
User Commands torx-intro (1)

NAME
torx-intro − introduction to the Cote de Resyste testing tool torx

DESCRIPTION
This page briefly discusses TorX terminology that might confuse readers coming from a different back-
ground. Inaddition, it gives an overview of the commands offered by torx, together with its utilities, inter-
faces, etc.

TERMINOLOGY
CHANNEL

Here we discuss a concept that might cause confusion.

The conceptchannel is used in TorX in two places: in the promela specification language that is used as
input for the promela primer, and elswhere in TorX, e.g. in interfaces and configuration files of TorX tool
components. Itis important to understand that theonly place in TorX wherechannel is used with the
meaning that it has in promela, is in the promela specifications.Everywhere else in TorX the conceptchan-
nel is interpreted as in theMIOCO extension of theIOCO testing theory, where a channel is a (group of)
point(s) to interact (interface) with the implementation.A channel is unidirectional. This means in particu-
lar that multiple promela channels can belong to a single TorX (MIOCO) channel.Currently, when we use
the IOCO testing theory, in all cases we use exactely two (MIOCO) channels, one for input (in) and one for
output (out).A theoretical definition can be found on page 34 of Lex Heerink’s PhD thesis "Ins and Outs in
Refusal Testing".

LT S
The Explorer component in TorX gives access to a Labelled Transition System (LTS) representation of the
specification (model) fed into it. In the specification, the LTS may be present explicitly (as is the case for
the Aldebaran (.aut) files) in which case it will be finite, or implicitly (as is the case for, for example,
LOTOS), in which case it (the number of states and/or transitions) may be infinite.

The Primer uses the LTS offered by an Explorer and partitions the transitions into inputs and outputs (stim-
uli and observations), adds quiescent transitions, and (lazily) determinizes it. The result of this can be seen
again as a LTS, which can be explored usingprimexp(1).

INTEGRATION WITH OTHER T OOL(KIT)S
CADP

There is a ‘‘bi-directional’’ connection with the CADP toolkit via the open/caesar interface. Via
mkprimer (1) TorX can be auserof the open/caesar interface to be able to use CADP ‘‘explorers’’, and it
can also viatorx_open(1) be aprovider of the open/caesar interface to allow CADP tools (simulators, state
space generators, etc.) to use the TorX ‘‘explorers’’, or even to explore the LTS offered by TorX
‘‘ primers’’ (by usingprimexp(1) in combination withtorx_open(1)).

mucrl
TorX can explore mucrl specifications using the program mucrl from the mucrl toolkit and the programs
tbf2lpe and lpe2torx from the mcrl2 toolkit.

mcrl2
TorX can explore mcrl2 specifications using the programs mcrl2 and lpe2torx from the mcrl2 toolkit.

ltsa
TorX can explore fsp specifications using theltsaexp(1) explorer that builds on the fsp ‘‘explorer’’ that is
present in the LTSA tool.

GraphViz
The graphviz toolkit is used for visualization (using graphviz program dot) and animation (using graphiz tcl
extension tcldot) of graphs, automata etc.

LIST OF COMMANDS
The commands are grouped below as follows: for each of the components (modules) in the TorX architec-
ture (driver, primer, explorer, adapter) there is a corresponding command group. The other commands con-
sist of utilities of various kinds, most notably visualization and file format conversion.

SunOS 5.8 Last change: 1

User Commands torx-intro (1)

User Interfaces
Name Description

pui(1) simpleprimer user interface

xtorx (1) graphicaluser interface fortorx (1)

User Interface Utilities
Name Description

torx-logclient(1) connecttorx log monitor command to torx

torx-querypr (1) querytorx problem report database

torx-sendpr(1) submittorx problem report

xtorx-showmsc(1) show a TorX run log as Message Sequence Chart

xtorx-showspec(1) show the specification (source) of a primer or mutant

Program Interface For External Tools
Name Description

torx_open(1) offer open/caesar API access to (LTS of) TorX explorer program
and viaprimexp(1) to (LTS of) TorX primer program

Dri ver
Name Description

torx (1) execute test on the fly

Explorer
Name Description

autexp(1) explore Aldebaran (.aut) automaton files

jararaca(1) explore traces generated from regular expressions

ltsaexp(1) useltsa astorx-explorer (5) for the language fsp

smileexp(1) usesmile as symbolictorx-explorer (5) for LOTOS

primexp(1) provide torx-explorer interface to torx primer

Primer
Name Description

primer (1) computetest primitives using explorer

intersector(1) combinemultiple torx primers

Primer Cr eation
Name Description

mkprimer (1) generatea primer

mkprimer-aut (1) generatea AUT primer that usesautexp(1)

mkprimer-cadp (1) generatea LOT OS, BCG, FC2 or AUT primer using CADP

mkprimer-jararaca (1) generatea TP or JARARACA primer that usesjararaca(1)

mkprimer-ltsa (1) generatean FSP primer that usesltsaexp(1)

mkprimer-mcrl (1) generatea mCRL primer

mkprimer-mcrl2 (1) generatea mCRL2 primer

mkprimer-trojka (1) generatea promela primer using trojka

preprocmkprimer (1) preprocessinput before invoking mkprimer (1)

cppmkprimer (1) preprocessinput withcpp(1) before invoking mkprimer (1)

SunOS 5.8 Last change: 2

User Commands torx-intro (1)

m4mkprimer (1) preprocessinput withm4(1) before invoking mkprimer (1)

Adapters
Name Description

adaptor(1) default TorX program to interface to the SUT

adaptlog(1) TorX program to interface to atorx-log(4) log file used as SUT

adaptsim(1) TorX program to interface to atorx-primer (5) used as SUT

Adapter Utilities
Name Description

tcp(1) connectionprogram for tcp

udp(1) connectionprogram for udp

hexcontext(1) hex encode/decode stdio of (IUT) program

unhexify(1) translatefrom hexadecimal to ascii

Other TorX Components
Name Description

instantiator (1) instantiatefree variables for torx

iochooser(1) suggestby probabilities to stimulate or observe

partitioner (1) weight-basedtest primitive selection for primer

Visualization
Name Description

anifsm(1) animateand edit graph in dot format and write Aldebaran (.aut)
automaton

aniwait(1) animateprogressbar

jararacy (1) animatejararaca(1) trace usinglefty(1)

mctrl (1) animationprogress scrollbar

mscviewer(1) view Message Sequence Chart in window

Bmsc(1) shellcommand to load Message Sequence Chart file(s) into running
mscviewer(1)

Visualization Utilities
Name Description

tmcs(1) tcpmulticast service program

Format Conversion
Name Description

aut2fsmview(1) translateAldebaran (.aut) to FSMView input

jararacy2anifsm(1) translatefrom jararacy (1) toanifsm(1) input format

log2anifsm(1) extract info fromtorx-log(4) file for animation withanifsm(1)

log2aniwait(1) extract information foraniwait(1) from torx-log(4) file

log2aut(1) extract states and transitions fromtorx-log(4) file for autexp(1) and
anifsm(1)

log2jararacy(1) extract states and transitions fromtorx-log(4) file for jararacy (1)
andanifsm(1)

log2mctrl(1) extract step numbers fromtorx-log(4) file for animation with

SunOS 5.8 Last change: 3

User Commands torx-intro (1)

mctrl (1)

log2msc(1) extract Message Sequence Chart fromtorx-log(4) file

log2primer(1) generatetorx-primer (5) commands fromtorx-log(4) file

Various
Name Description

autsimplify (1) simplify automaton Aldebaran (.aut) file

campaign(1) avery experimentaltool (and language) to describe a test campaign
and populate a directory structure with Makefiles and configuration
files

torx-mans(1) list TorX manual page file names

torx-root (1) reporttorx installation directory

torx-hostname(1) printhostname taken from network database

LIST OF INTERF ACES
Name Description

mkprimer (5) (perl) API to add support for a specification language or toolkit to
mkprimer (1)

torx-adaptor (5) (interface to) en/decoder and connector to system-under-test for
torx (1)

torx-explorer (5) (interface to) explore a labelled transition system fortorx (1)

torx-instantiator (5) (interface to) instantiator program fortorx (1)

torx-primer (5) (interface to) primer (specification) program fortorx (1)

xtorx-extension(n) (tcl) API to specifyPrimersand/orMutantsmenu forxtorx (1)

LIST OF FILE FORMA TS
Name Description

torx-config(4) configurationfile for torx (1)

torx-log(4) testrun log file generated bytorx (1)

SEE ALSO
Lex Heerink, Ins and Outs in Refusal Testing, PhD thesis, University of Twente, The Netherlands, 1998.
ISBN 90-365-1128-3

CONTACT
By Email: <torx_support@cs.utwente.nl>
On the Web: <URL:http://www.purl.org/net/torx/>

VERSION
This manual page documents version 3.9.0 of torx.

SunOS 5.8 Last change: 4

User Commands mscviewer (1)

NAME
mscviewer − view a Message Sequence Chart

SYNOPSIS
mscviewer [-r] [-m mcastid] [files ...]
Bmsc [-r] [-m mcastid] [files ...]
Bmsc -exit

DESCRIPTION
Themscviewerprogram reads MSC’s from files, or from standard input if no files are given, and displays it
to the user, step by step. Each MSC is displayed in a separate window. Instead of waiting for the whole
MSC to be available, it will immediately start displaying what it has read, and update the display as soon as
it has been able to read more of the MSC.

Bmsc is a shell-level command that causes a runningmscviewerto load the named MSC files, or to display
its standard input. The connection betweenBmscand a runningmscviewerwill not be closed until allfiles
(or the complete standard input) of theBmsc command have been processed bymscviewer, in order to
allow the runningmscviewerto report possible error messages (e.g. about syntax errors) about the files that
it processes via the standard error of theBmsccommand that sent the files to it.If Bmsccannot find a run-
ning mscviewer, it will start a new one. To display the new MSC file(s),mscviewerwill reuse windows
that contain a complete MSC and have the Reusetoggle activated. If more windows are needed, they are
created.

In general, it is probably best to only use theBmsc command, and let it startmscviewerwhen necessary.
However, one should be aware of the fact that when aBmsccommand is given when nomscvieweris cur-
rently running, theBmsc will ‘ ‘become’’ a mscviewercommand, which is ‘‘long-running’’ and will only
exit when all its windows are closed or theQuit button is pressed (or aBmsc -exitcommand is given). In
contrast, aBmsccommand given when amscvieweris already running will exit as soon as its files or stan-
dard input are processed by the runningmscviewer.

The -r command line option of bothmscviewerandBmsc will activate theReusetoggle button for the
windows that will contain the MSC’s giv en on the same command line or via standard input.

When Bmsc is started with only command line option-m mcastid, or when environment variable
TORXMCASTID was set, the MSC viewer tries to connect to the address given in themcastidand to use
the resulting connection as a remote control connection to synchronise displaying a particular step in the
MSC viewer. Whenever the user does something in the user interface that selects a different step in the
MSC, its step number is written to the remote control connection.Whenever a step number can be read
from the remote control connection, the corresponding step is displayed in the MSC viewer.

WhenBmsc is started with only one command line parameter:-exit, the runningmscviewerwill clean up
and exit.

