether def points to a
procedure definition.
If def equals one of the constants undeclared or null_def, this action
has no effect.

emit_jump is used for generating a jump operation (jump, jiff and
jift). The argument of the jump operation, the integer parameter
labelnr, should represent a unique label obtained by the action
get_label(). If op is not a jump operation, the error message Illegal
argument of emit_jump(): ‘op’ is reported.

emit_opn is used to generate either the 0-dimensional or the n-
dimensional version of the operator op depending on the dimension
field of the definition record pointed to by def.
If def defines a 0-dimensional identifier the operator op is generated
by calling emit(op).
If def defines a multi-dimensional identifier, ldcon instruction(s) are
generated to load the bound values of def (or to load 0 if def defines
a dynamic array) on the stack, followed by the n-dimensional
version of op.

Reference Guide, Application Programming Interface (API)

100

The instructions eqn, ldnvar, nen, popn and stnvar are defined as
the n-dimensional version of the eq, ldvar, ne, pop and stvar
instructions.
If op has no n-dimensional equivalent instruction the error message
No multi-dimensional version of operation ‘op’ available is
reported.

update_dpl assigns the sum of the dva field of the definition record
pointed to by def and the size of the identifier defined by def to the
output parameter newdpl.
The size of the identifier defined by def is derived recursively. If def
defines a 0-dimensional identifier the size is 1. If def defines an n-
dimensional identifier with a bound pair list the size is derived from
the bound pair list. If def defines an n-dimensional identifier
without a bound pair list (i.e. a dynamic array) the size is 2*n+2.

See also types

operation (Module vimcode)

def_ptr (Module idscope)

actions

chk_def_kind() (Module idscope)

get_label() (Module vimcode)

Load instruction generation actions

Name emit_ldcon, emit_load, int_repr_bool, int_repr_char,
int_repr_string.

Definition actions

emit_ldcon (in arg: integer).

emit_load (in def: def_ptr; in a: e_access;

in setcheck: boolean).

int_repr_bool (out dest: integer;

in src: boolean).

int_repr_char (out dest: integer; in src: char).

int_repr_string (out dest: integer; in src: string).

Description emit_ldcon generates the load constant (ldcon) instruction with the
value of arg as an argument. Only integer values can be passed as
an argument to the ldcon instruction. boolean, character or string
values are to be converted to an integer representation by calling the
corresponding int_repr_* action.

emit_load generates the instructions ldcon, ldind, ldnvar, ldvar,
ldxvar or varaddr depending on access value a and the contents of
the definition record pointed to by def. If a is unequal to
unknown_access it overrules the value of the access field of def.

101

If the resulting access value equals address_access the variable
address instruction varaddr or xvaraddr is generated. However if
def defines a read-only identifier/expression, the error message
Expression/identifier is read-only, cannot be accessed by
address is reported.
If the resulting access value equals indirect_access a load indirect
(ldind) instruction is generated. If def defines an indexed array
identifier an xvaraddr instruction should be generated first (see also
emit_xvaraddr()).
If def defines no pointer nor a reference parameter nor a array
variable, the error message Expression/identifier cannot be
accessed indirectly is reported.
If the boolean parameter setcheck equals true and def is not “being
set” (that is: it has not been an argument of emit_store()), the
warning message Variable <name> is used before set is reported.
If def defines a multi-dimensional identifier emit_opn(ldvar, def) is
called, the ldnvar instruction will then be generated preceded by
ldcon instruction(s) to load the bound values of def (or to load 0 if
def defines a dynamic array) on the stack.
Records should be defined as 1-dimensional identifiers having one
bound pair with lower bound 0 and upper bound equal to the
number of fields (see also add_def_bound()).
See also the occurrence tables in the idscope section for the correct
field values of a definition record.

int_repr_bool converts the boolean value src into its corresponding
(ordinal) integer representation (false= 0, true= 1) dest.

int_repr_char converts the (ASCII) character value src into its
corresponding (ordinal) integer representation dest.

int_repr_string inserts the string value src into the string table and
assigns the corresponding index to the integer value dest. If there
are no free indices left in the string table the error message String
table full is reported.
The string table will be added to the generated VIM code the
moment finalise_vimcode() is called.

See also types

def_ptr (Module idscope)

e_access (Module idscope)

actions

add_def_bound() (Module idscope)

emit_opn() (Module vimcode)

emit_xvaraddr() (Module vimcode)

Reference Guide, Application Programming Interface (API)

102

emit_load() (Module vimcode)

finalise_vimcode() (Module vimcode)

Store instruction generation actions

Name emit_stargs, emit_store. emit_store

Definition actions

emit_stargs (in def: def_ptr).

emit_store (in def: def_ptr; in reload: boolean).

