
107

Virtual Machine (VIM)

This section describes the architecture and the instruction set of the VIrtual
Machine (VIM).

Architecture
Before the VIM code is interpreted, it is read into the instruction table and the

instruction counter IC (initially 0) points to the instruction being executed. The
instruction table is executed sequentially, which means that after the execution of an
instruction the next value of IC (NextIC) is assigned the value IC+1. An exception
to this rule are those instructions involving jumps and subroutine calls.

Each instruction can be preceded by an optional label number (followed by a colon).
If a label number lnr is read, then the corresponding IC will be stored in the label
table LabTab at index lnr. When a conditional jump instruction with argument label
is executed, the value of LabTab[label] is assigned to NextIC if the jump condition
is true. For example, the VIM code of a conditional clause could be:

...

<boolean expression>

jiff 22 /* jump if false */

<then clause>

jump 23 /* jump always */

22: <else clause>

23: ...

...

The interpreter uses a stack to temporarily store results of instructions. The stack is
an array of integer-typed elements, which is initially empty. All other typed elements
are mapped onto the type integer.
The instructions are implemented using the stack operators push to push an element
on top of the stack, and pop to pop the topmost element off the stack.

Return addresses are saved on the return stack. The call instruction pushes the
current value of IC+1 on the return stack. The moment a return_ instruction is
executed the return address is popped off the return stack and assigned to NextIC.

On entering a program block or procedure, a data segment of appropriate length
must be created. A data segment contains the following information:
• sn, len segment number (i.e. scope level) and segment length.
• static pointing to the data segment of the defining environment.
• dynamic pointing to the data segment of the calling environment.
• data the data space for local variables and parameters.

Reference Guide, Virtual Machine (VIM)

108

Using this information, the calling environment can be recovered when we exit from
a program block or procedure. Only when calling a procedure from the declaring
environment, will the static and dynamic information be equal, otherwise they will
differ. On entering a program block, the static and dynamic information are always
equal. A program block is considered to be a non-parameterised procedure called
from the defining environment.
The crseg sn, index instruction initiates a new segment of appropriate length, the
static and dynamic information are administered also.

Usually, the segment length is unknown at the time a segment is to be created.
Therefore, the argument index of the crseg instruction points to an entry in the length
table LenTab containing the desired segment length. The length table is filled at
compile-time (using API actions get_index() and enter_length()) and is appended
after the last instruction by API action finalise_vimcode()
The space for data segments is contained in the array Data, the data-stack pointer
Dsp points to the first free position of the array Data. The locations of variables in a
data segment are indicated by the segment number sn in the Current Segment Group
array CSG and the displacement dpl within that segment, i.e. Data[CSG[sn]+dpl].
The current segment number is stored in the variable Csn.
String constants can be written to the standard output with the wrstring instruction.
String constants are stored in the string table StringTab that is filled at compile-time
(using API action int_repr_string()).
The string table is appended to the length table by the API action finalise_vimcode().
New string constants can be added to the string table with the rdstring instruction.

A number of limits apply to the interpreter. Exceeding these limits will cause an
error and the interpreter will stop. An error message and the current value of the
instruction counter will be printed. The limits are:
• stack-element: sizeof(integer),
• size of instruction table: 1000 entries,
• size of label table: 250 entries,
• size of stack: 100 entries,
• size of return stack: 100 entries,
• size of length table: 250 entries,
• size of string table: 200 entries,
• size of type string: 255 characters, and
• nesting of data segments: 15 levels.

Instruction set
This section describes the instruction set of the VIrtual Machine (VIM) code

interpreter of SLADE. The instruction set includes stack instructions, arithmetic,
boolean, and relational operators, jump and call instructions, segment instructions,
load and store instructions, and I/O instructions. The effects of these operations are
described using the mechanisms and functions mentioned above. The API module
vimcode contains actions for generating VIM instructions (see previous chapter).

109

The instruction set is based upon the instruction set listed on page 267 of [AN96].
To do the laboratory exercises some extra instructions are defined, these instructions
are marked with a *. The following layout is used:

Name names the instructions,

Definition defines the named instructions, indicating how to use them,

Description describes the functionality of the named instructions. The names of
the instructions are printed in italics, and

See also refers to related VIM instructions or actions from the Application
Programming Interface (API).

Noop, pop, swap

Name noop, pop*, swap*.

Definition noop ;

pop pop value;

swap pop value1;

pop value2;

push value1;

push value2;

Description noop is a dummy instruction, it is often used to address the
following (non-noop) instruction with more than one label.
pop pops one value from the top of the stack (and discards it). This
instruction is added to clean up the stack.
swap pops two values from the stack and pushes them back in
reverse order (i.e. the two topmost values on the stack are
swapped). This instruction is added to reverse the order of an
address/value pair on top of the stack.