The MSC file should be inevent orientedtextual representation.mscviewerindicates both ‘‘normal’’ end-
of-msc and ‘‘abnormal’’ end-of-input without having seen end-of-msc. The ‘‘normal’’ end-of-msc is visu-
alized by drawing horizontal bars at the end of every instance in the MSC. The ‘‘abnormal’’ end-of-input is
visualized by drawing at the end of each instance of the MSC a stippled/dotted contininuation of the
instance, and ending that with stippled/dotted horizontal bars.

BUTTONS
At the bottom of the MSC viewer there are several buttons. TheSave as button opens a dialog box that
allows saving of the MSC in postscript form (by choosing or entering a file name ending in a .ps suffix) and
in textual form (by choosing or entering any other file name).
The Font down and up arrow buttons decrement resp. increment the font size.When a font size change
makes this necessary, labels are moved to the right to keep them visible.
TheHighlight toggle button enables and disables highlighting (default: enabled).Independent of this but-
ton, thestep numberof the MSC item under the mouse is shown in theStepfield. Stepnumbers start at 1,
and are assigened when thesecondpart (target) of a message is seen.Step number 0 is special: it used to
refer to the instance headers.When highlighting is enabled, the item under the mouse is highlighted by

SunOS 5.8 Last change: Jun 16, 2003 1

User Commands mscviewer (1)

drawing a box arround it and making the arrow slightly bigger. Also, when a new item is added to the
MSC, it is highlighed.To highlight the item for a known step, enter the step number in theStepentry field,
and hit the return key. The MSC window automatically scrolls to make the highlighted item visible. If a
step number is present in theStep field, the down and up arrow buttons can be used to decrement resp.
increment the step number, to move the highlight up resp. down in the MSC.
The Reusetoggle button indicates that its window may be reused for a new MSC, when end-of-input has
been seen for the MSC currently displayed in it.(default value: unset, except when overridden by a-r com-
mand line option ofmscvieweror Bmsc).
TheClosebutton closes the MSC window, and, if this was the last remaining window, exits the progam.
TheQuit button closes all MSC windows and exits the progam.

SEE ALSO
torx-intro (1), xtorx-showmsc(1), log2msc(1), torx-logclient(1), jararacy (1), tmcs(1),
Ekkart Rudolph, Peter Graubmann and Jens Grabowski: Tutorial on Message Sequence Charts, Computer
Networks and ISDN Systems, Volume 28, Issue 12, June 1996, Pages 1629-1641

FILES
/tmp/mscviewer-$USER-$DISPLAY

file to communicate tcp port number on whichmscviewerlistens forBmscto connect

/tmp/mscviewer-$USER-$DISPLAY.pid
the file containing a list of process identifiers (one per line) ofmscviewerand its subprocesses

NOTE
TheBmsccommand was named (and designed) after theB shell-level command of thesam(1) editor.

BUGS
The current implementation expects each ‘‘statement’’ of the MSC in event oriented textual representation
to be on a separate line. The output oflog2msc(1) complies to this limitation.

The ‘‘endinstance’’ statements in the MSC are ignored; the ‘‘endsmsc’’ statement is used to close all
instances.

Only a limited subset of the MSC language is implemented.Valid input is assumed; only very limited
checking is done.

The syntax recognized for the MSC language is inferred from the tutorial mentioned above, but not checked
with a more formal syntax description.In particular, mscviewerexpects double quotes (") to be present
for MSC items containing whitespace -- whether this is consistent with the MSC standard has not been
checked.

Whenmscviewer is started, it checks if other instances of it are running. If so, they are killed. This was
added to clean up run-away processes.

Whenmscviewer is given multiple files that are to be processed simultaneously, it has a tendency to pro-
cess the files one after the other, in rev erse order, instead of procesing them in parallel, step by step.

It is counter-intuitive that theStepup arrow button moves the highlightdown(because the up button incre-
ments the step number, and the steps are numbered increasing from top to bottom).

SunOS 5.8 Last change: Jun 16, 2003 2

User Commands adaptlog (1)

NAME
adaptlog − torx program to use a torx logfile as implementation

SYNOPSIS
adaptlog

DESCRIPTION
This adaptor program implements the Driver-Adapter interface, as discussed intorx-adaptor (5), to use a
TorX log file as discussed intorx-log(4), as implementation. The log file should be configured as the argu-
ment for theIUT configuration entry discussed intorx-config(4), i.e. theIUT configuration line should
look like

IUT my-path-to-my-logfile.log

BUGS
The reuse (overloading) of theIUT configuration keyword is a crock, but adding a new keyword to torx-
config(4) did not seem a really more attractive alternative.

SEE ALSO
torx-intro (1), torx-config(4), torx-log(4), torx (1)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 oftorx .

SunOS 5.8 Last change: 1

User Commands adaptor (1)

NAME
adaptor − default torx program to interface to the SUT

SYNOPSIS
ADAPTOR

DESCRIPTION
This adaptor program implements the Driver-Adapter interface, as discussed intorx-adaptor (5). It expects
that the user has implemented encoding and decoding routines in Tcl (Tool Command Language), that can
be accessed as discussed in the adaptor-specific parts oftorx-config(4).

BUGS
Generally it is easier to write your own adapter than it is to configure this one.

SEE ALSO
torx-intro (1), torx-config(4), torx (1)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 oftorx .

SunOS 5.8 Last change: 1

User Commands adaptsim (1)

NAME
adaptsim − torx program to interface to a TorX primer used as SUT

SYNOPSIS
adaptsim

DESCRIPTION
This adaptor program implements the Driver-Adapter interface, as discussed intorx-adaptor (5), to use a
TorX primer program as implementation.It expects that the IUT program that it connects to implements (a
subset of) the TorX Primer-Driver interface. TheIUT program should be configured asIUT according to
torx-config(4).

SEE ALSO
torx-intro (1), torx-config(4), torx (1)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 oftorx .

SunOS 5.8 Last change: 1

User Commands anifsm (1)

NAME
anifsm − animate, construct or edit graphs in dot format

SYNOPSIS
anifsm [−r] [−m mcastid] [−t title] [−k key] [dotfiles]
anifsm [−r] [−m mcastid] [−t title] [−k key] −
anifsmsrv
anifsm −exit

DESCRIPTION
anifsm usestcldot(1) to animate, construct or edit graphs indot format. InTorX it is used to animate the
automaton (RFSM) file(s) generated byjararaca(1), autexp(1), or any other explorer, and to on-the-fly
construct the automaton of the test run. The automaton represented by the graph can be written out to file
in Aldebaran (.aut) format. This allows anifsm to be used as a graphical editor to construct simple
automata in Aldebaran (.aut) format.

After start up,anifsm creates a window (with the given title) for each file indotfiles(or just a single win-
dow if no dotfileswas giv en, or if dotfilesconsists only of the special name ‘‘−’ ’) in which it draws the
automaton for that file and then for the last (or only) window waits for commands (for animation or layout)
on standard input.The animation and layout commands are discussed below in COMMANDS. Onend of
file on standard input, or when the user removes the window (or presses theQuit button which tellsanif-
smsrv to stop running)anifsm exits.
Note: the special treatment of‘‘ −’’ is deprecated and may disappear is future versions.

In eachanifsm window the graph can be edited (constructed, changed) using the mouse.The left mouse
button is used to create nodes and edges; the right mouse button is used to delete them, to edit their
attributes, and to post a pop-up menu which includes entries to save the graph to file indot, Aldebaran
(.aut), and Postscript format. For further details see EDITING below. Details of the transformation to
Aldebaran (.aut) format are discussed below in AUTOMATON.

The middle mouse button can be used to scroll the canvas in its window by moving the mouse with the
middle button pressed.When the middle button is clicked without moving the mouse the canvas of all
clones of that window is scrolled to show the positition at which the mouse was clicked. Whenthe Control
key is pressed while the mouse is moved with the middle button pressed the canvases of all clones of the
window are continuously scrolled to show the item under mouse.

Actually, anifsm is a shell-level command that uses a runninganifsmsrv to load the named dot file, and
animate it using animation commands on standard input. The connection betweenanifsm and a running
anifsmsrv will not be closed until the complete standard input of theanifsm command has been processed
by anifsmsrv. If anifsm cannot find a runninganifsmsrv, it will start a new one. To display the new dot
file, anifsm will reuse windows, but only those that contain a completed animation, and have the Reuse
toggle activated. To choose which window to reuse,anifsm uses the−k key command line option. If there
are reusable windows with the samekey, one of those will be used. Otherwise, ifanifsm was inv oked
without−k key option, it will look for reusable windows with a non-empty key. If anifsm was inv oked with
a non-empty−k key option, it will look for reusable windows with an empty key. If none of the above is
succesful, a new window will be created.
In general, it should not be necessary to startanifsmsrv by hand.

The−r command line option ofanifsm will activate theReusetoggle button for the window that will con-
tain the dotfile given on the same command line.

The−k key command line option ofanifsm will associatekey with the window in which the given dotfile is
animated. Thekey will be displayed to the right of theReusebutton. Thekey is used to guide the reuse of
windows in which the animation is finished, as discussed above.

To make a runninganifsmsrv go away inv okeanifsm with the−exit command line option.

The animation in the window will follo w the animation commands read from standard input. The anima-
tion can be stepped through manually using theStep up and down arrow buttons (as discussed below in

SunOS 5.8 Last change: 1

User Commands anifsm (1)

BUTTONS).

In addition, the animation can be remotely controlled.If the −m mcastidcommand line option is given, or
environment variableTORXMCASTID was set, anifsm will attempt to make a remote control connection
to the tcp address inmcastid. If it succeeds, it will then interpret lines of text read from the remote control
connection consisting of a single number as commands to show the corresponding step in the animation.
Additionally, whenever the user uses mouse button and/or navigation commands to show a different step,
its step number is written to the remote control connection.The remote control connection allows multiple
viewers to show the same test step.

COMMANDS
Each animation or dot layout command consists of a single line of text. Theanimation and layout com-
mands can appear interspersed, see EXAMPLES below. The display is updated after execution of each
individual command (unless theRender button is disabled, in which case the display is not updated for dot
layout commands).

The animation commands are expected to be generated usinglog2jararacy(1) and jararacy2anifsm(1),
e.g. using a unix command as

log2jararacy < logfile | jararacy2anifsm | anifsmdotfile
or

tail −f logfile | log2jararacy | jararacy2anifsm | anifsmdotfile
Make sure that thelogfilecontains a run of the automaton present indotfile.

A mix of animation and layout (graph operation) commands is expected to be generated bylog2anifsm(1)
e.g. using a unix command as

log2anifsm <logfile | anifsm −
or

tail −f logfile | log2anifsm | anifsm −

Of course, layout and animation commands can also be generated by other programs, or even be written by
hand.

LAYOUT COMMANDS
The dot layout (graph operation) commands start with the word dot, followed by the command (eithersub-
graph, node, edge, delnode, or deledge), followed by the argument to the command, followed by optional
attributes. Theitems in a dot layout command are separated by whitespace.For each optional attribute its
name and its value are given, separated by whitespace. The general form is:

dot command argument aname avalue aname avalue ...

