
Applying TorX

Axel Belinfante

10/10/2005

Abstract

In this document we describe how to set up an experiment with TorX.
The pdf version of this document contains hyperlinks to on-line reference
information.

1 Introduction

We start this document with some general background information about TorX,
after which we describe in more detail how to set up an experiment with it.

The TorX (unix style) manual pages are the definite source of information
providing the details that we try to omit here for clarity. The torx-intro(1)
manual page1 gives an overview of the manual pages. Where appropriate the
manual pages refer to each other (and torx-intro(1) refers to all of them).

The manual pages are available in several forms. The TorX distribution
contains them as unix manual pages. The TorX website contains them in html,
and there the references between the manual pages are made into hyperlinks.
The TorX website also has postscript and pdf files that contain all manual pages
– unfortunately these do not have the hyperlinks (it would be great if we could
add those to the pdf).

1.1 What is TorX?

TorX is a tool for specification-based blackbox conformance testing. It does the
testing in an “on-the-fly” (or “on-line”) manner, by which we mean that test
derivation and test execution are done together – each test step is derived on
demand when the test execution needs it.

1.2 How is TorX organised?

TorX has a flexible architecture. It does not consist of one (big) single program,
no, it consists of a number of specialized programs. Essentially, each component
in the TorX architecture is mapped onto a separate program. (There are a few

1This is the usual unix way of referring to a manual page: when we write torx-intro(1)

we mean manual page torx-intro of section 1 of the manual, which contains user commands.

10/10/2005-18:12 1 d r a f t

http://www.purl.org/net/torx/
http://www.purl.org/net/torx/torxmanual.html
http://www.purl.org/net/torx/torx-intro.1.html
http://www.purl.org/net/torx/torx-intro.1.html
http://www.purl.org/net/torx/distribution.html
http://www.purl.org/net/torx/
http://www.purl.org/net/torx/torxmanual.html

1.3 How uniform is configuration of TorX components? 2

exceptions to this, which we (intend to) discuss at a more appropriate point.)
Each of these programs may need configuration information to be able to do its
job.

1.3 How uniform is configuration of TorX components?

We have great plans to make the configuration of TorX and its programs more
uniform, but unfortunately that is no reality yet. In general, programs can take
configuration information from command line options, and/or (a) configuration
file(s) (e.g. specified on the command line), or even from environment variables
(these are not used much in the configuration of TorX). In TorX, usually, “sim-
ple” things are configured via command line options, and more complex config-
uration is done via (a) configuration file(s). It is very seldom that environment
variables are used.

Which programs are needed, and how they are configured, depends on the
particular “experiment” that we want to do. In this document we will describe
the basic set-up. The basic set-up consists of a model (or specification), an
implementation to test, together with the main test driver, the components that
we need to access the model and derive test steps from it, and a component to
connect to (interface with) the implementation under test. We may spent some
time at the end to discuss more elaborate set-ups, e.g. involving a test-purpose
to guide the testing.

1.4 Where do the TorX components come from?

Some of the programs used in an experiment are generic, and part of the TorX
distribution. Other programs are specific, for example specification-specific or
implementation-under-test-specific. Such programs are not part of the TorX dis-
tribution. Some of these programs can be generated by TorX from information
supplied by the user. Other programs have to be supplied by the user.

For example, in general the program(s) that TorX uses to access a specifica-
tion (“primers” in TorX-speak) can be generated using a program “mkprimer”.
More about mkprimer later. Programs that typically have to be supplied (writ-
ten) by the user are those that TorX needs to access the implementation-under-
test (“adapters” in TorX-speak).

