
71

Parser Specification

A parser can be specified by defining the production rules of the grammar. The
left-hand side of a production rule can be used as a nonterminal in (other) production
rules of the parser specification. The parser generator constructs a predictive parser,
which is ELL(1), and recursive-descent. The attribute grammar is restricted to be L-
attributed, meaning that information flow of attributes is strictly left-to-right.

ELL(1)-parsers are an extension of LL(1)-parsers; they are derived from Extended
Context-Free Grammars (ECFGs). These grammars use syntactic operators to avoid
left-recursive production rules. The syntactic operators specify the alternative and
sequential composition of expressions from sub-expressions, and group sub-
expressions.

Recursive-descent parsing is a top-down method of syntax analysis, and involves
executing a set of recursive procedures to recognise input, with no backtracking. A
possibly-recursive procedure is generated for every nonterminal of the designed
language.

The parser generator performs a reachability and an availability test on the attributes
of the input grammar. The reachability test checks whether the reference to every
attribute occurrence, that acts as an argument of a semantic action, is legal. The
availability test verifies for every production rule if all synthesised attribute
occurrences of the left-hand side nonterminal, and all inherited attribute occurrences
of the right-hand side nonterminals, are defined. Moreover, the availability of the
input arguments in each semantic action is verified, if the input is parsed from left-
to-right.

The generated parsers support syntactic and semantic error recovery. At any time
during parsing, the parser maintains a look ahead set of legal tokens. If the next
token is illegal, but is a member of the look ahead set, the parser assumes a token to
be missing, inserts the missing token, and continues. If the illegal token is not in the
look ahead set, the parser assumes the token to be superfluous, deletes it, and
continues. The parser continues attribute evaluation after encountering a syntactic
error, i.e. the parser keeps verifying the context-sensitive and semantic integrity
constraints, expressed by the attributes, even after program text has been deleted or
inserted. The algorithms used by the parser generator can be found in [AS90].

Syntactic operators
The following syntactic operators can be used in production rules:

{ A } for grouping a regular expression A,
A | B for separating alternative expressions A and B,
A B for concatenating expressions A and B,
A CLOS for zero or more instances of an expression A,
A OPTION for zero or one instance of an expression A,

Reference Guide, Parser Specification

72

A SEQ for one or more instances of an expression A,
A CHAIN B for a sequence of instances of an expression A separated by the

expression B,
A LIST for a sequence of instances of an expression A separated by a list_token

(tListSep), and
A PACK for an expression A between open_token (tPackLeft) and close_token

(tPackRight).

Precedence
All operators are left-associative and:

1. the unary operators OPTION, SEQ, CLOS, LIST and PACK have the highest
precedence,

2. the binary operator CHAIN has the second highest precedence,
3. concatenation has the third highest precedence, and
4. the alternative separator | has the lowest precedence.

Alternative specifications:
A CLOS can be rewritten as: { A SEQ } OPTION

A CHAIN B can be rewritten as: A { B A } CLOS

or even: A { { B A } SEQ } OPTION

Parser attributes
The parser generator allows four kinds of attributes to be used:

• inherited attributes associated with one or more nonterminals,
• synthesised attributes associated with one or more terminals or nonterminals,
• global attributes, and
• local attributes.

Attributes can be specified as arguments of semantic action calls. Inherited attributes
should be assigned a value before the associated nonterminal is parsed. Synthesised
attributes should be assigned a value after the associated (non)terminal is parsed.
Synthesised and inherited attributes may be assigned a value only once. In the
scanner specification, only synthesised attributes (of terminals) are defined and used.
In the parser specification synthesised attributes of both terminals and nonterminals
can be used.

A default action has to be specified for every synthesised parser attribute. The
default action assigns a default value to the attribute and is performed only if the
parser option error_recovery is specified and the associated (non)terminal needs to
be inserted in the input of the generated parser.