Known layout commands and their arguments are:

dot subgraphsubgraphname aname avalue aname avalue ...
Create a subgraph namedsubgraphname. Each group ofanameandavaluedefines an
attribute of the subgraph. The usual dot subgraph attributes can be specified.An
attribute with namesubgraph is treated special, to allow definition of nested subgraphs.
The subgraphnamecan be used in subsequent subgraph or node commands, as value of
an attribute namedsubgraph to add the a new subgraph or node to the subgraph speci-
fied earlier. See EXAMPLES below.

dot nodenodename aname avalue aname avalue ...
Create a node namednodename. Each group ofanameandavaluedefines an attribute
of the node. The usual dot node attributes can be specified. An attribute with namesub-
graph is treated special: it indicates that the node should be created in the subgraph with
the name given in the value of the attribute. Thissubgraph should have been defined ear-
lier. (Apart from the special treatment of thesubgraph attribute) this commands corre-
sponds to a dot file line of
nodename[aname=avalue, aname=avalue, ...]
Thenodenamecan be used in subsequentdot edgedot layout commands. It is not nec-
essary to define all nodes using this command: if no attributes need to be given, nodes

SunOS 5.8 Last change: 2

User Commands anifsm (1)

can be implicitly defined in thedot edgecommands. Thenodenamewill also be used as
the label of the node in the animation, unless alabel attribute is specified among the
anameandavalue. In this respect it is very much like a node definition in an ordinary
dot input file.

dot edgeedgelist aname avalue aname avalue ...
Create one or more edges (and, implicitly nodes, for those nodes listed inedgelistthat do
not yet exist) as specified byedgelistwhich consists of a list of node names separated by
−> (without any whitspace). Soedgelistis of the formsrc−>dst or n1−>n2−>n3 etc.
Such adot edgecommand specifiesan edge from nodesrc to nodedst, or from n1 to n2
to n3, and each group ofanameand avaluedefines an attribute of the edge. It corre-
sponds to a dot file line of
src −> dst[aname=avalue, aname=avalue, ...]
The usual dot edge attributes can be specified.

dot delnodenodename
Delete the node or nodes specified bynodename, together with their (incoming or outgo-
ing) edges, from the graph.

dot deledgeedge Delete the edge or edges specified byedge(a list of nodenames separated by−> or the
value of anameattribute specified for an edge) from the graph.

COLOR ANIMATION COMMANDS
The animation commands consist of alternating commands and arguments:

command arguments command arguments ...
Known commands and their arguments are:

−c color wherecolor should be a color known by tcl/tk.

−n nodes wherenodesconsists of a whitespace separated list of node identifiers.

−eedges whereedgesconsists of a whitespace separated list of edge identifiers.

−− word do not try to interpretwordas a command, but use it literally.

The node identifiers should be present in the dotfile or given in dot nodeor dot edgecommands. Theedge
identifiers should be given in the dotfile as the value of anameattribute of an edge, as for examplee42 is
given in

src −> dst [label=action, name=e42 , ...];
Alternatively, an edge identifier can be of the form

src−>dst
(note: no whitespace betweensrc, −> anddst) wheresrc anddstare node identifiers.Note, however, that if
src anddstare linked by multiple edges, an arbitrary one will be chosen!It is much safer to rely onname
attributes in the dotfile.
During animation, the given states and edges will be colored as indicated by the−c color command preced-
ing it (reading from left to right). The initial color is red. An initial−n command is implied and may be
omitted. Nodesand edges that are not mentioned in a command will have their initial color, as specified in
the dotfile. If a node or edge is mentioned multiple times on a single command line, it will be colored
according to the color specified for its last (rightmost) occurence.

BUTTONS
At the bottom of an anifsm window there are several buttons. TheZoom up and down arrow buttons zoom
out resp. in. When zooming, the font size is adjusted accordingly. When the fontsize becomes too small to
be usable, only the nodes and edges are drawn and the node and edge labels are omitted. When, as a conse-
quence of zooming in, the fontsize increases again sufficiently, the node and edge labels are shown again.
TheFit button zooms the animation to fit in the window. If theAuto toggle button is enabled, the anima-
tion is automatically zoomed to fit the window when the window is resized.
If the Render toggle button is enabled (which is the default) dot layout commands read from standard input
have immediate effect. Otherwise,the layout displayed will not be updated until theRender toggle button

SunOS 5.8 Last change: 3

User Commands anifsm (1)

is enabled again.
Thestep numberof the animation step in the trace is shown in theStepfield. Stepnumbers start at 0, for
the initial state.To visualize the animation step for a known step, enter the step number in theStepentry
field, and hit the return key. If a step number is present in theStep field, the down and up arrow buttons
can be used to step backwards resp. forwards in the animation.
TheReusetoggle button indicates that its window may be reused for a new dotfile, when end-of-input has
been seen for the dotfile currently displayed in it. While an animation is in progress (so, when end-of-input
has not yet been seen) theReusebutton is disabled.(default value: unset, except when overridden by a−r
command line option ofanifsm).
To the right of theReusebutton, a menu button displays the currentkey value. Thekey value is used to
guide the reuse of the window. Pressing the key menu button pops up a menu that offers the choice
between all ‘‘known’’ keys. While an animation is in progress (so, when end-of-input has not yet been
seen) the key menu button is disabled.(default value: empty, except when overridden by a−k key com-
mand line option ofanifsm).
The Clone button creates a new anifsm window, showing the same animated dot file. As described above
the canvas of the clone(s) can be made to scroll simultaneously to show the same item.
TheClosebutton closes the window, and, if this was the last remaining anifsm window, exits theanifsmsrv
program.
TheQuit button closes all anifsm windows and exits theanifsmsrv program.

EDITING
The mouse can be used to edit the graph in ananifsm window. The left mouse button is used to create
nodes and edges, the right mouse button is used to delete them, to edit their attributes, and to post a pop-up
menu.

Clicking the left mouse button on the background of the canvas creates a new node.

Pressing the left mouse button on (in) a node and (while keeping the mouse button pressed) moving the
mouse slightly starts the creation of an edge, as indicated by the red arrow which then appears. If the left
mouse button is then released with the mouse cursor on (in) a node, an edge is created from the originating
node to the destination node.If these nodes are the same a self-loop is created. If the mouse was released
while the mouse cursor was not in a node, no edge is created (this can be used to cancel the creation of an
edge). Justclicking the left mouse button on a node without moving the mouse at all does nothing (to avoid
having to remove lots of unwanted self-loops).

Pressing the right mouse button on a node or edge pops up an attribute edit box, which allows editing of
node or edge attributes, and deletion of the node or edge. The top part of the edit box contains attribute
names (on the left) with their current values (on the right). The values that can be changed appear in entry
fields. To change a value, edit it in the entry field, and press the return key to ’commit’ the change. To add
an attribute not yet present, enter its name in the empty entry field on the left (under the ’known’ attribute
names), and its value in its corresponding entry field on the right, and press the return key.
At the bottom of the edit box there are two buttons:Delete, which deletes the node or edge from the graph,
andDismiss, which makes the edit box disappear.

Pressing the right mouse button on a the background of the canvas pops up a menu that contains commands
to create a new (inititially empty) window, to open (read) a dot file, to show some information, to connect to
an mcast session, to write the graph in the window in dot, Aldebaran (.aut), or postscript format, and to pop
up an edit box to edit global graph, node or edge attributes.

AUTOMATON
The graph in the window can be interpreted as an automaton. Special node attributes are used to indicate
the start state, and to indicate those graph nodes that are not part of the automaton (those graph nodes will
not be present in the automaton written in Aldebaran (.aut) format). Initial values of these attributes are set
when the dot file is read, or, if no dot file was given, when the graph is constructed.

autstart when set to 1, indicates that this node is to be the start state of the (Aldebaran, .aut)
automaton represented by the graph.At most one node in the graph can have this
attribute with a non-zero and/or non-empty value.

SunOS 5.8 Last change: 4

User Commands anifsm (1)

autexclude when set to 1, indicates that this node should not appear in the (Aldebaran, .aut) automa-
ton. Whenreading an automaton or graph from file, nodes of which either the node
name or the value of thelabel attribute starts with an underscore will have this attribute
set to 1.

When a graph is read or constructed, the start state will be determined as follows. Initially, the first node
created in a graph will be the start state. Then, the nodes are inspected and where applicableautexclude
attributes will be set.Finally the edges are inspected. If there is an edge from an aut-excluded node to a
non-aut-excluded node, the non-aut-excluded will be the start state of the automaton. If there are multiple
such edges, the ’last’ one ’wins’.

When the Aldebaran (.aut) file is written, the transition names are taken from the label attributes of the
edges. Thestate names are determined as follows. If a graph node has a label attribute, it is used to deter-
mine the state name, otherwise the node name is used.If all such names (of all non-autexcluded graph
nodes) consist of the same string prefix followed by a number, the numbers are used as state numbers in the
Aldebaran file. Otherwise the complete names are used (which make them just be numbers).

ATTRIBUTES
A number of node and edge attributes have direct effect on the appearance of the graph inanifsm (even
though they (mostly) have no effect on the automaton). The definitive reference for these is thedot (1)
manual page; we only list a number of them here for convenience.

In addition to the attribute names understood by dot there are a few node and edge attribute names thatdot
does not care about, but that are special foranifsm.

Attributes that have no value yet (that have the empty value) appear with{} as value in the edit box.

DOT NODE ATTRIBUTES
label the text that appears in a node. The value{\N} is special: it indicates that the node name

should be used as label.

color the color of the node

fillcolor the fill color of the node, if itsstyle is set tofilled (if fillcolor is not set the value ofcolor
will be used)

style for example, filled

shape the shape of the node.

DOT EDGE ATTRIBUTES
label the text that appears with an edge.

color the color of the edge and its accompanying text

ANIFSM NODE ATTRIBUTES
autstart when set to 1, indicates that this node is to be the start state of the (Aldebaran, .aut)

automaton represented by the graph.At most one node in the graph can have this
attribute with a non-zero and/or non-empty value.

autexclude when set to 1, indicates that this node should not appear in the (Aldebaran, .aut) automa-
ton.

subgraph gives the name of the subgraph to which the node belongs.

ANIFSM EDGE ATTRIBUTES
name identifies the edge. This name can be used, for example, during animation to hightlight the edge.

The same name may be assigned to multiple edges (which all will be highlighted when the name is
used in an animation command).

EXAMPLES
Valid commands are:

S0
−n S0

SunOS 5.8 Last change: 5

User Commands anifsm (1)

−c red −n S0
−c #f00 −n S0

to color node S0 red; the commands are equivalent, the first uses the defaults. Thelast shows that in addi-
tion to color names also the #rgb color specifications of tcl/tk can be used.

−c green S0
to color node S0 green;

−c green S0 S1 −e e0 −c blue e1 −n S2 S3 S4 −e e2
to color nodes S0 and S1 and edge e0 green and nodes S2, S3 and S4 and edges e1 and e2 blue;

−e e0
to color edge e0 red.

Example of mix of dot layout and animation commands (note that we do not have to usedot node com-
mands if we do not need to specify attributes for the nodes, and we do not have multiple nodes with the
same name).We specify edges between nodesa, b, and c, with nameattributes that we use in subsequent
animation commands, and for the edge froma to c we specify a ‘‘backwards’’ direction, equivalent to
dir=back in a dot file. We then specify some additional edges, without name attribute, so we use the
src−>dstnotation to refer to them in the subsequent animation commands.

dot edge a−>b name e0
dot edge b−>c name e1
dot edge a−>c name e2 dir back
−e e0
−e e1
−e e2
dot edge a−>d
dot edge d−>c
−e a−>d
−e d−>c
−e e2

Example of the creation of subgraphs.With thesubgraph definition andsubgraph attribute in the defini-
tion of both nodesa andd both nodes will be at the top, having the same rank.Without the subgraph defi-
nition noded would be next to nodeb.

dot subgraph g1 rank same
dot node a subgraph g1
dot node b
dot node c
dot node d subgraph g1
dot edge a−>b
dot edge b−>c
dot edge d−>c

The three dot edge lines above can be combined into two:
dot edge a−>b−>c
dot edge d−>c

DIAGNOSTICS
Error messages and navigation diagnostics appear on standard error.