1.5 What is the basic TorX set-up?
needs definite
rewriteThe basic set-up of TorX is as follows. The actual test derivation and execu-

tion is driven by the program torx(1) of the TorX distribution. The TorX
distribution also contains xtorx(1) which is a graphical user-interface wrapper
around this torx program – whenever you press the “Start” button in xtorx,
torx is started. torx uses a primer program (see torx-primer(5)) to ac-
cess the specification and derive test steps from it, and an adapter program
(see torx-adaptor(5)) to access the implementation. (Where we write primer
here, the picture may be slightly more complex: the primer we talked about

10/10/2005-18:12 d r a f t

http://www.purl.org/net/torx/torx.1.html
http://www.purl.org/net/torx/xtorx.1.html
http://www.purl.org/net/torx/torx-primer.5.html
http://www.purl.org/net/torx/torx-adaptor.5.html

1.6 How do TorX programs delegate work? 3

so far usually consists of a (specification-independent) primer “proper” that
is used to derive test steps, and a separate (specification-language dependent)
explorer program (see torx-explorer(5)), which the primer “proper” uses
to access the specification. When we use the mkprimer(1) program to generate
a primer it hides this distinction and just generates a program (shell script)
that does all.) Which primer and which adapter to use is specified in a config-
uration file for torx. When torx is started it reads its configuration file(s) and
starts the primer and adapter programs. The configuration file(s) for torx can
be handwritten or (partly) generated. When xtorx is used to start torx, xtorx
may generate part of the configuration information for torx in (a) separate con-
figurarion file(s) that it gives to torx when it starts it. This is used in some
of the torx-demos, where the user can choose a primer and/or implementation
(mutant) from a menu in xtorx before pressing the “Start” button.

1.6 How do TorX programs delegate work?
move directly
after: how
is torx orga-
nized?

The general way in which TorX programs delegate work to other programs is by
starting (forking) the other programs, and then giving commands to these pro-
grams by writing lines of text to their standard input and reading the responses
(answers) from the standard output of the programs. So, during an actual test
run the programs that are running are connected in the form of a tree in which
each running program (process) is the parent of the programs that it started
to delegate work to. The root of this tree is torx (or xtorx). The nodes of
the tree are the running programs (processes) and the edges of the tree are the
pipes over which the parents communicate with their children.

Details about the commands that torx sends to a primer and adapter,
and the answers that it expects from them, can be found in torx-primer(5)
respectively torx-adaptor(5). Details about the commands that a primer
sends to an explorer and the answers that it expects from it, can be found in
torx-explorer(5).

The configuration of each of the programs consists of the information the
program needs to do its own job, and, if it delegates work to other programs,
the information that it needs to start these programs like their names, their
command line options etc.

1.7 What configuration information is needed?

The main program, torx, delegates most of its work to other programs. In
the basic set-up that we discuss here, these programs are the primer and the
adapter. So, torx will have to know how to start them. Another important
item of the torx configuration is the name of the file into which to store the
test log. We will need this to analyse the results.

Other items of the torx configuration include for example the seed of the
random number generator, or which visualization programs should be started.
In general for these items the default values will be sufficient.

10/10/2005-18:12 d r a f t

http://www.purl.org/net/torx/torx-explorer.5.html
http://www.purl.org/net/torx/mkprimer.1.html
http://www.purl.org/net/torx/torx-primer.5.html
http://www.purl.org/net/torx/torx-adaptor.5.html
http://www.purl.org/net/torx/torx-explorer.5.html

4

Also the primer and adapter usually need configuration information. The
primer needs to know which actions (events, labels) of the specification repre-
sent stimuli that can be given as inputs to the implementation, and which of
them represent observations (outputs) from the implementation. The adapter
may start the implementation-under-test, or it may connect to an implementa-
tion that is already running. In both cases it needs to know how to access the
implementation (which interfaces, host names, protocols, port names?), and in
the first case it also needs to know which program to start, with which command
line options.

In the remainder of this document we will discuss in more detail how to get
resp. write a primer and adapter, and how to configure torx.

2 How to do an experiment with TorX?

A highlevel overview of the steps we usually take to do an experiment can be
found in section 2, “Methodology”, of [dVBF02]. To do an experiment, the
steps are (not necessarily in this order):

1. get (or make) specification

2. make directory structure for the experiment

3. generate a primer program from/for specification

4. get (or make) an implementation

5. write or find an adapter program

6. write the configuration file(s) for TorX

7. run the experiment (using torx or xtorx)

8. (optionally) run the experiment multiple times using torx in batch mode
item analyze results

We discuss them one by one below.