See also emit(), emit_swap_pop() (Module vimcode)

Relational instructions

Name eq, ge, gt, le, lt, ne.

Definition eq pop value1;

pop value2;

push (value2 == value1);

ge pop value1;

pop value2;

push (value2 >= value1);

gt pop value1;

pop value2;

push (value2 > value1);

Reference Guide, Virtual Machine (VIM)

110

le pop value1;

pop value2;

push (value2 <= value1);

lt pop value1;

pop value2;

push (value2 < value1);

ne pop value1;

pop value2;

push (value2 != value1);

Description The instructions eq, ge, gt, le, lt and ne are the relational ANSI C
operators ==, >=, >, <=, < and !=. The right operand is on top off
the stack. The left operand is just below the top. The operands are
popped off the stack. The result of the relational expression is
pushed on the stack.

See also jiff, jift (VIM instruction set)

dy_op_int() (Module vimcode)

Arithmetic instructions

Name abs_, add, dvi, mdl, mul, neg, sub.

Definition abs_ pop value;

if (value < 0)

push -value;

else

push value;

add pop value1;

pop value2;

push value2 + value1;

dvi pop value1;

pop value2;

push value2 / value1;

mdl pop value1;

pop value2;

push value2 % value1;

mul pop value1;

pop value2;

push value2 * value1;

neg pop value;

push -value;

sub pop value1;

pop value2;

push value2 - value1;

Description The instructions abs_, add, dvi, mdl, mul, neg and sub are the
arithmetic integer operators absolute, add, divide, modulo, multiply,

111

negate and subtract. Only the instructions abs_ and neg take one
operand. The other instructions take two operands. The right
operand is on top of the stack. The left operand is just below the
top. The operands are popped off the stack. The result of the
arithmetic expression is pushed on the stack.

See also dy_op_int(), mon_op_int() (Module vimcode)

Boolean instructions

Name and*, or*, not*.

Definition and pop value1;

pop value2;

push (value2 && value1);

or pop value1;

pop value2;

push (value2 || value1);

not pop value;

push (value == 0);

Description The instructions and, or and not are the boolean operators. Only the
instruction not takes one operand. The other instructions take two
operands. The right operand is on top of the stack. The left operand
is just below the top. The operands are popped off the stack. The
result of the boolean expression is pushed on the stack. These
instructions are added to support boolean operators in your input
grammar.

See also jiff, jift (VIM instruction set)

dy_op_bool(), mon_op_bool() (Module vimcode)

Read instructions

Name rdbool*, rdchar*, rdint, rdstring*.

Definition rdbool read bool_value;

push int_repr(bool_value);

rdchar read char_value;

push int_repr(char_value);

rdint read value;

push value;

rdstring read string_value;

push int_repr(string_value);

Description The instructions rdbool, rdchar, rdint and rdstring get a value (of
the corresponding type) from standard input, convert this value into
the internal (integer) representation, and push the converted value.
The instruction rdstring creates a new entry in the string table and

Reference Guide, Virtual Machine (VIM)

112

pushes the corresponding index. The instructions marked with a *
are added to support reading of boolean, character or string values
in your grammar.

See also wrbool, wrchar, wrint, wrstring (VIM instruction set)

emit(), emit_read() (Module vimcode)

Write instructions

Name wrbool*, wrchar*, wrint, wrstring*.

Definition wrbool pop value;

push value;

write bool_repr(value);

wrchar pop value;

push value;

write char_repr(value);

wrint pop value;

push value;

write value;

wrstring pop value;

push value;

write StringTab[value];

Description The instructions wrbool, wrchar, wrint and wrstring pop and
push(!) a value, convert this value from the internal (integer)
representation into the corres-ponding type, and write the converted
value to standard output. The instructions marked with a * are
added to support writing of boolean, character or string values in
your grammar. Note that all write instructions leave the top of the
stack unchanged, this is to support print statements that should
return a value.

See also rdbool, rdchar, rdint, rdstring (VIM instruction set)

emit(), emit_write() (Module vimcode)

Jump instructions

Name jiff, jift, jump.

Definition jiff label pop value;

if (value == 0)

NextIC = LabTab[label];

jift label pop value;

if (value != 0)

NextIC = LabTab[label];

jump label NextIC = LabTab[label];

113

Description jiff (jump if false) pops value from the stack and jumps only to the
specified label when value equals 0.
jift (jump if true) pops value from the stack and jumps only to the
specified label when value is not equal to 0.
jump performs an unconditional jump to the instruction labelled
with label. The next value of the instruction counter is derived from
the label table entry LabTab[label].

See also call, return_ (VIM instruction set)

emit_jump() (Module vimcode)

Call, halt, return_

Name call, halt, return_.