BUGS
The environment variableTORX_ROOT is not supported.

Because the animation commands are read from standard input, it is not possible to read thedotfile from
standard input.However, the (new) dot layout commands that can be given on standard input compensate
for that to a certain extent.

SunOS 5.8 Last change: 6

User Commands anifsm (1)

The window does not automatically scroll to follow the colored states.

After an syntax error has been encountered in an input dotfile,tcldot(1) (at least the version in GraphViz
1.8.5) seems to be unable to recover sufficiently to be able to read more (syntactly correct) dotfiles.

After the revision of the syntax of the commands accepted on standard input to make it more general and
take out the TorX specific features, the language accepted byanifsm differs from the one accepted by
jararacy (1). Thedifference between the two is bridged byjararacy2anifsm(1). However, the fact that we
have this difference breaks the fall-back tojararacy (1) that used to be present inanifsm, because if this
fall-back would be used,jararacy (1) would be given the revised commands which it will not understand.
As a consequence, the fall-back has been removed: if anifsm can not find tcl package Tcldot it will just
give up.

The usage ofautstart andautexcludeattributes to indicate automaton features of the graph is clumsy.

When the attribute edit box is popped up, it tries to position itself under the mouse cursor, in an attempt to
reduce the necessary mouse movements. We added this in the hope that it would be benificial, but it works
not as benificial as intended: the fact that the box is moving all the time is very annoying. To be fixed.

There is no indication that a graph that was read in from a dot file has been altered using mouse commands.

There are no distinct view and edit modes (editing is always enabled). There is not enough experience (yet)
with anifsm to tell whether such modes are actually needed, though.

SEE ALSO
torx-intro (1), jararaca(1), jararacy2anifsm(1), log2jararacy(1), dot(1), doted(1), tcldot(1),
jararacy (1), torx-logclient(1), tmcs(1), anifsm(1), aniwait(1), mscviewer(1), environ(5)

ACKNOWLEDGEMENTS
Parts ofanifsm (in particular the zooming and graph editing code) have been lifted and adapted from:
doted - dot graph editor - John Ellson (ellson@graphviz.org)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 of torx.

SunOS 5.8 Last change: 7

User Commands anifsm (1)

NAME
anifsm − animate, construct or edit graphs in dot format

SYNOPSIS
anifsm [−r] [−m mcastid] [−t title] [−k key] [dotfiles]
anifsm [−r] [−m mcastid] [−t title] [−k key] −
anifsmsrv
anifsm −exit

DESCRIPTION
anifsm usestcldot(1) to animate, construct or edit graphs indot format. InTorX it is used to animate the
automaton (RFSM) file(s) generated byjararaca(1), autexp(1), or any other explorer, and to on-the-fly
construct the automaton of the test run. The automaton represented by the graph can be written out to file
in Aldebaran (.aut) format. This allows anifsm to be used as a graphical editor to construct simple
automata in Aldebaran (.aut) format.

After start up,anifsm creates a window (with the given title) for each file indotfiles(or just a single win-
dow if no dotfileswas giv en, or if dotfilesconsists only of the special name ‘‘−’ ’) in which it draws the
automaton for that file and then for the last (or only) window waits for commands (for animation or layout)
on standard input. The animation and layout commands are discussed below in COMMANDS. Onend of
file on standard input, or when the user removes the window (or presses theQuit button which tellsanif-
smsrv to stop running)anifsm exits.
Note: the special treatment of‘‘ −’’ is deprecated and may disappear is future versions.

In eachanifsm window the graph can be edited (constructed, changed) using the mouse. The left mouse
button is used to create nodes and edges; the right mouse button is used to delete them, to edit their
attributes, and to post a pop-up menu which includes entries to save the graph to file indot, Aldebaran
(.aut), and Postscript format. For further details see EDITING below. Details of the transformation to
Aldebaran (.aut) format are discussed below in AUTOMATON.

The middle mouse button can be used to scroll the canvas in its window by moving the mouse with the
middle button pressed. When the middle button is clicked without moving the mouse the canvas of all
clones of that window is scrolled to show the positition at which the mouse was clicked. Whenthe Control
key is pressed while the mouse is moved with the middle button pressed the canvases of all clones of the
window are continuously scrolled to show the item under mouse.

Actually, anifsm is a shell-level command that uses a runninganifsmsrv to load the named dot file, and
animate it using animation commands onstandard input. The connection betweenanifsm and a running
anifsmsrv will not be closed until the complete standard input of theanifsm command has been processed
by anifsmsrv. If anifsm cannot find a runninganifsmsrv, it will start a new one. To display the new dot
file, anifsm will reuse windows, but only those that contain a completed animation, and have the Reuse
toggle activated. To choose which window to reuse,anifsm uses the−k key command line option. If there
are reusable windows with the samekey, one of those will be used. Otherwise, ifanifsm was inv oked
without−k key option, it will look for reusable windows with a non-empty key. If anifsm was inv oked with
a non-empty−k key option, it will look for reusable windows with an empty key. If none of the above is
succesful, a new window will be created.
In general, it should not be necessary to startanifsmsrv by hand.

The−r command line option ofanifsm will activate theReusetoggle button for the window that will con-
tain the dotfile given on the same command line.

The−k key command line option ofanifsm will associatekey with the window in which the given dotfile is
animated. Thekey will be displayed to the right of theReusebutton. Thekey is used to guide the reuse of
windows in which the animation is finished, as discussed above.

To make a runninganifsmsrv go away inv okeanifsm with the−exit command line option.

The animation in the window will follo w the animation commands read from standard input.The anima-
tion can be stepped through manually using theStep up and down arrow buttons (as discussed below in

SunOS 5.8 Last change: 1

User Commands anifsm (1)

BUTTONS).

In addition, the animation can be remotely controlled. If the−m mcastidcommand line option is given, or
environment variableTORXMCASTID was set, anifsm will attempt to make a remote control connection
to the tcp address inmcastid. If i t succeeds, it will then interpret lines of text read from the remote control
connection consisting of a single number as commands to show the corresponding step in the animation.
Additionally, whenever the user uses mouse button and/or navigation commands to show a different step,
its step number is written to the remote control connection.The remote control connection allows multiple
viewers to show the same test step.

COMMANDS
Each animation or dot layout command consists of a single line of text. Theanimation and layout com-
mands can appear interspersed, see EXAMPLES below. The display is updated after execution of each
individual command (unless theRender button is disabled, in which case the display is not updated for dot
layout commands).

The animation commands are expected to be generated usinglog2jararacy(1) and jararacy2anifsm(1),
e.g. using a unix command as

log2jararacy < logfile | jararacy2anifsm | anifsmdotfile
or

tail −f logfile | log2jararacy | jararacy2anifsm | anifsmdotfile
Make sure that thelogfilecontains a run of the automaton present indotfile.

A mix of animation and layout (graph operation) commands is expected to be generated bylog2anifsm(1)
e.g. using a unix command as

log2anifsm <logfile | anifsm −
or

tail −f logfile | log2anifsm | anifsm −

Of course, layout and animation commands can also be generated by other programs, or even be written by
hand.

LAYOUT COMMANDS
The dot layout (graph operation) commands start with the word dot, followed by the command (eithersub-
graph, node, edge, delnode, or deledge), followed by the argument to the command, followed by optional
attributes. Theitems in a dot layout command are separated by whitespace.For each optional attribute its
name and its value are given, separated by whitespace. The general form is:

dot command argument aname avalue aname avalue ...

Known layout commands and their arguments are:

dot subgraphsubgraphname aname avalue aname avalue ...
Create a subgraph namedsubgraphname. Each group ofanameandavaluedefines an
attribute of the subgraph.The usual dot subgraph attributes can be specified.An
attribute with namesubgraph is treated special, to allow definition of nested subgraphs.
The subgraphnamecan be used in subsequent subgraph or node commands, as value of
an attribute namedsubgraph to add the a new subgraph or node to the subgraph speci-
fied earlier. See EXAMPLES below.

dot nodenodename aname avalue aname avalue ...
Create a node namednodename. Each group ofanameandavaluedefines an attribute
of the node. The usual dot node attributes can be specified.An attribute with namesub-
graph is treated special: it indicates that the node should be created in the subgraph with
the name given in the value of the attribute. Thissubgraph should have been defined ear-
lier. (Apart from the special treatment of thesubgraph attribute) this commands corre-
sponds to a dot file line of
nodename[aname=avalue, aname=avalue, ...]
Thenodenamecan be used in subsequentdot edgedot layout commands.It is not nec-
essary to define all nodes using this command: if no attributes need to be given, nodes

SunOS 5.8 Last change: 2

User Commands anifsm (1)

can be implicitly defined in thedot edgecommands. Thenodenamewill also be used as
the label of the node in the animation, unless alabel attribute is specified among the
anameandavalue. In this respect it is very much like a node definition in an ordinary
dot input file.

dot edgeedgelist aname avalue aname avalue ...
Create one or more edges (and, implicitly nodes, for those nodes listed inedgelistthat do
not yet exist) as specified byedgelistwhich consists of a list of node names separated by
−> (without any whitspace). Soedgelistis of the formsrc−>dst or n1−>n2−>n3 etc.
Such adot edgecommand specifiesan edge from nodesrc to nodedst, or from n1 to n2
to n3, and each group ofanameand avaluedefines an attribute of the edge.It corre-
sponds to a dot file line of
src −> dst[aname=avalue, aname=avalue, ...]
The usual dot edge attributes can be specified.

dot delnodenodename
Delete the node or nodes specified bynodename, together with their (incoming or outgo-
ing) edges, from the graph.

dot deledgeedge Delete the edge or edges specified byedge(a list of nodenames separated by−> or the
value of anameattribute specified for an edge) from the graph.

COLOR ANIMATION COMMANDS
The animation commands consist of alternating commands and arguments:

command arguments command arguments ...
Known commands and their arguments are:

−c color wherecolor should be a color known by tcl/tk.

−n nodes wherenodesconsists of a whitespace separated list of node identifiers.

−eedges whereedgesconsists of a whitespace separated list of edge identifiers.

−− word do not try to interpretwordas a command, but use it literally.

The node identifiers should be present in the dotfile or given in dot nodeor dot edgecommands. Theedge
identifiers should be given in the dotfile as the value of anameattribute of an edge, as for examplee42 is
given in

src −> dst [label=action, name=e42 , ...];
Alternatively, an edge identifier can be of the form

src−>dst
(note: no whitespace betweensrc, −> anddst) wheresrc anddstare node identifiers. Note, however, that if
src anddstare linked by multiple edges, an arbitrary one will be chosen! It is much safer to rely onname
attributes in the dotfile.
During animation, the given states and edges will be colored as indicated by the−c color command preced-
ing it (reading from left to right). The initial color is red. An initial−n command is implied and may be
omitted. Nodesand edges that are not mentioned in a command will have their initial color, as specified in
the dotfile. If a node or edge is mentioned multiple times on a single command line, it will be colored
according to the color specified for its last (rightmost) occurence.