2.1 get specification

Make a specification in LOTOS, Promela, Aldebaran (.aut). FSP (for LTSA)
or in another language supported by TorX (see ‘What languages can we use?’
on page 5).

Specification-language specific comments can be found in the tool-specific
manual pages for mkprimer(1), e.g. see mkprimer-cadp(1), mkprimer-ltsa(1),
mkprimer-trojka(1), and in the manual pages about the explorer programs
themselves: autexp(1), ltsaexp(1), smileexp(1). (Unfortunately, there is no
mkprimer-autexp(1) yet; we do have autexp(1).) These pages document the
various explorer or explorer/primer programs that we have. It may be the

10/10/2005-18:12 d r a f t

http://www.purl.org/net/torx/mkprimer.1.html
http://www.purl.org/net/torx/mkprimer-cadp.1.html
http://www.purl.org/net/torx/mkprimer-ltsa.1.html
http://www.purl.org/net/torx/mkprimer-trojka.1.html
http://www.purl.org/net/torx/autexp.1.html
http://www.purl.org/net/torx/ltsaexp.1.html
http://www.purl.org/net/torx/smileexp.1.html
http://www.purl.org/net/torx/autexp.1.html

2.2 get implementation 5

case that a language is supported by multiple explorer programs, e.g.ṫhis is
the case for the Aldebaran (.aut) format, and that then for the same language
different details need attention, depending on the tool that is used to “access”
it. That is why we have tool-specific manual pages and not language-specific
ones.

2.1.1 What languages can we use?

Invoking mkprimer(1) without arguments makes it print a list of language
names and corresponding file name suffixes. The list shows the languages for
which support is available, which may vary from one installation to another,
because for a number of languages TorX depends on external tools which may
or may not have been installed. Figure 1 shows an example.

% mkprimer
usage: mkprimer [-o outputfile [--language lang]]

[--inputs inputgates] [--outputs outputgates]
[--config configfile] specfile

usage: mkprimer --list
makes an executable program ‘‘outputfile’’ for specfile
outputfile defaults to "specname" (basename of "specfile" without suffix)
recognized languages and suffixes:

AUT .aut
AUT-CADP
BCG .bcg
CR .cr
FC2 .fc2
FSP .lts
LOTOS .lot .lotos
PROMELA .trojka
TTA .tta

Figure 1: mkprimer languages listing

2.2 get implementation

Get/write an implementation, and keep in mind that you will have to be able
to (let TorX) interact with it, essentially by mimicking (the behaviour of) its
user or users (that is essentially what TorX does: it uses the implementation
as if it is a user of it, and it uses the specification to know what the user can
do, and to know how the implementation should react). If the implementation
runs somewhere in a box, and you have no means of connecting with the box,
or with the program running in the box, you cannot do anything.

Connecting to and interacting with the implementation will be done by the
adapter, which we will discuss further on.

10/10/2005-18:12 d r a f t

http://www.purl.org/net/torx/mkprimer.1.html

2.3 make directory structure 6

2.3 make directory structure

Set up a directory structure. One way to do this is the structure we have chosen
for the TorX examples. The general scheme we use is as depicted in figure 2.

experiment/
makefile (includes make.subdirs)
experiment.if (configuration file for torx)
SPEC/

makefile (includes make.settings and make.specdir)
LANG1/

makefile (includes make.settings and make.primers)
explor.cfg (configuration file for primer)
spec1.sfxl1
spec1 (generated from spec1.sfxl1)

LANG2/ (if we have specs in multiple languages)
makefile (includes make.settings and make.primers)
spec1.sfxl2
spec1 (generated from spec1.sfxl2)

IUT/
makefile (includes make.settings and make.primers)
IMPL (compiled from files in source)
SOURCE/

various
source
files

bin/
lib/

make/
make.primers
make.settings
make.subdirs

Figure 2: Example directory structure

At the top level we have a configuration file (experiment.if2) and separate
sub directories SPEC and SUT (or IUT), and for general utilities (bin, lib). If
we use more than a single specification language, the SPEC directory contains
separate subdirectories for each of them.