Some attributes are used in almost every production rule. This can result in many
copy actions of the attribute values. In order to prevent these copy actions and to
save space, global attributes can be used. Global attributes can be assigned values
repeatedly. Moreover, all nonterminals share global attributes. The global attributes

73

are associated with the total language, and form a shared storage, which can be
referred to from any place in the input grammar. Global attributes are not checked
for having a value before they are used. Inherited, synthesised, and local attributes
are checked, though.
Local attributes are associated with a specific production rule. The local attributes
can be used for intermediate calculations. Like global attributes, local attributes can
be assigned values repeatedly.

Standard parser actions
See the Application Programming Interface.

Meta-grammar of production rules
The grammar of a language can be defined by one or more production rules. The

right-hand side of a production rule is a regular expression of terminals,
nonterminals and syntactic operators, extended with action calls. In Figure 8 the
meta grammar of the production rule is shown.

Figure 8: Meta grammar of the production rule.

In order to associate the actions with specific positions in the production rules,
action calls can be inserted in the production rules. An action call consists of an
action name and arguments (i.e. actual parameters), which conform to the formal
parameters of the action definition. In Figure 9 the meta grammar of an action call is

CHAIN

:

secondary

LIST

nonterminal
definition

PACK

primary operator

nonterminal name
regular

 expression

primary

nonterminal name

regular
expression

{ }

terminal nameprimary

SEQ

alternative
regular

expression

|

OPTION

CLOS

secondaryalternative

action call

operator

Reference Guide, Parser Specification

74

shown. The position of the action call in the production rule determines when the
action is performed. Therefore, action calls are allowed in production rules at every
position where (non)terminals are allowed. From the syntactic viewpoint, the action
call is considered to be an extra nonterminal having a production rule with an empty
right-hand side. A syntactic operator, however, may never follow an action call, as
this can give rise to LL(1) conflicts.

Figure 9: Meta grammar of the action call.

Figure 10: Meta grammar of the ROOT production rule.

The start symbol of a grammar can be specified in the ROOT production rule. In
Figure 10 the meta grammar of the ROOT production rule is shown. Actions to be
performed before and after parsing the start symbol (i.e. the entire grammar) can be
specified.
In order to indicate that an action call belongs to a specific (non)terminal, braces are
used. For example, in the production rule:

A:

B CHAIN C

action1()

action2().

action name)action call

argument

argument list

argument list

#

,

attribute
 name

attribute occurence

(

of
occurence

number
(non)terminal

name

argument

constant name

attribute occurence

denotation

type-value name

ROOT
action
call

root
definition

nonterminal
name

action
call

: .

75

action1() and action2() are performed once after B CHAIN C is parsed. If
action1() has to be performed every time after C is parsed, the production rule
should be:

A:

B CHAIN

{

C

action1()

}

action2().

In summary, if the generated parser encounters a terminal, the existence of that
terminal is checked. If the generated parser encounters a nonterminal, the right-hand
side of the production rule corresponding to that nonterminal is parsed. Finally, if an
action call is encountered, it is performed.
An attribute occurrence is a combination of a (non)terminal occurrence and its
attribute. In order to distinguish different occurrences of the same (non)terminal in a
production rule, the occurrences are assigned unique numbers. An attribute
occurrence in a production rule is specified as follows:
a of S#i, where:
• a is the attribute name,
• S is the (non)terminal name, and
• i is the occurrence number of (non)terminal S in the production rule.

The occurrence number of the left-hand side nonterminal is 0. The occurrence
numbers of (non)terminals on the right-hand side start with 1. If a (non)terminal
occurs only once in the production rule, no occurrence number has to be specified.
In that case, the default occurrence number of the left-hand side is 0, and the default
occurrence number of right-hand side (non)terminals is 1.