BUTTONS
At the bottom of an anifsm window there are several buttons. TheZoom up and down arrow buttons zoom
out resp. in.When zooming, the font size is adjusted accordingly. When the fontsize becomes too small to
be usable, only the nodes and edges are drawn and the node and edge labels are omitted. When, as a conse-
quence of zooming in, the fontsize increases again sufficiently, the node and edge labels are shown again.
TheFit button zooms the animation to fit in the window. If theAuto toggle button is enabled, the anima-
tion is automatically zoomed to fit the window when the window is resized.
If the Render toggle button is enabled (which is the default) dot layout commands read from standard input
have immediate effect. Otherwise,the layout displayed will not be updated until theRender toggle button

SunOS 5.8 Last change: 3

User Commands anifsm (1)

is enabled again.
Thestep numberof the animation step in the trace is shown in theStepfield. Stepnumbers start at 0, for
the initial state.To visualize the animation step for a known step, enter the step number in theStepentry
field, and hit the return key. If a step number is present in theStep field, the down and up arrow buttons
can be used to step backwards resp. forwards in the animation.
TheReusetoggle button indicates that its window may be reused for a new dotfile, when end-of-input has
been seen for the dotfile currently displayed in it. While an animation is in progress (so, when end-of-input
has not yet been seen) theReusebutton is disabled.(default value: unset, except when overridden by a−r
command line option ofanifsm).
To the right of theReusebutton, a menu button displays the currentkey value. Thekey value is used to
guide the reuse of the window. Pressing the key menu button pops up a menu that offers the choice
between all ‘‘known’’ keys. While an animation is in progress (so, when end-of-input has not yet been
seen) the key menu button is disabled.(default value: empty, except when overridden by a−k key com-
mand line option ofanifsm).
The Clone button creates a new anifsm window, showing the same animated dot file. As described above
the canvas of the clone(s) can be made to scroll simultaneously to show the same item.
TheClosebutton closes the window, and, if this was the last remaining anifsm window, exits theanifsmsrv
program.
TheQuit button closes all anifsm windows and exits theanifsmsrv program.

EDITING
The mouse can be used to edit the graph in ananifsm window. The left mouse button is used to create
nodes and edges, the right mouse button is used to delete them, to edit their attributes, and to post a pop-up
menu.

Clicking the left mouse button on the background of the canvas creates a new node.

Pressing the left mouse button on (in) a node and (while keeping the mouse button pressed) moving the
mouse slightly starts the creation of an edge, as indicated by the red arrow which then appears. If the left
mouse button is then released with the mouse cursor on (in) a node, an edge is created from the originating
node to the destination node. If these nodes are the same a self-loop is created.If the mouse was released
while the mouse cursor was not in a node, no edge is created (this can be used to cancel the creation of an
edge). Justclicking the left mouse button on a node without moving the mouse at all does nothing (to avoid
having to remove lots of unwanted self-loops).

Pressing the right mouse button on a node or edge pops up an attribute edit box, which allows editing of
node or edge attributes, and deletion of the node or edge. The top part of the edit box contains attribute
names (on the left) with their current values (on the right). The values that can be changed appear in entry
fields. To change a value, edit it in the entry field, and press the return key to ’commit’ the change. To add
an attribute not yet present, enter its name in the empty entry field on the left (under the ’known’ attribute
names), and its value in its corresponding entry field on the right, and press the return key.
At the bottom of the edit box there are two buttons:Delete, which deletes the node or edge from the graph,
andDismiss, which makes the edit box disappear.

Pressing the right mouse button on a the background of the canvas pops up a menu that contains commands
to create a new (inititially empty) window, to open (read) a dot file, to show some information, to connect to
an mcast session, to write the graph in the window in dot, Aldebaran (.aut), or postscript format, and to pop
up an edit box to edit global graph, node or edge attributes.

AUTOMATON
The graph in the window can be interpreted as an automaton. Special node attributes are used to indicate
the start state, and to indicate those graph nodes that are not part of the automaton (those graph nodes will
not be present in the automaton written in Aldebaran (.aut) format). Initial values of these attributes are set
when the dot file is read, or, if no dot file was given, when the graph is constructed.

autstart when set to 1, indicates that this node is to be the start state of the (Aldebaran, .aut)
automaton represented by the graph. At most one node in the graph can have this
attribute with a non-zero and/or non-empty value.

SunOS 5.8 Last change: 4

User Commands anifsm (1)

autexclude when set to 1, indicates that this node should not appear in the (Aldebaran, .aut) automa-
ton. Whenreading an automaton or graph from file, nodes of which either the node
name or the value of thelabel attribute starts with an underscore will have this attribute
set to 1.

When a graph is read or constructed, the start state will be determined as follows. Initially, the first node
created in a graph will be the start state. Then, the nodes are inspected and where applicableautexclude
attributes will be set. Finally the edges are inspected. If there is an edge from an aut-excluded node to a
non-aut-excluded node, the non-aut-excluded will be the start state of the automaton.If there are multiple
such edges, the ’last’ one ’wins’.

When the Aldebaran (.aut) file is written, the transition names are taken from the label attributes of the
edges. Thestate names are determined as follows. If a graph node has a label attribute, it is used to deter-
mine the state name, otherwise the node name is used.If all such names (of all non-autexcluded graph
nodes) consist of the same string prefix followed by a number, the numbers are used as state numbers in the
Aldebaran file. Otherwise the complete names are used (which make them just be numbers).

ATTRIBUTES
A number of node and edge attributes have direct effect on the appearance of the graph inanifsm (even
though they (mostly) have no effect on the automaton). The definitive reference for these is thedot (1)
manual page; we only list a number of them here for convenience.

In addition to the attribute names understood by dot there are a few node and edge attribute names thatdot
does not care about, but that are special foranifsm.

Attributes that have no value yet (that have the empty value) appear with{} as value in the edit box.

DOT NODE ATTRIBUTES
label the text that appears in a node. The value{\N} is special: it indicates that the node name

should be used as label.

color the color of the node

fillcolor the fill color of the node, if itsstyle is set tofilled (if fillcolor is not set the value ofcolor
will be used)

style for example, filled

shape the shape of the node.

DOT EDGE ATTRIBUTES
label the text that appears with an edge.

color the color of the edge and its accompanying text

ANIFSM NODE ATTRIBUTES
autstart when set to 1, indicates that this node is to be the start state of the (Aldebaran, .aut)

automaton represented by the graph. At most one node in the graph can have this
attribute with a non-zero and/or non-empty value.

autexclude when set to 1, indicates that this node should not appear in the (Aldebaran, .aut) automa-
ton.

subgraph gives the name of the subgraph to which the node belongs.

ANIFSM EDGE ATTRIBUTES
name identifies the edge. This name can be used, for example, during animation to hightlight the edge.

The same name may be assigned to multiple edges (which all will be highlighted when the name is
used in an animation command).

EXAMPLES
Valid commands are:

S0
−n S0

SunOS 5.8 Last change: 5

User Commands anifsm (1)

−c red −n S0
−c #f00 −n S0

to color node S0 red; the commands are equivalent, the first uses the defaults. Thelast shows that in addi-
tion to color names also the #rgb color specifications of tcl/tk can be used.

−c green S0
to color node S0 green;

−c green S0 S1 −e e0 −c blue e1 −n S2 S3 S4 −e e2
to color nodes S0 and S1 and edge e0 green and nodes S2, S3 and S4 and edges e1 and e2 blue;

−e e0
to color edge e0 red.

Example of mix of dot layout and animation commands (note that we do not have to usedot node com-
mands if we do not need to specify attributes for the nodes, and we do not have multiple nodes with the
same name).We specify edges between nodesa, b, and c, with nameattributes that we use in subsequent
animation commands, and for the edge froma to c we specify a ‘‘backwards’’ direction, equivalent to
dir=back in a dot file. We then specify some additional edges, without name attribute, so we use the
src−>dstnotation to refer to them in the subsequent animation commands.

dot edge a−>b name e0
dot edge b−>c name e1
dot edge a−>c name e2 dir back
−e e0
−e e1
−e e2
dot edge a−>d
dot edge d−>c
−e a−>d
−e d−>c
−e e2

Example of the creation of subgraphs.With thesubgraph definition andsubgraph attribute in the defini-
tion of both nodesa andd both nodes will be at the top, having the same rank.Without the subgraph defi-
nition noded would be next to nodeb.

dot subgraph g1 rank same
dot node a subgraph g1
dot node b
dot node c
dot node d subgraph g1
dot edge a−>b
dot edge b−>c
dot edge d−>c

The three dot edge lines above can be combined into two:
dot edge a−>b−>c
dot edge d−>c

DIAGNOSTICS
Error messages and navigation diagnostics appear on standard error.

BUGS
The environment variableTORX_ROOT is not supported.

Because the animation commands are read from standard input, it is not possible to read thedotfile from
standard input.However, the (new) dot layout commands that can be given on standard input compensate
for that to a certain extent.

SunOS 5.8 Last change: 6

User Commands anifsm (1)

The window does not automatically scroll to follow the colored states.

After an syntax error has been encountered in an input dotfile,tcldot(1) (at least the version in GraphViz
1.8.5) seems to be unable to recover sufficiently to be able to read more (syntactly correct) dotfiles.

After the revision of the syntax of the commands accepted on standard input to make it more general and
take out the TorX specific features, the language accepted byanifsm differs from the one accepted by
jararacy (1). Thedifference between the two is bridged byjararacy2anifsm(1). However, the fact that we
have this difference breaks the fall-back tojararacy (1) that used to be present inanifsm, because if this
fall-back would be used,jararacy (1) would be given the revised commands which it will not understand.
As a consequence, the fall-back has been removed: if anifsm can not find tcl package Tcldot it will just
give up.

The usage ofautstart andautexcludeattributes to indicate automaton features of the graph is clumsy.

When the attribute edit box is popped up, it tries to position itself under the mouse cursor, in an attempt to
reduce the necessary mouse movements. We added this in the hope that it would be benificial, but it works
not as benificial as intended: the fact that the box is moving all the time is very annoying. To be fixed.

There is no indication that a graph that was read in from a dot file has been altered using mouse commands.

There are no distinct view and edit modes (editing is always enabled). There is not enough experience (yet)
with anifsm to tell whether such modes are actually needed, though.

SEE ALSO
torx-intro (1), jararaca(1), jararacy2anifsm(1), log2jararacy(1), dot(1), doted(1), tcldot(1),
jararacy (1), torx-logclient(1), tmcs(1), anifsm(1), aniwait(1), mscviewer(1), environ(5)

ACKNOWLEDGEMENTS
Parts ofanifsm (in particular the zooming and graph editing code) have been lifted and adapted from:
doted - dot graph editor - John Ellson (ellson@graphviz.org)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 of torx.

SunOS 5.8 Last change: 7

User Commands aniwait (1)

NAME
aniwait − animate progressbar

SYNOPSIS
aniwait [-r] [-m mcastid] [- t title]
aniwaitsrv
aniwait -exit

DESCRIPTION
aniwait ‘animates’ a progressbar. After start up,aniwait creates a window (with the given title) containing
a progressbar, and waits for animation commands on standard input. On end of file on standard input,ani-
wait waits for the user to remove the window (or press theQuit button), after which it exits.