We use make and makefile to build (generate) the primer program, and,
if necessary, to compile the implementation(s) (there may be multiple imple-
mentations – in the conference protocol example we compile a set “mutants” in
single source directory).

In our example LANG1 and sfxl1 etc. are placeholders for language names
like LOTOS, PROMELA, AUT, etc., respectively file name suffixes like lot, trojka,

2The .if suffix is a historical accident.

10/10/2005-18:12 d r a f t

http://www.purl.org/net/torx/torxexamples.html

2.4 generate primer program 7

aut, etc. We tend to use uppercase for directory names, and lowercase for
file names. This is partly historical, probably mostlly under influence of the
convention we used in mkprimer, in which language names are in uppercase (see
‘What languages can we use?’ on page 5).

As said ablove, we use make to help us to maintain the dependencies be-
tween our source files and the programs (and other files) that are generated
from them. In the TorX examples distribution we have tried to isolate common
make “patterns” into separate makefiles (see TorX examples directory lib/make)
that are included by the makefiles in our examples directory tree. These make-
files allow us to have specification subdirections for many languages, and when
“make-ing” the primers, make will only consider those language subdirectories
for which mkprimer supports the language. Additionally, the makefiles use a
naming scheme for the generated executable programs that allows executables
for multiple platforms to co-exist in a single directory. Study the makefiles in
the TorX examples for details. or should we

explain them
here?2.4 generate primer program

Generate a primer program for/from the specification. The generic TorX pro-
gram mkprimer does this. Details can be found in manual page mkprimer(1).
Specific, specification-language dependent details can be found in more detailed
manual pages like mkprimer-cadp(1), mkprimer-ltsa(1), mkprimer-trojka(1).
[Note: probably mkprimer-cadp(1) is out of date regarding the Aldebaran
(.aut) language, need to write mkprimer-expaut(1), there is autexp(1) though.]

The primer program can be run from the command line, as a kind of single-
step simulator, by typing the commands that the torx program uses to interface
with it. The utility program pui(1) gives a slightly more comfortable way of
using the primer. If the generated primer is called confprot pui is invoked as:

pui confprot -with -command -line options

The generated primers use a LOTOS-like notation for the actions (events,
labels), where the various parts of an action are separated by exclamation marks
(!). The first element will be the LOTOS gate or the Promela channel etc. The
individual parts of an action may contain subexpressions between parentheses,
as in:

cfsap_in ! some ! thing
cfsap_in ! join(user, chan)
cfsap_in ! join ! 52 ! 31

In general you will now also have to configure which are the stimuli and which
are the observations. Unfortunately, how to specify this currentely depends on
the specification language, because we generate different programs, depending
on the specification language. The different programs have to be configured in
different ways. There are three possibilities:

1. using Promela

10/10/2005-18:12 d r a f t

http://www.purl.org/net/torx/mkprimer.1.html
http://www.purl.org/net/torx/mkprimer-cadp.1.html
http://www.purl.org/net/torx/mkprimer-ltsa.1.html
http://www.purl.org/net/torx/mkprimer-trojka.1.html
http://www.purl.org/net/torx/mkprimer-cadp.1.html
http://www.purl.org/net/torx/autexp.1.html
http://www.purl.org/net/torx/pui.1.html

2.4 generate primer program 8

2. using LOTOS or language for which we use CADP

3. other language (FSP, Aldebaran (.aut))

We discuss them one by one below.

2.4.1 Promela

In this case the generated primer consists of a single program into which the
specification is compiled. In this case no special configuration is needed, because
in the “dialect” of Promela that we use in TorX the information about which
actions represent stimuli and which represent stimuli is already implied in the
specification.

The main difference between a Promela model for model-checking, and a
Promela specification for testing with TorX is that the model for model-checking
is closed: it contains both the system and its environment. The specification for
testing is open: it contains only the system, but not its environment. We make a
closed model open by removing (not running) its environment, and by marking
the channels that link the system and the environment as observable. All mes-
sages that the system sends over such channels are turned into observations (out-
puts from the system), and all messages that the system reads from such chan-
nels are turned into stimuli (inputs to the system). All messages send/received
over the other channels are internal (invisible outside the system). The Promela
conference protocol specification in the TorX examples distribution shows how
this can be done (see the files in directory confprot/SPEC/PROMELA/). It is
also explained in more detail in mkprimer-trojka(1).