Definition call label push_return IC+1;

NextIC = LabTab[label];

halt halt;

return_ pop_return retaddr;

NextIC = retaddr;

Description The call and return_ instructions provide for the procedure call and
return actions.
call pushes the current value of IC+1 on the return stack and jumps
unconditionally to the instruction pointed to by LabTab[label].
halt stops the execution of the VIM code.
return_ pops a return address retaddr off the return stack and jumps
unconditionally to the instruction pointed to by retaddr.

See also crseg, dlseg (VIM instruction set)

emit_call(), finalise_vimcode() (Module vimcode)

Segment instructions

Name crseg, dlseg.

Definition crseg sn idx len = LenTab[idx];

Data = realloc(Data, Dsp+len+4);

Data[Dsp++] = sn;

Data[Dsp++] = len;

Data[Dsp++] = CSG[sn-1]; /* static */

Data[Dsp++] = CSG[Csn]; /* dynamic */

Csn= sn;

CSG[Csn]= Dsp;

dlseg curseg = CSG[Csn];

len = Data[curseg - 3];

static_link = Data[curseg - 2];

dynamic_link = Data[curseg - 1];

if (static_link != dynamic_link) {

Reference Guide, Virtual Machine (VIM)

114

callseg = dynamic_link;

callsn = Data[dynamic_link-4];

for (i = callsn; i >= Csn; i--) {

CSG[i] = callseg;

callseg = Data[callseg-2];

}

Csn = callsn;

} else if (Csn > 0) {

CSG[Csn] = 0;

Csn--;

}

Dsp -= len + 4;

Data = realloc(Data, Dsp);

Description crseg creates a data segment with segment number sn (= scope
level). The parameter idx points to an entry in the length table,
containing the corres-ponding segment length. The static, dynamic
and data information of the data segment are given the proper
values.
dlseg deletes the last created data segment, and makes the data
segment of the calling environment the current one.

See also call, return_ (VIM instruction set)

emit_crseg() (Module vimcode)

Load instructions

Name ldcon, ldind, ldvar, varaddr.

Definition ldcon value push value;

ldind pop address;

push address;

push Data[address];

ldvar sn dpl push Data[CSG[sn]+dpl];

varaddr sn dpl push CSG[sn]+dpl;

Description ldcon (load constant) pushes the value of its (integer) argument
onto the stack.
The instructions ldind and ldvar are the segment-load instructions,
which transfer data from the data segment onto the stack.
ldind (load indirect) pops the absolute address address off the
stack, and pushes address and the contents of Data[address] on the
stack.
Note: ldind leaves the address on the stack, this is to support
assignment statements, which should return a value.
ldvar (load variable) pushes the contents at Data[CSG[sn]+dpl] on
the stack, i.e. a combined varaddr, ldind, swap, pop sequence.

115

varaddr (variable address) pushes the absolute address
CSG[sn]+dpl on the stack.

See also ldnvar, stind, stnvar, stvar,

swap, pop (VIM instruction set)

emit_ldcon(), emit_load() (Module vimcode)

Store instructions

Name stind, stvar.

Definition stind pop value;

pop address;

push address;

Data[address] = value;

stvar sn dpl pop value;

Data[CSG[sn]+dpl] = value;

Description The instructions stind and stvar are the segment-store instructions,
which transfer data off the stack into the data segment.
stind (store indirect) pops value and the absolute address address
off the stack, pushes address back on the stack, and stores value to
Data[address].
Note: stind leaves the address on the stack, this is to support
multiple assignment statements in your input grammar.
stvar (store variable) pops value off the stack, and assigns it to
Data[CSG[sn]+dpl], i.e. a combined varaddr, swap, stind, pop
sequence.

See also ldind, ldnvar, ldvar,

stnvar, varaddr, swap, pop (VIM instruction set)

emit_store() (Module vimcode)

Array instructions

Name descr, eqn*, ldnvar*, ldxvar, nen*, popn*, stnvar*, stxvar, xvaraddr.

Definition descr sn dpl dim size = 1;

for (i = dim; i > 0; i--) {

pop up;

pop lo;

size *= up - lo + 1;

Data[CSG[sn]+dpl+2*i+1] = lo;

Data[CSG[sn]+dpl+2*i] = size;

}

offset = Data[CSG[sn]-3];

Data[CSG[sn]+dpl+1] = offset;

Data[CSG[sn]+dpl] = dim;

Data[CSG[sn]-3] += size;

Reference Guide, Virtual Machine (VIM)

116

Dsp += size; realloc(Data, Dsp);

eqn sn dpl pop n;

if (n == 0) /* dynamic array */

n = Data[CSG[sn]+dpl+2];

push is_equal(n);

ldnvar sn dpl pop n;

if (n == 0) { /* dynamic array */

dpl = Data[CSG[sn]+dpl+1];

n = Data[CSG[sn]+dpl+2];