Parser options
The following options can be selected:

List names print reserved and defined names,
List symbols print terminal and nonterminal symbols,
List actions print standard (API) and user-defined parser actions,
List attributes* print inherited, synthesised and global parser attribute

definitions,
List locals* print local attributes definitions,
List numbers print attribute occurrence numbers,
List action calls* print action calls in production rules,
Error recovery* add error recovery statements to the generated syntactic

procedures,
LL(1) test* perform LL(1)-test on input grammar before parser generation,
Empty rules print EMPTY value(s) of production rules (implies LL(1) test),

Reference Guide, Parser Specification

76

Reduced rules print whether production rules are reduced (implies LL(1) test),
First sets print FIRST sets of production rules (implies LL(1) test),
Follow sets print FOLLOW sets of production rules (implies LL(1) test),
Last sets print LAST sets of production rules (implies LL(1) test),
Dirsets print DIRSETS of production rules (implies LL(1) test),
Dependencies* perform reachability/availability test on input grammar before

parser generation,
Parser* generate the parser if no errors occur,
Program* generate a main program,
Module generate a function module.
The options marked with a * are default active. All output is printed to the .lst file.

Combining syntactic operators and attributes
The syntactic operators OPTION, SEQ, CLOS, CHAIN, and LIST allow a compact and

clear input grammar. However, these operators can cause problems in attribute
evaluations. Using local attributes can circumvent these problems. Below, these
problems, and solutions to these problems, for each of the syntactic operators, are
outlined.

Problem 1: X: Y OPTION.

Parsing of the (non)terminal Y is optional. The inherited attributes of Y are only
assigned values when Y occurs in the input. The synthesised attributes of Y may not
be referred to if Y does not occur. In that case dummy values should be assigned to
the synthesised attributes of Y. Solution:

X (LOCAL h: a_type):

assign(h, iA of X)

{

assign(iA of Y, h)

Y

assign(h, sA of Y)

} OPTION

assign(sA of X, h).

Problem 2: X: Y SEQ.

The attributes of an occurrence of Y should be copied to the next occurrence of Y.
Further, the inherited attributes of the first occurrence of Y are copied from the
inherited attributes of the nonterminal X, and the last occurrence of Y copies its
synthesised attribute values to the synthesised attributes of X. Solution:

X (LOCAL h: a_type):

assign(h, iA of X)

{

assign(iA of Y, h)

Y

iA X sA

iA Y sA iA Y sA iA Y sA

77

assign(h, sA of Y)

} SEQ

assign(sA of X, h).

Problem 3: X: Y CLOS.

This problem is a combination of problems 1 and 2: zero or more occurrences of Y
are allowed. Solution:

X (LOCAL h: a_type):

assign(h, iA of X)

{

assign(iA of Y, h)

Y

assign(h, sA of Y)

} CLOS

assign(sA of X, h).

Problem 4: X: Y LIST.

In this case, Y is covered by problem 2, and the terminal tListSep is covered by
problem 3. Generally, the terminal tListSep will not have any attributes. Solution:

X (LOCAL h: a_type):

assign(h, iA of X)

{

assign(iA of Y, h)

Y

assign(h, sA of Y)

} LIST

assign(sA of X, h).

Problem 5: X: Y CHAIN Z.

Problem 2 applies to (non)terminal Y, and problem 3 applies to (non) terminal Z
Solution:

X (LOCAL h1: a_type1; h2: a_type2):

assign(h1, iA1 of X)

assign(h2, iA2 of X)

{

assign(iA of Y, h1)

Y

assign(h1, sA of Y)

} CHAIN

{

assign(iA of Z, h2)

Z

Reference Guide, Parser Specification

78

assign(h2, sA of Z)

}

assign(sA1 of X, h1)

assign(sA2 of X, h2).

Note that local attributes can also be used to copy attribute values from occurrences
of Y to occurrences of Z, and vice versa, keeping left-to-right one-pass in mind.
Instead of using local attributes, global attributes and attributes of the left-hand side
nonterminal could be used. However, global attributes cannot be used in recursive
production rules, and attributes of left-hand side nonterminals would have to be
assigned values more than once, which conflicts with the definition of synthesised
and inherited attributes.