2.4.2 LOTOS or other language for which we use CADP

In this case the generated primer consists of a single program into which the
specification is compiled. In this case we use the simple convention that each
LOTOS “gate” is only used for communication in a single direction, so we have
“input gates” (for stimuli) and “output gates” (for observations). So, in the
LOTOS specification of the conference protocol in the TorX examples distribu-
tion we use udp in!udp0!message to represent an udp message that the system
receives from the environment on udp port udp0, and udp out!udp1!message
to represent an udp message that the system sends to the environment via udp
port udp1.

We configure the input and output gates in the configuration file for torx,
using configuration lines with keywords INPUT and OUTPUT respectively, e.g.:

INPUT udp_in
INPUT cfsap_in
OUTPUT udp_out
OUTPUT cfsap_out

This can be seen in the confprot/confprot.lotos.if file in the TorX examples
directory. These keywords are documented in the torx-config(5) manual page.

10/10/2005-18:12 d r a f t

http://www.purl.org/net/torx/mkprimer-trojka.1.html

2.4 generate primer program 9

mkprimer can be made to generate a partial configuration file for torx that
contains INPUT and OUTPUT configuration lines by invoking it with --inputs
and --outputs command line options to specify the input and output gates.
This is documented in the mkprimer(1) manual page.

For example, when invoked as

mkprimer --inputs udp_in,cfsap_in --outputs udp_out,cfsap_out spec.lot

mkprimer will generate a primer program in output file spec and an ad-
ditional file spec.gates containing the INPUT and OUTPUT lines shown above.
This spec.gates file can then be included in the configuration file of torx using
the INCLUDE keyword (as discussed below).

When torx starts such a primer program it gives it the input and out-
put gates (separated by commas, no whitespace in between) using -i and -o
command line options, like in:

confprot -i cfsap_in,udp_in -o cfsap_out,udp_out

When such a primer is invoked without these options it will warn that no in-
puts/outputs have been configured. To use pui with confprot with these op-
tions just add them:

pui confprot -i cfsap_in,udp_in -o cfsap_out,udp_out

2.4.3 other language (FSP, Aldebaran (.aut))

In this case we use a generic (specification-language independent) primer pro-
gram from the distribution (called primer). Access to the specification is real-
ized via a specification-language dependent explorer program. In this case we
give the primer program a configuration file in which we give patterns to match
the input and output actions. This is a bit more “detailed” than the above case
where we only use the gate names.

This configuration file contains sets of whitespace-separated name=value
pairs. The sets themselves are separated by empty lines. Each set (block)
specifies one “channel” (distinguishable means of interaction between tester and
implementation) For each “channel” we define its name, its direction (here called
iokind), and we give patterns to match the events (actions) that “belong” to
this “channel”. In addition we can specificy the name of the pseudo-action that
we use to represent quiescence (the observation of the absence of output) as
value of field suspension. The channel name can be arbitrarily chosen, but
usually they will be in or out. The value of iokind must be either input or
output. The value of event gives the pattern that is used to match actions.
There may be multiple occurences of event for a channel.

In the definitions of the events, whitespace is ignored in the patterns when
matching actions. Be careful: it may be best to specify actions (event patterns)
in lowercase, the case sensitivity/insensitivity may be kind of broken (possible
bug).

10/10/2005-18:12 d r a f t

http://www.purl.org/net/torx/mkprimer.1.html

2.5 write or find an adapter program 10

Each such set starts with a name-value pair at the beginning of a line. Name-
value pairs belonging to the same set can be given on the same line, or on lines
that start with whitespace.