Actually, aniwait is a shell-level command that uses a runninganiwaitsrv to create or reuse a progressbar
window, and animate it using animation commands on standard input ofaniwait. The connection between
aniwait and a runninganiwaitsrv will not be closed until the complete standard input of theaniwait com-
mand has been processed byaniwaitsrv. If aniwait cannot find a runninganiwaitsrv, it will start a new
one. Ingeneral, it should not be necessary to startaniwaitsrv by hand.However, if startup time ofaniwait
is an issue, it may be advantageous to startaniwaitsrv (by hand) in advance, because a startinganiwaitsrv
may spend some time to check if anotheraniwaitsrv is already running.

To display a new progressbar,aniwaitsrv will reuse windows that contain a completed animation and have
theReusetoggle activated. Ifmore windows are needed, they are created.

The-r command line option ofaniwait will activate theReusetoggle button for the aniwait window.

The animation commands are expected to be generated usinglog2aniwait(1), e.g. using a unix command as
log2aniwait < logfile | aniwait

or
tail -f logfile | log2aniwait | aniwait

Each animation command consists of a single line of text, of the following form:
wait count
freeze [remains]
stop [remains]

wherecountandremainsare floating point numbers.The wait command starts a countdown of the given
countnumber of seconds.The freezeandstop commands stop the countdown, and add a ‘step’ to the trace
of progress times.freezeandstop interpret the optionalremainsas the time remaining from thecountfrom
thecountdown command; if noremainsis given, the real-time system clock is used.An additionalfreeze
or stop command without precedingwait command has no effect and is ignored. The difference between
freezeandstop is in the color of the progressbar:freezedoes not change the color, but only ‘freezes’ the
animation, whereasstopchanges the color of the progressbar to blue.

The animation in the window will follo w the animation commands read from standard input.The anima-
tion can be be done manually using the left and middle mouse button, and/or with theStep up and down
arrow buttons (as discussed below).

In addition, the animation can be remotely controlled. If the-m mcastidcommand line option is given, or
environment variableTORXMCASTID was set,aniwait will attempt to make a remote control connection
to the tcp address inmcastid. If i t succeeds, it will then interpret lines of text read from the remote control
connection consisting of a single number as commands to show the corresponding step in the animation.
Additionally, whenever the user uses mouse button and/or navigation commands to show a different step,
its step number is written to the remote control connection.The remote control connection allows multiple
viewers to show the same test step.

The left mouse button and the right mouse button can be used to ‘‘navigate’’ in the animation: the left
mouse button will show the ‘‘next’’ step in the animation, and the right mouse button will show the ‘‘previ-
ous’’ step in the animation.

SunOS 5.8 Last change: 1

User Commands aniwait (1)

To stop a runninganiwaitsrv, inv okeaniwait with the-exit command line option.

BUTTONS
At the bottom of an aniwait window there are several buttons. Thestep numberof the animation step in the
trace is shown in theStep field. Stepnumbers start at 0, for the initial state.To visualize the animation
step for a known step, enter the step number in theStepentry field, and hit the return key. If a step number
is present in theStepfield, the down and up arrow buttons can be used to step backwards resp. forwards in
the animation.
The Reusetoggle button indicates that its window may be reused for a new animation, when end-of-input
has been seen for the animation currently displayed in it. While an animation is in progress (so, when end-
of-input has not yet been seen) theReusebutton is disabled.(default value: unset, except when overridden
by a-r command line option ofaniwait).
TheClosebutton closes the window, and, if this was the last remaining aniwait window, exits the progam.
TheQuit button closes all aniwait windows and exits the progam.

DIAGNOSTICS
Error messages and navigation diagnostics appear on standard error.

BUGS
The environment variableTORX_ROOT is not supported.

SEE ALSO
torx-intro (1), log2aniwait(1), torx-logclient(1), tmcs(1), jararacy (1), anifsm(1), mscviewer(1), envi-
ron(5)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 of torx.

SunOS 5.8 Last change: 2

User Commands aniwait (1)

NAME
aniwait − animate progressbar

SYNOPSIS
aniwait [-r] [-m mcastid] [- t title]
aniwaitsrv
aniwait -exit

DESCRIPTION
aniwait ‘animates’ a progressbar. After start up,aniwait creates a window (with the given title) containing
a progressbar, and waits for animation commands on standard input. On end of file on standard input,ani-
wait waits for the user to remove the window (or press theQuit button), after which it exits.

Actually, aniwait is a shell-level command that uses a runninganiwaitsrv to create or reuse a progressbar
window, and animate it using animation commands on standard input ofaniwait. The connection between
aniwait and a runninganiwaitsrv will not be closed until the complete standard input of theaniwait com-
mand has been processed byaniwaitsrv. If aniwait cannot find a runninganiwaitsrv, it will start a new
one. Ingeneral, it should not be necessary to startaniwaitsrv by hand.However, if startup time ofaniwait
is an issue, it may be advantageous to startaniwaitsrv (by hand) in advance, because a startinganiwaitsrv
may spend some time to check if anotheraniwaitsrv is already running.

To display a new progressbar,aniwaitsrv will reuse windows that contain a completed animation and have
theReusetoggle activated. Ifmore windows are needed, they are created.

The-r command line option ofaniwait will activate theReusetoggle button for the aniwait window.

The animation commands are expected to be generated usinglog2aniwait(1), e.g. using a unix command as
log2aniwait < logfile | aniwait

or
tail -f logfile | log2aniwait | aniwait

Each animation command consists of a single line of text, of the following form:
wait count
freeze [remains]
stop [remains]

wherecountandremainsare floating point numbers.The wait command starts a countdown of the given
countnumber of seconds.The freezeandstop commands stop the countdown, and add a ‘step’ to the trace
of progress times.freezeandstop interpret the optionalremainsas the time remaining from thecountfrom
thecountdown command; if noremainsis given, the real-time system clock is used.An additionalfreeze
or stop command without precedingwait command has no effect and is ignored. The difference between
freezeandstop is in the color of the progressbar:freezedoes not change the color, but only ‘freezes’ the
animation, whereasstopchanges the color of the progressbar to blue.

The animation in the window will follo w the animation commands read from standard input.The anima-
tion can be be done manually using the left and middle mouse button, and/or with theStep up and down
arrow buttons (as discussed below).

In addition, the animation can be remotely controlled. If the-m mcastidcommand line option is given, or
environment variableTORXMCASTID was set,aniwait will attempt to make a remote control connection
to the tcp address inmcastid. If i t succeeds, it will then interpret lines of text read from the remote control
connection consisting of a single number as commands to show the corresponding step in the animation.
Additionally, whenever the user uses mouse button and/or navigation commands to show a different step,
its step number is written to the remote control connection.The remote control connection allows multiple
viewers to show the same test step.

The left mouse button and the right mouse button can be used to ‘‘navigate’’ in the animation: the left
mouse button will show the ‘‘next’’ step in the animation, and the right mouse button will show the ‘‘previ-
ous’’ step in the animation.

SunOS 5.8 Last change: 1

User Commands aniwait (1)

To stop a runninganiwaitsrv, inv okeaniwait with the-exit command line option.

BUTTONS
At the bottom of an aniwait window there are several buttons. Thestep numberof the animation step in the
trace is shown in theStep field. Stepnumbers start at 0, for the initial state.To visualize the animation
step for a known step, enter the step number in theStepentry field, and hit the return key. If a step number
is present in theStepfield, the down and up arrow buttons can be used to step backwards resp. forwards in
the animation.
The Reusetoggle button indicates that its window may be reused for a new animation, when end-of-input
has been seen for the animation currently displayed in it. While an animation is in progress (so, when end-
of-input has not yet been seen) theReusebutton is disabled.(default value: unset, except when overridden
by a-r command line option ofaniwait).
TheClosebutton closes the window, and, if this was the last remaining aniwait window, exits the progam.
TheQuit button closes all aniwait windows and exits the progam.

DIAGNOSTICS
Error messages and navigation diagnostics appear on standard error.

BUGS
The environment variableTORX_ROOT is not supported.

SEE ALSO
torx-intro (1), log2aniwait(1), torx-logclient(1), tmcs(1), jararacy (1), anifsm(1), mscviewer(1), envi-
ron(5)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 of torx.

SunOS 5.8 Last change: 2

User Commands aut2fsmview (1)

NAME
aut2fsmview − translate Aldebaran (.aut) to FSMView input

SYNOPSIS
aut2fsmview

DESCRIPTION
aut2fsmview reads an Aldebaran (.aut) file from standard input and writes corresponding input for
FSMView on standard output. FSMView is a tool for interactive visualization of state transition systems.

The state information in the generated FSMView input only contains fan-in and fan-out.

If we use this to visualize a test run (so the Aldebaran (.aut) file is generated from atorx-log(4) file using
log2aut(1)) then it could be interesting to generate the FSMView input directly from thetorx-log(4) file
and include more information from it like statistics about the state space exploration.

SEE ALSO
torx-intro (1), autexp(1), log2aut(1), torx-log(4)

FSMView home page: http://www.win.tue.nl/˜fvham/fsm/ (papers, FSMView download for windows and
linux)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 of torx.

SunOS 5.8 Last change: Nov 3, 2005 1

User Commands autexp (1)

NAME
autexp − explore Aldebaran (.aut) automaton files

SYNOPSIS
autexp [-d | -m]aut-file

DESCRIPTION
autexp implements an explorer for simple automatons in the Aldebaran (.aut) file format from the Cae-
sar/Aldebaran Development Package (CADP). It offers the TorX torx-explorer (5) interface on standard
input and output.

When invoked with the -d flag, autexp writes adot(1) representation of the automaton to standard output,
and exits. Thedot node names correspond to the state numbers of the automaton, and with each dot edge
(depicting a transition of the automaton) a dot attributename is associated, which is given a unique value.

When invoked with the -m flag, autexp writes the connection matrix of the automaton to standard output,
and exits.

The dot(1) output can be used for animation, becauseautexp encodes the dot state and edge (transition)
names in the state identifiers that it uses in thetorx-explorer (5) interface. Theseidentifiers can be
extracted from atorx-log(5) file usinglog2jararacy(1) such that a trace of a run ofautexpcan be animated
usinganifsm(1) andjararacy (1).
This is the main advantage of usingautexp over using the equivalent Aldebaran (.aut) file explorer availabe
via the CADP package (seemkprimer-cadp (1)).

BUGS
The environment variableTORX_ROOT is not supported.

SEE ALSO
torx-intro (1), anifsm(1), dot(1), log2jararacy(1), jararacy (1), jararacy2anifsm(1), mkprimer-cadp (1),
torx-explorer (5), environ(5)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 of torx.

SunOS 5.8 Last change: 1

User Commands autsimplify (1)

NAME
autsimplify − simplify automaton Aldebaran (.aut) file

SYNOPSIS
autsimplify

DESCRIPTION
autsimplify reads an Aldebaran (.aut) format file from standard input, simplifies the automaton as
described below, and writes the resulting automaton in Aldebaran (.aut) format on standard output.

autsimplify is an experiment at reducing the size of an automaton without changing it structure, by reduc-
ing chains of transitions by a single transition with a single label obtained by concatenating all individual
labels. Thehope is that this makes it easier for dot (or foranifsm(1)) to compute a layout for the graph.
Initial experiments seem to suggest that the effect may be limited. It may help to remove the label text
from the result ofautsimplify , such that only the structure of the graph remains, but even that may not be
sufficient to allow dot to efficiently compute the layout of a big graph.

