
65

Scanner Specification

A scanner can be specified by defining the tokens used by the parser. The left-
hand side of a token definition can be used as a terminal in the production rules of a
parser specification. A token can be defined as a list of keyword or symbol
alternatives or as a regular expression of strings and character sets. A keyword or
symbol is a sequence of printable characters. The scanner generator converts the
symbols and regular expressions into a non-deterministic finite automaton (NFA)
using the element construction algorithm. This NFA contains no empty transitions.
The NFA is then converted into a deterministic finite automaton (DFA) using the
subset construction algorithm. During subset construction, state transition conflicts
are reported. Finally, the number of states of the DFA are minimised, using refined
partitioning, resulting in the minimised deterministic finite automaton (MDFA). The
element construction, subset construction and refined partitioning algorithms can be
found in Chapter 7 in [AN96]. The NFA, DFA and MDFA diagrams can be viewed
in the .lst file if the corresponding scanner options are selected.

Unlike symbols and regular expressions, keywords are not converted into a NFA,
they are stored in the keyword table (to reduce the number of NFA states). You will
need to define an extra token to recognise all the keyword tokens. If a token is
scanned and it satisfies the extra keyword token definition, the keyword table is
searched and, if found, the corresponding token is passed through to the parser.

Syntactic operators
As mentioned above, tokens can be defined using regular expressions. The

following syntactic operators can be used in regular expressions:
{ A } for grouping a regular expression A,
A B for concatenating expressions A and B,
A | B for separating alternative expressions A and B,
A CLOS for zero or more instances of an expression A,
A OPTION for zero or one instance of an expression A,
A SEQ for one or more instances of an expression A,
A + B union of character sets A and B,
A - B difference of character sets A and B,
A * B intersection of character sets A and B.

Precedence
All operators are left-associative and:

1. the binary character set operators +, - and * have the highest precedence,
2. the unary operators OPTION, SEQ and CLOS have the second highest precedence,
3. concatenation has the third highest precedence, and
4. the alternative separator | has the lowest precedence.

Alternative specifications:
A CLOS can be rewritten as: { A SEQ } OPTION



Reference Guide, Scanner Specification

66

A + B can be rewritten as: A | B

Scanner attributes
The scanner generator allows you to associate synthesised attributes with the

defined tokens. An attribute is defined by a (user-defined) type, and a list of one or
more token names (terminals) it is associated with. The following standard scanner
types are pre-defined: integer, real, boolean, char and string. The type string is
defined as a sequence of up to 255 characters. The type boolean is defined as an
enumerated type containing the type values true and false. User-defined types are
also enumerated types.

An attribute can be assigned a value using type values or the return value of scanner
actions. The assignment is made after (one of) the associated terminal(s) is scanned.

When the parser needs to insert a terminal because of error recovery, the terminal’s
attribute(s) are set to a default value. The default value of an attribute depends on the
type of the attribute. An attribute of type integer or real is set tot zero. Attributes of
type boolean are set to false. Attributes of type char are set to the null character.
Attributes of type string are set to the empty string. Attributes having a user-defined
enumerated type are set to the first value that is enumerated.

Standard scanner actions
A scanner action always has one parameter of type string. The argument of a

scanner action call does not have to be specified; the scanner generator will fill in the
currently scanned string (i.e. representation) for you. The following standard actions
are available in the scanner generator:
get_repr: string returns the representation unchanged,
convert_to_upper: string returns the uppercase version of the

representation,
convert_to_lower: string returns the lowercase version of the

representation,
delete_spaces: string returns the representation without any space

characters,
int_encode: integer returns an integer-typed value of the

representation,
real_encode: real returns a real-typed value of the

representation,
char_encode: char returns a char-typed value of the

representation, excluding quotes,
bool_encode: boolean returns a boolean-typed value of the

representation, and
string_encode: string returns a string-typed value of the

representation, excluding quotes.



67

Meta-grammar of token definitions
A token can be defined as a regular expression or as a (list of) keyword and/or

symbol (alternatives). If one or more attributes are associated with the defined token,
then all the associated attributes must be assigned a value. In Figure 6 the meta
grammar of a token definition is shown.

If a token should be skipped (like white space or comment) the reserved word SKIP
can be specified. The scanner is then instructed to skip the current token and to
continue by reading the next token.

If one or more keyword tokens are defined, an extra token should be defined to
recognise all the keywords. This extra token definition should contain the reserved
word VERIFY. The scanner is then instructed to look up the scanned string in the
keyword table. If found, the appropriate keyword token is returned. If no keyword is
found an error is reported and the verify token name is returned. It is also possible to
specify a reserved action (not displayed in Figure 6) instead of VERIFY. The reserved
action first converts the scanned string and the result is searched in the keyword
table. If found, the appropriate keyword token is returned. If no keyword is found,
the token name is returned (no error report). This can be used in case a token
definition can match both a keyword and an identifier at the same time (for an
example see the initial scanner specification of Lesson 5: Segments).

Figure 6: Meta grammar of the token definition.

A regular expression consists of pre-defined character sets, strings and syntactic
operators. In Figure 7 the complete meta grammar is shown.

VERIFY

token
definition

SKIP

:

:

regular
 expression

attribute
 assignment

:
terminal
name

symbols
& keywords

type-value name

keyword
representation

symbols
& keywords

|

symbol
representation

attribute
 assignment

attribute
name

=
attribute

assignment

action name ()



Reference Guide, Scanner Specification

68

Figure 7: Meta grammar of the regular expression.

Scanner options
The following options can be specified:

NFA diagram print a diagram of the non-deterministic finite automaton,
DFA diagram print a diagram of the deterministic finite automaton,
MDFA diagram* print a diagram of the minimised deterministic finite automaton,
List names print a list of the defined names,
List all names print a list of the reserved and defined names,
Subset Trace print the subsets of NFA states forming the DFA states,
Minimise trace print the sets of DFA states being combined into one MDFA

state, and
Generate* generate the scanner, if no errors occur.
The options marked with a * are default active. All output is written into the .lst file.

string name

regular
expression

-

{ }

charset expressionprimary

charset operator

charset expression

operator

+

*

regular
expression

|

charset name

charset operator

secondaryalternative

secondary primary

alternative

SEQ

OPTION

CLOSoperator