Example:

channel=in
iokind=input
event=udp_in!*!*
event=udp_in!*
event=cfsap_in!*!*

channel=out
iokind=output
event=udp_out!*!*
event=udp_out!*
event=cfsap_out!*!*
suspension=Delta

The first set above can also be written as:

channel=input event=udp_in!*!* event=udp_in!* event=cfsap_in!*!*

The patterns for event can contain wildcards. Be careful, the number of “¡‘
in the patterns must match the number of “!” in the actions in the specification.
Note that for output actions (observations) we also explictly indicate that we
can observe quiescence on them, using the suspension name=value pair.

The name of such a configuration file can be given with the “–config” com-
mand line option to the mkprimer program, such that it is incorporated in the
generated program (actually: shell script). TODO: add

example.

2.5 write or find an adapter program

2.6 write the configuration file(s) for TorX

The main configuration file is the one for torx. This is a textfile. Each item
appears on its own line, which starts with a keyword. Comment lines (starting
with a “#”) and empty lines are ignored. When relative path names are given
in the configuration, they are interpreted relative to the directory in which the
configuration file is. For historical reasons the filename should have a “.if” suffix.
The details are in manual page torx-config(4). This manual page contains also
a few examples.

For historical and practical reasons the configuration file for torx may contain
also configuration information for other TorX components. In particular, it may
contain information for the primer (in the INPUT and OUTPUT configuration
lines), for xtorx (configuration entries related to the Primer and Mutants menus,
and for showing specifications) and for the adapter (e.g. IUT).

The minimal configuration consists of the following items:

10/10/2005-18:12 d r a f t

2.6 write the configuration file(s) for TorX 11

• the path to the primer program (to be started by torx)

• the path to the adapter program (to be started by torx)

• the input and output actions

• (optionally) the path to the implementation program (if it has to be
started by torx)

• a PCO declaration (even if not used, it has to be there or else torx will
complain)

The path to the primer program has to be given as follows.

SPEC path/to/primer

The path to the adapter program has to be given as follows3

ADAPTOR path/to/adapter

By default, torx starts the primer and the adapter such that their “current
working directory” is the directory that contains them, i.e. with the example
configuration given above, the will be running in directory

path/to/

relative to the directory containing the configuration file.
Knowing this may avoid some surprises (even though in general it should

not matter much, there may be cases where it does). This behaviour can be
overruled by configuring items SPECRUNDIR and ADAPTORRUNDIR. There
are other programs that are started by torx in the same way. For details see
manual page torx-config(4) and look for “RUNDIR”.

We already discussed above (when talking about “making a primer”) how
to configure which are the input actions and which are the output actions.

As discussed there this configuration either has to be in the torx configura-
tion file, or in a separate file for the primer, depending on the explorer/primer
that has to be used (which is a consequence of the specification language cho-
sen). This distinction is unfortunate, and we hope to make it disappear in some
future version of TorX, but for now we just have to live with it.

If it has to be part of the configuration file of torx, it has to be configured
as follows.

INPUT udp_in
INPUT cfsap_in
OUTPUT udp_out
OUTPUT cfsap_out

3In the past there has been some confusion between “adapter” and “adaptor”; nowadays
we usually speak about adapters, but the keyword still has the “o”.

10/10/2005-18:12 d r a f t

2.7 run the experiment (using torx or xtorx) 12

As discussed above, “mkprimer” can generate a file containing this if it is
invoked with the –inputs and –outputs command line options. If that has been
done, the file generated by mkprimer can be included as follows.

INCLUDE path/to/primer.gates

2.7 run the experiment (using torx or xtorx)

The easiest way to run the experiment, once all ingredients are there, is to start
xtorx, load the configuration file, choose a file for the logs, and press the start
button in xtorx. This will start torx. If all works fine, debugging output should
appear in the bottom pane of xtorx, and in the “Inputs” and “Outputs” panes
the actions currently possible should appear.

If things do not work, maybe the reason can be found in the messages in the
bottom pane of xtorx. If it looks like nothing happens, it may be useful to start
torx directly (and not via xtorx):

torx config.if
include more
elaborate
description
from else-
where (testing
technigues
handout)?

Details about the use of xtorx(1) and torx(1) can be found in the manual
pages.

2.8 (optionally) run the experiment multiple times using
torx in batch mode

to be addedThe torx(1) manual page contains an example.