BUGS
autsimplify is just an experiment, it needs more experimentation.

SEE ALSO
torx-intro (1), autexp(1), anifsm(1)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 of torx.

SunOS 5.8 Last change: Nov 8, 2005 1

User Commands campaign (1)

NAME
campaign − generate and populate TorX test campaign directory structure

SYNOPSIS
campaignconfigfile

DESCRIPTION
campaign is anexperimentalcommand that generates and populates a TorX test campaign directory struc-
ture. Theconfigfilecontains one or more TorX test run configurations, i.e. configurations specifying the
specification, the (access to the) implementation, the TorX tool components to use, their parameters, seeds
for random number generaters, etc.The configuration file is structured as a list of blocks ofname=value
pairs. Generally, for each test run that should be executed, the configuration file contains such a block for
each instance of a TorX tool concept that ‘‘participates’’ in the test run. Examples of TorX tool concepts
are the TorX tool components, the Implementation Under Test (IUT), the connections to the IUT, like the
Points of Control and Observation (PCOs), and Implementation Access Points (IAPs). Each block has a
type and a (unique) name, which together form the first name=valuetype=namepair of each block.

The names are used to ‘‘link’ ’ blocks, in the form of a DAG (directed acyclic graph). The ‘‘root’’ of the
DAG is formed by a block of typecampaign. The ‘‘links’ ’ are formed by name-value pairs in a block that
refer to the names of other blocks, instead of specifying configuration parameters.

A particular ‘‘link’ ’ is made by thebasefield: it inherits the definition named in the field’s value, provided
that this definition is of the same type as the block that contains thebasefield.

To reduce the size of the configuration, a very primitive variable mechanism can be used to ‘‘simulate’’
parameterized blocks, and a primitive ‘‘foreach’’ construct can be used to create multiple instances of a
configuration (with different variable instantiations).

TEST CAMPAIGNS
Here we discuss test campaigns, the things that can be described in the campaign configuration language.
Part of this section also tries to clarify the design of the campaign language.

STRUCTURE
We see test campaigns as hierarchies constisting of three ‘‘levels’’.

At the top we have the ‘‘campaign’’, that consists of a set of ‘‘executions’’. Each‘‘ execution’’ consists of a
single experiment, where all parameters under control of the test operator are fixed. So,the configuration
of an ‘‘execution’’ describes the test architecture, the tools, the parameters of the tools etc. The only
remaining ‘‘parameter’’ is the non-determinism of the implementation.To cope with that, we allow each
‘‘ execution’’ to be run more than once, which gives us that each ‘‘execution’’ is (has?) a set of ‘‘runs’’.

COMPONENTS
The ingredients of a test campaign is formed by the execution architecture (what components do we have,
and how are they connected) and its parameters.

The execution architecture is effectively identical to the test architecture (how are tester and iut connected),
with the addition of information about the internal structure of the tester (what components are used, how
are they connected).

In the test architecture we have the concepts ‘‘Implementation Under Test’’ (IUT), ‘‘Implementation Access
Point’’ (IAP), ‘‘Point of Control and Observation’’ (PCO), ‘‘Test Context’’ and ‘‘System Under Test’’. In
our view, the Adapter can only reach, access, communicate with, the IUT via the Test Context. ThePCOs
form the connection between the Adapter and the Test Context, and the IAPs form the connection between
IUT and the Test Context. For the execution architecture we are not interested in the Test Context and the
SUT, but we are interested in all the other concepts.In addition, we are interested in the concepts from the
tool architecture: explorer, primer, combinator, test purpose, (batch) test, instantiator, driver, and adapter.

The IUT has one or more IAP’s, and there are one or more PCO’s. A PCO may coincide with an IAP, or
there may be a test-context separating them, in which case there may be a many-to-many mapping between
IAP’s and PCO’s. We currently assume that in the execution architecture we (may) have: one IUT, one
adapter, one driver, zero or more explorers, zero or more primers, zero or more test purposes, zero or more

SunOS 5.8 Last change: 1

User Commands campaign (1)

combinators, zero or more batch tests, zero or more instantiators.

CONNECTIONS
The IUT is connected (only) to the adapter, directly over IAP’s or indirectly via PCO’s and IAP’s. The
adapter is directly connected with the driver. The driver is has also connected either a primer, or a combi-
nator, or a batch-test-primer, or an instantiator. The primer and batch-test-primer may have an explorer
connected, or the explorer may be integrated in them. The combinator can have primers, test purposes and
other combinators connected.Somehow, we should indicate for each combinator that is connected to
another combinator how it should be treated (as a primer or as a test-purpose?). An indirect way to do that
would be to associate with each combinator a role (the role that it wants to play for the driver or other com-
binator that it is connected to) or more indirectly, to specify for each combinator the operation that it is sup-
posed to perform on its inputs, which then includes the ‘‘interpretation’’ that should be given to these inputs
(trivial for primer and test-purpose inputs, more interesting for a combinator input).

GENERATED DIRECTOR STRUCTURE
campaigngenerates from its configuration a multi-level directory structure. The top-level one contains the
generated top-level Makefile, and (optionally via intermediate sub-directories, as specified in thedir field
of eachexperiment specified in the test campaign) a number of ‘‘experiment’’ directories, one for each
experiment specified in the configuration as part of the test campaign. Each of the ‘‘experiment’’ directo-
ries contains a generated Makefile for the experiment, and generated configuration files for the TorX tool
components. Thetop-level Makefile recursively invokes the Makefiles in the ‘‘experiment’’ directories to
execute the specified test campaign.

CONFIGURATION LANGU AGE
We describe the language by the block types, and give for each type the recognizedname=valuefields (also
known as attributes).

Not all fields of all blocks have to be giv en (we should mark the optional ones).The fields that may occur
more than once in a block have a suffix ‘‘ ∗ ’’ i n the list below.

Note that the special fieldbase may appear in every kind of block. base=value inherits the definition
named invalue,provided that that definition is of the same type as the block that contains thebasefield.
Effectively, a block definition that starts in the following way:

type=name
base=anothername
...

will try to ‘‘in-place insert’’ the contents of blocktype=anothernameat the start of blocktype=name.
Examples of the usage ofbasecan be found in the EXAMPLES section below.

The block descriptions are in alphabetical order, as are the field descriptions in each block.

adapter
The value of theadapter name is just a name that is used to refer to theadapter definition from
other configuration entries.

codingdir
the directory containing the coding library that will be used during test execution. Inpar-
ticular, this directory should contain implementations for the functions named in themul-
tiplexer, encoderanddecoderfields of the pco’s.

exec name of the program to execute when the adapter has to be started

execdir directory in which the program named in theexecfield has to be run

execparams∗
arguments for the program named in theexecfield. Theremay be multipleexecparams
fields: we need one for each argument.

pco∗ reference to definition elsewhere in the configuration

addressThe value of theaddressname is used as a reference from within other blocks, and additionally it

SunOS 5.8 Last change: 2

User Commands campaign (1)

is (can be) used as a PIXIT parameter in en/decoding rules and/or connectors.

value actual address.For network addressing we use the (plan9 derived) syntax giving (excla-
mation-mark separated)network, nodeandport asnetwork!node!port. Currently known
networks arepipe (just a single pipe, no node or port needed -- used when the implemen-
tation is started by the driver), andtcp andudp, where the nodename ‘‘ ∗ ’’ r efers to the
local host. A port number may be omitted, which means that it can be chosen by the
Operating System (or by the tool).

campaign
The value of thecampaign name indicates the name of the campaign, which is not used.The
campaignblock is the ‘‘root’’ of the hierarchy of blocks in the configuration.

comment
to be used for documentation, not used by the tools

dir the root of the campaing directory. All execution directories should be inside the cam-
paign directory. The value of thedir field is available through the $campaign variable.

experiment∗
reference to definition elsewhere in the configuration: an experiment that is part of the
campaign

makefile
name of the top-level Makefile generated bycampaign.

mkinclude
name of Makefile that is to be included in the top-level Makefile generated bycampaign.

channel
The value of thechannelname indicates the name of the channel.

iokind the type (kind) of the channel, which must be eitherinput or output

pco∗ reference to definition elsewhere in the configuration: a pco‘‘connected’’ to this channel

sevent the event representing ‘‘suspension’’ or ‘‘quiescense’’ (usally this will beDelta) not
implemented yet

timeout time out value for the channel (only for channels withiokind=output)

combinator
The value of thecombinator name is just a name that is used to refer to thecombinator definition
from other configuration entries.

combinator∗
reference to definition elsewhere in the configuration

config name of the configuration file that has to be generated bycampaign for the combinator
described in this block.

exec name of the program to execute when the primer has to be started

execdir directory in which the program named in theexecfield has to be run

execparams∗
arguments for the program named in theexecfield. Theremay be multipleexecparams
fields: we need one for each argument.

gen the program that can build (or generate) the combinator

genparams∗
an argument for the program named in thegenfield. Theremay be multiplegenparams
fields: we need one for each argument.

partitioner ∗

SunOS 5.8 Last change: 3

User Commands campaign (1)

reference to definition elsewhere in the configuration

primer ∗
reference to definition elsewhere in the configuration

test∗ reference to definition elsewhere in the configurationnot implemented yet!

tp∗ reference to definition elsewhere in the configurationnot implemented yet!

dri ver The value of thedri ver name is just a name that is used to refer to thedri ver definition from other
configuration entries. (usually the value will be torx)

exec name of the program to execute when the driver has to be started

execparams∗
arguments for the program named in theexecfield. Theremay be multipleexecparams
fields: we need one for each argument.

post program that has to be run after the driver has finished(not yet implemented)

pre program that has to be run before the driver is started(not yet implemented)

experiment
The value of theexperiment name is just a name that is used to refer to the experiment definition
from other configuration entries. The value of theexperiment field is available in this block (and
in blocks refered by it) through the $experiment variable.

adapter
reference to definition elsewhere in the configuration

combinator
reference to definition elsewhere in the configuration

config name of the configuration file that has to be generated bycampaign for the experiment
described in this block. Usually this will be in the directory indicated in thedir field.

dir the directory in which the execution should take place

dri ver reference to definition elsewhere in the configuration

dri verparams∗
additional flags for the driver program

impl reference to definition elsewhere in the configuration

log name of file in which to store the execution log (which includes the execution trace)

makefile
name of the Makefile that has to be generated bycampaign for the experiment described
in this block. Usually this will be in the directory indicated in thedir field.

maxdepth
the maximum number of steps that will be executed in a test run for this experiment

msg name of file in which to store the (stderr) messages produced by the various components
during execution

mkinclude
name of Makefile that is to be included in the Makefile generated bycampaign.

mutant name of the implementation mutant tu run. This is used to define theMUTANT entry in
the generated configuration file.

partitioner
reference to definition elsewhere in the configuration

post program that has to be run at the end of the test execution run (What are the default
parameters for this program?)