Description emit_stargs should be called to store the arguments of a procedure
call (which are on top of the stack, in reverse order) into the data
segment of the procedure.

emit_stargs calls emit_store for each parameter definition of the
procedure definition record pointed to by def (in reverse order).
Before emit_store is called the access field of a reference parameter
definition is set to direct_access. Afterwards the access field is
(re)set to indirect_access.
If the kind field of def is not equal to proc_kind or if def has no
child definitions this action has no effect.

emit_store generates the instructions stind, stnvar, stvar or stxvar
depending on the contents of the definition record pointed to by def.
If def defines a read-only identifier/expression, the error message
Cannot store, expression/identifier is read-only is reported.
If the access field of def is address_access, the error message
Cannot change address of expression/identifier is reported.
If def defines a multi-dimensional identifier emit_opn(stvar, def) is
called, the stnvar instruction will then be generated preceded by
ldcon instruction(s) to load the bound values of def (or to load 0 if
def defines a dynamic array) on the stack.
Records should be defined as 1-dimensional identifiers having one
bound pair with lower bound 0 and upper bound equal to the
number of fields (see also add_def_bound()).
If reload is true, emit_load() is called after generation of the store
instructions; this can be useful when an assignment is parsed which
should leave a resulting value on the stack.
See also the occurrence tables in the idscope section for the correct
field values of a definition record.

See also types

def_ptr (Module idscope)

actions

add_def_bound() (Module idscope)

103

emit_opn() (Module vimcode)

emit_load() (Module vimcode)

I/O instruction generation actions

Name emit_read, emit_write.

Definition actions

emit_read (in t: e_type).

emit_write (in t: e_type).

Description emit_read generates one of the VIM read instructions rdbool,
rdchar, rdint or rdstring depending on the type value of t. If type t
is not supported by a VIM instruction the error message No VIM
read instruction for type ‘ t’ is reported. Because no arguments are
required, it is also possible to use emit() to generate a read
instruction.

emit_write generates one of the VIM write instructions wrbool,
wrchar, wrint or wrstring depending on the type value of t. If type t
is not supported by a VIM instruction the error message No VIM
write instruction for type ‘ t’ is reported. Because no arguments
are required, it is also possible to use emit() to generate a write
instruction.

See also types

e_type (Module idscope)

actions

emit() (Module vimcode)

Segment instruction generation actions

Name emit_crseg, enter_length, get_index.

Definition actions

emit_crseg (in level, index: integer).

enter_length (in index, value: integer).

get_index (out index: integer).

Description The moment a create segment (crseg) instruction should be
generated, the length of a segment is not known. By reserving one
entry for each segment in the so called length table the length of a
segment can be stored at this entry the moment it is determined.
As soon as a crseg instruction needs to be generated an entry in this
table can be allocated by calling get_index(). The obtained index is
then used as an argument to the crseg instruction, which can be
generated by calling emit_crseg(). The moment the length of a
segment is determined, it can be stored at the reserved entry by
calling enter_length(). Finally, the complete length table will be

Reference Guide, Application Programming Interface (API)

104

added to the generated VIM code when finalise_vimcode() is
called.

emit_crseg generates the create segment (crseg) instruction with the
specified scope level level and length table index index as an
argument.

enter_length stores value in the length table at position index.

get_index returns the next free entry in the length table in parameter
index. If the length table is full, the error message Length table full
is reported.

See also actions

finalise_vimcode() (Module vimcode)

Label generation actions

Name emit_label, get_label.

Definition actions

emit_label (in labelnr: integer).

get_label (out labelnr: integer).

Description emit_label stores the value of labelnr in the internal variable
CurLabel. The instruction being generated after emit_label() is
called will be preceded by the current value of CurLabel.
If emit_label() is called more than once without any instruction
being generated in between, noop instruction(s) will be generated
preceded by the corresponding value(s) of CurLabel.

get_label returns the next (free) label number in labelnr. The first
label number returned is 1, following label numbers are obtained by
incrementing the label number obtained by the last call to
get_label().

See also types

operation (Module vimcode)

Array instruction generation actions

Name emit_bound, emit_descr, emit_swap_pop, emit_xvaraddr.

Definition actions

emit_bound (in i: integer; in def: def_ptr).

emit_descr (in sn, dpl, dim: integer).

emit_swap_pop(in def: def_ptr;

in truthval: boolean; in a: e_access).

emit_xvaraddr(in def: def_ptr).

105

Description emit_bound generates ldcon instructions to load a bound pair of def
on the stack. Which bound pair is loaded depends on the value of i,
if i equals the dimension field of def the first bound pair of def is
loaded, if i equals 0 the last bound pair of def is loaded. If def has
no bound pair or the value of i is out of range, this action has no
effect.
emit_bound is to be called when parsing the indices of an indexed
(static) array variable (dynamic array definitions do not have any
bound pairs because the bounds of dynamic arrays are not known at
compile-time).

emit_descr generates the descriptor (descr) instruction with the
value of sn, dpl and dim as arguments. It should be called when a
dynamic array declaration is parsed.

emit_swap_pop generates a swap and a pop instruction depending
on the value of a and the contents of the definition record pointed to
by def.
If a is unequal to unknown_access it overrules the value of the
access field of def. If truthval equals true and the resulting access
value is not equal to address_access and def has access value
indirect_access the swap and pop instructions are generated.
emit_swap_pop is to be called when an address of an (indexed)
variable is to be removed from the stack.

emit_xvaraddr generates a ldcon and a xvaraddr instruction. The
ldcon instruction is generated to load the dimension field of def (or
-1 if def defines a dynamic array) on the stack. This action is to be
called when an indexed array variable is parsed.

See also types

def_ptr (Module idscope)

actions

add_def_bound() (Module idscope)