}

for (i = 0; i < n; i++)

push Data[CSG[sn]+dpl+i];

ldxvar sn dpl xdpl = get_xdpl(sn, dpl);

push Data[CSG[sn]+xdpl];

nen sn dpl pop n;

if (n == 0) /* dynamic array */

n = Data[CSG[sn]+dpl+2];

push !is_equal(n);

popn sn dpl pop n

if (n == 0) /* dynamic array */

n = Data[CSG[sn]+dpl+2];

for (i = 0; i < n; i++)

pop value;

stnvar sn dpl pop n;

if (n == 0) { /* dynamic array */

dpl = Data[CSG[sn]+dpl+1];

n = Data[CSG[sn]+dpl+2];

}

for (i = n-1; i >= 0; i--) {

pop value;

Data[CSG[sn]+dpl+i] = value;

}

stxvar sn dpl xdpl = get_xdpl(sn, dpl);

pop value;

Data[CSG[sn]+xdpl] = value;

xvaraddr sn dpl /* begin of: get_xdpl(sn, dpl) */

pop dim;

xdpl = 0; size = 1;

if (dim < 0) { /* dynamic array */

dim = Data[CSG[sn]+dpl];

offset = Data[CSG[sn]+dpl+1];

for (i = dim; i >= 0; i--) {

pop idx;

lo = Data[CSG[sn]+dpl+2*i+1];

117

xdpl += (idx-lo)*size;

size = Data[CSG[sn]+dpl+2*i];

}

xdpl += offset;

} else { /* static array */

for (i = 0; i < dim; i++) {

pop idx;

pop lo;

xdpl += (idx-lo)*size;

pop size;

}

xdpl += dpl;

}

/* end of: get_xdpl(sn, dpl) */

push CSG[sn]+xdpl;

Description descr creates a dynamic array descriptor in the data segment at
position CSG[sn]+dpl. First the bounds are popped off the stack
and stored into the descriptor. Then the offset is computed and
stored into the descriptor. Next the dimension dim is stored into the
descriptor. Finally the size of the data segment is increased to hold
the contents of the dynamic array.

eqn compares two arrays of length n on the stack. First n is popped
off the stack, if n equals 0, the length n is obtained from the
dynamic array descriptor at position CSG[sn]+dpl. Then
is_equal(n) is called to compare the first n elements with the next n
elements on the stack. Finally the return value of is_equal(n) is
pushed onto the stack (1 if equal, else 0).

ldnvar loads an array of length n from the data segment onto the
stack. First n is popped off the stack, if n equals 0 the displacement
dpl and length n of the array are obtained from the dynamic array
descriptor at position CSG[sn] +dpl. Finally the array of length n,
starting at position CSG[sn]+dpl is pushed onto the stack.

ldxvar (load indexed variable) calculates the value of xdpl (see
xvaraddr) and pushes the contents at Data[CSG[sn]+xdpl] on the
stack, i.e. a combined xvaraddr, ldind, swap, pop sequence.
nen compares two arrays of length n on the stack. First n is popped
off the stack, if n equals 0, the length n is obtained from the
dynamic array descriptor at position CSG[sn]+dpl. Then
!is_equal(n) is called to compare the first n elements with the next
n elements on the stack. Finally the return value of !is_equal(n) is
pushed onto the stack (1 if not equal, else 0).

Reference Guide, Virtual Machine (VIM)

118

popn pops an array of length n off the stack. First n is popped off
the stack, if n equals 0 the length n is obtained from the dynamic
array descriptor at position CSG[sn]+dpl. Finally the array of
length n is popped off the stack.

stnvar stores an array of length n from the stack into the data
segment. First n is popped off the stack, if n equals 0 the
displacement dpl and length n of the array are obtained from the
dynamic array descriptor at position CSG[sn]+dpl. Finally the array
of length n is popped off the stack and stored at position
CSG[sn]+dpl.

stxvar (store indexed variable) calculates the value of xdpl (see
xvaraddr), pops value off the stack and assigns value to
Data[CSG[sn]+xdpl], i.e. a combined xvaraddr, swap, stind, pop
sequence.

xvaraddr loads the address of an indexed array element onto the
stack. First the dimension dim is popped off the stack, if dim is less
than 0 the dimension dim is obtained from the dynamic array
descriptor at position CSG[sn]+dpl. Then the indices and
corresponding bounds are popped off the stack and the
displacement is calculated. Finally the address of the indexed array
element is pushed onto the stack.

The instructions marked with a * are added to do the laboratory
exercises with arrays and records on page 51 and further.

See also eq, ldind, ldvar, ne, pop,

stind, stvar (VIM instruction set)

emit_descr(), emit_bound(), emit_opn() (Module vimcode)