2.9 analyze results

The results appear in the log file – if one has been configured in the torx con-
figuration file, and this has not been overruled in xtorx. The log file should
contain all we need to know/save about a test run for later analysis.

Details about the format of this file can be found in torx-log(4). It is a text
file.

The log file starts with the configuration of torx. (In the future we would
like to have the configuration of the other components appear there too). This
is followed by some lines of text for each test step. Each of these lines starts
with a keyword followed by the test step number.

Some of the possible details will only be there if the primer or adapter
provided it.

Not all primers (can) provide the same information. Details should be in the
corresponding mkprimer(1) subpage or explorer page (like mkprimer-cadp(1) or
autexp(1)).

Information about what happens “in the real world” is only present if the
adapter tells torx about it. Examples of this are the concrete messages ex-
changed by the adapter with the implementation under test, or the PCOs. In
general these are the elements that are optional in the torx-adapter(5) interface
(look for example for the A INPUT OK and A OUTPUT OK messages).

10/10/2005-18:12 d r a f t

2.10 summary 13

2.10 summary

2.11 walkthrough of examples

2.11.1 use of simulator as implementation

2.11.2 use of real implementation

2.12 overview of “ingredients” (glossary?)

3 Customizing xtorx

3.1 Visualization

3.2 Primers and Mutants

4 More elaborate set-up

4.1 Adding test purposes

4.2 Adding instantiator

5 Work in progress notes from here.

How to get a “primer” program? “mkprimer” takes the name of the specification
as argument. It may take other arguments, in particular ones that say which
actions (events, labels) in the specification are to be used as stimuli (i.e. inputs
for the implementation under test) and which ones are to be used as observations
(i.e. outputs of the implementation under test). Unfortunately, the way in which
it expects this depends on the

More details about mkprimer can be found in mkprimer(1). More details
about the commands that torx sends to a primer, and the answers that it expects
can be found in torx-primer(5).

Programs that typically are implementation-under-test-specific are what TorX
calls “adapters” – programs that TorX uses to access the implementation under
test. Adapter programs have on generice interface, which is used by TorX to
“talk” to them, and one or more implementation-under-test specific interfaces,
which it uses to interact with the implementation. Over the interface to torX
it uses the actions (events, labels) from the specification; over the interfaces to
the implementation it uses whatever the implementation expects.

10/10/2005-18:12 d r a f t

REFERENCES 14

References

[dVBF02] René G. de Vries, Axel Belinfante, and Jan Feenstra. Automated
Testing in Practice: The Highway Tolling System. In Ina Schiefer-
decker, Hartmut König, and Adam Wolisz, editors, Testing of Com-
municating System XIV, pages 219–234, Berlin, 2002. Kluwer aca-
demic publishers. 2 [4]

10/10/2005-18:12 d r a f t

	1 Introduction
	1.1 What is TorX?
	1.2 How is TorX organised?
	1.3 How uniform is configuration of TorX components?
	1.4 Where do the TorX components come from?
	1.5 What is the basic TorX set-up?
	1.6 How do TorX programs delegate work?
	1.7 What configuration information is needed?

	2 How to do an experiment with TorX?
	2.1 get specification
	2.1.1 What languages can we use?

	2.2 get implementation
	2.3 make directory structure
	2.4 generate primer program
	2.4.1 Promela
	2.4.2 LOTOS or other language for which we use CADP
	2.4.3 other language (FSP, Aldebaran (.aut))

	2.5 write or find an adapter program
	2.6 write the configuration file(s) for TorX
	2.7 run the experiment (using torx or xtorx)
	2.8 (optionally) run the experiment multiple times using torx in batch mode
	2.9 analyze results
	2.10 summary
	2.11 walkthrough of examples
	2.11.1 use of simulator as implementation
	2.11.2 use of real implementation

	2.12 overview of ``ingredients'' (glossary?)

	3 Customizing xtorx
	3.1 Visualization
	3.2 Primers and Mutants

	4 More elaborate set-up
	4.1 Adding test purposes
	4.2 Adding instantiator

	5 Work in progress notes from here.
	References