SunOS 5.8 Last change: 4

User Commands campaign (1)

postparams∗
additional arguments for the program given in thepostfield

pre program that has to be run at the start of the test execution run (What are the default
parameters for this program?)

preparams∗
additional arguments for the program given in thepre field

primer reference to definition elsewhere in the configuration

runs number of execution runs that will be executed for this experiment

seed the seed parameter to be used during test execution

foreach The foreach blocks define (typed) variables that can be used to create multiple instantiations of a
configuration. Theforeach definition can be ‘‘activated’’ in a product block by adding the appro-
priateforeach entry to it. The value of theforeach name is just a name that is used to refer to the
foreachdefinition from other configuration entries.

name the name of the variable

type the type of the variable. Usuallythis will be something likeblock.field

value∗ one of the values of the variable over which will be iterated

iap The value of theiap name indicates the name of the iap. It will be referred to fromimpl blocks.

addressreference to definition elsewhere in the configuration.Currently we assume a single
address for each iap.

impl The value of theimpl name is just a name that is used to refer to theimpl definition from other
configuration entries.

configgen
program that is able to generate a configuration file for the implementation, based on the
configuration file together with parameters that are only known at run-time (e.g. port
numbers chosen dynamically).(not yet implemented)

configgenparams∗
arguments for the program named in theconfiggenfield. Theremay be multiplecon-
figgenparamsfields: we need one for each argument.(not yet implemented)

exec name of the program to execute when the implementation has to be started

execcontext
program that is used as a filter between the implementation and the adapter. Such a filter
can be used e.g. to translate between binary i/o done by the implementation and a hex
encoding of it that is more pleasant for the adapter.

execcontextparams∗
arguments for the program named in theexeccontextfield. Theremay be multipleexec-
contextparamsfields: we need one for each argument.

execdir directory in which the program named in theexecfield has to be run

execparams∗
arguments for the program named in theexecfield. Theremay be multipleexecparams
fields: we need one for each argument.

iap∗ reference to definition elsewhere in the configuration.This may contain information that
is needed by the adapter, like port addresses at the implementation side of the test con-
text.

post program that has to be run after the implemention has finished

postparams∗

SunOS 5.8 Last change: 5

User Commands campaign (1)

additional arguments for the program given in thepostfield

pre program that has to be run before the implemention is started

preparams∗
additional arguments for the program given in thepre field

partitioner
The value of thepartitioner name is just a name that is used to refer to thepartitioner definition
from other configuration entries.

config name of the configuration file that has to be generated bycampaign for the partitioner
described in this block.

exec name of the program to execute when the partitioner has to be started

execdir directory in which the program named in theexecfield has to be run

execparams∗
arguments for the program named in theexecfield. Theremay be multipleexecparams
fields: we need one for each argument.

gen the program that can build (or generate) the combinator

genparams∗
an argument for the program named in thegenfield. not implemented yet

partfile the location of the partition configuration file (that associates the weights with the
actions)

pco The value of thepco name indicates the name of the pco. It will be referred to fromchanneland
adapter blocks (for the channels, we probably should check that there at most two references to
each pco, one from aninput channel and one from anoutput one).

addressreference to definition elsewhere in the configuration.Currently we assume a single
address for each pco.

decoder
name of the decoding function that is used to decode values that are received via this pco.
This function must be present in the library indicated by thecodingdir field of the
adapter. In the future we will not need this function, but instead use patterns over the
ev ent (if necessary enhanced with predicates).

encoder
name of the encoding function that is used to encode values that are sent over this pco.
This function must be present in the library indicated by thecodingdir field of the
adapter. In the future we will not need this function, but instead use patterns over the
ev ent (if necessary enhanced with predicates).

ievent a pattern over the events of the specification, that is used to partition those events in input
and output pco’s. Thispattern indicates an input event. For backwords compatibility we
also allow the pattern to consist of just a single gate name, together with the specification
of amultiplexer function that will partition events on the same gate.

multiplexer
name of the function that is used to map an event to a pco. This function must be present
in the library indicated by thecodingdir field of theadapter. In the future we will not
need this function, but instead use patterns over the event (if necessary enhanced with
predicates).

oevent a pattern over the events of the specification, that is used to partition those events in input
and output pco’s. Thispattern indicates an output event. For backwords compatibility
we also allow the pattern to consist of just a single gate name, together with the specifica-
tion of amultiplexer function that will partition events on the same gate.

SunOS 5.8 Last change: 6

User Commands campaign (1)

regexp the value is exported to the decoding function, where it may be used to segment stream-
like data received from the SUT

primer The value of theprimer name is just a name that is used to refer to theprimer definition from
other configuration entries.

channel∗
reference to definition elsewhere in the configuration. The channel definitions define the
channels, the subset of the labels that they represent, and whether it is input or output.

exec name of the program to execute when the primer has to be started

execdir directory in which the program named in theexecfield has to be run

execparams∗
arguments for the program named in theexecfield. Theremay be multipleexecparams
fields: we need one for each argument.

gen the program that can build (or generate) the primer

genparams∗
an argument for the program named in thegenfield. Theremay be multiplegenparams
fields: we need one for each argument.

spec reference to definition elsewhere in the configuration

product
Theproduct blocks define multiple instantiations of a given template. Theinstantiations are gen-
erated as the cross product of the values of the product variables, as defined inforeach fields. The
value of theproduct name is just a name that is used to refer to theproduct definition from other
configuration entries.

foreach∗
the variable definitions

prefix the prefix of the names of the resulting instantiations.Their names will consist of the
prefix, followed by for each foreach clause a hyphen followed by the value of the vari-
able. So,‘‘ product=lotosmutants’’ in the example below, generates names like ‘‘lotos-
mutants-000-3’’ (first the prefix, followed by a hyphen and a mutant value, followed by a
hyphen and a seed value).

template
a reference to the block that should be instantiated. It should be of the type given in the
type field.

type the type of the result, which should be identical to the type of the given template. This
will be something likeblock

spec The value of thespecname is just a name that is used to refer to thespecdefinition from other
configuration entries.

auxfile∗
the location of an auxiliary specification file.Currently they are used for user-supplied
ADT implementation files (with .t and .f file name suffixes) that may be needed by CADP
(via mkprimer (1)) to generate a Primer program from a LOTOS specification.

dialect (optionally) describes tool dialect (e.g. to distinguish between LOTOS specs for lite and
for CADP) (so far only used for documentation, not used by thecampaigntool)

file the location of the (main) specification file.(Note: in general a single specification could
consist of several files. We can probably handle that by requesting that all files of a speci-
fication appear in the same directory, which then can be named here, and use thegenfield
to deal with it).

SunOS 5.8 Last change: 7

User Commands campaign (1)

language
the specification language (only used for documentation, not used by thecampaigntool)

var Thevar blocks define (typed) variables that can be used to parameterise a configuration.Thevar
definition can be ‘‘activated’’ in an arbitrary block by adding the appropriatevar entry to it. The
value of thevar name is just a name that is used to refer to thevar definition from other configura-
tion entries.

name the name of the variable

type the type of the variable Usually this will be something likeblock.field

value∗ the value of the variable. Ifthefield given in the type field may appear more than once in
its block, there may be multiple value fields for the variable definition.

EXAMPLES
FIRST EXAMPLE

#==
spec=confprot01l

file=$campaign/specs/confprot01.lot
language=LOTOS dialect=lite

spec=confprot01c
file=$campaign/specs/confprot01.caesar.lot
auxfile=$campaign/specs/confprot01.caesar.t
auxfile=$campaign/specs/confprot01.caesar.f
language=LOTOS dialect=cadp

spec=confprot01p
file=$campaign/specs/conf-solo.trojka
language=PROMELA

primer=pl
spec=confprot01c
gen=mkprimer
genparams=
exec=$campaign/specs/confprot01.caesar
execdir=$campaign/specs
execparams=
channel=in
channel=out

primer=pp
spec=confprot01p
gen=mkprimer
genparams=
exec=$campaign/specs/conf-solo.sh
execdir=$campaign/specs
execparams=
channel=in
channel=out

impl=jan
pre=
post=
exec=$campaign/impls/confprot.sh
execparams=-c
execparams=$campaign/executions/$experiment/cfg.txt
execparams=$campaign/cfg.txt

SunOS 5.8 Last change: 8

User Commands campaign (1)

execparams=-DEBUG
execparams=-1
execparams=-CSAP
execparams=-MUTANT
execparams=v-mutant
execcontext=hexcontext
execcontextparams=--
configgen=
configgenparams=-o
configgenparams=$campaign/executions/$experiment/cfg.txt
iap=up
iap=low

driver=torx
configgen=
exec=torx
execparams=--log
execparams=$(log)
execparams=--seed
execparams=$(seed)
execparams=--depth
execparams=$(maxdepth)
execparams=$(config)
pre=
post=

address=aup name=v-add0value=pipe
address=alow1 name=v-add1value=udp!∗ !1075
address=alow2 name=v-add2value=udp!∗ !1076
address=alow3 name=v-add3value=udp!∗ !1077
address=alow4 name=v-add4value=udp!∗ !1078

adapter=a codingdir=v-coding
pco=up1 pco=low2 pco=low3 pco=low4

channel=in iokind=inputpco=up1 pco=low2 pco=low3 pco=low4
channel=out iokind=outputpco=up1 pco=low2 pco=low3 pco=low4 timeout=2

pco=upbase encoder=enCodingOfCFspdecoder=CFsp_nl2CFsp regexp={RECVHEX[ˆ0+0
pco=lowbase encoder=enCodingOfUdpdecoder=udp_nl2udpsp regexp={RECVHEX[ˆ0+0

multiplexer=pcoOfUdp
pco=up1 base=upbaseaddress=aup ievent=v-iev0 oevent=v-oev0
pco=low2 base=lowbase address=alow2 ievent=v-iev2 oevent=v-oev2
pco=low3 base=lowbase address=alow3 ievent=v-iev3 oevent=v-oev3
pco=low4 base=lowbase address=alow4 ievent=v-iev4 oevent=v-oev4

iap=up address=aup
iap=low address=alow1

var=l-u-iev0 name=v-iev0 type=pco.ievent value=cfsap_in!∗ !∗
var=l-u-oev0 name=v-oev0 type=pco.oevent value=cfsap_out!∗

value=cfsap_out!∗ !∗
var=l-l-iev2 name=v-iev2 type=pco.ievent value=udp_in!udp1!udp_req(udp2,∗)

SunOS 5.8 Last change: 9

User Commands campaign (1)

value=udp_in!udp2!∗
var=l-l-oev2 name=v-oev2 type=pco.oevent value=udp_out!udp1!udp_ind(udp2,∗)

value=udp_out!udp2!∗
var=l-l-iev3 name=v-iev3 type=pco.ievent value=udp_in!udp1!udp_req(udp3,∗)

value=udp_in!udp3!∗
var=l-l-oev3 name=v-oev3 type=pco.oevent value=udp_out!udp1!udp_ind(udp3,∗)

value=udp_out!udp3!∗
var=l-l-iev4 name=v-iev4 type=pco.ievent value=udp_in!udp1!udp_req(udp4,∗)

value=udp_in!udp4!∗
var=l-l-oev4 name=v-oev4 type=pco.oevent value=udp_out!udp1!udp_ind(udp4,∗)

value=udp_out!udp4!∗

var=p-u-iev0 name=v-iev0 type=pco.ievent value=from_upper
var=p-u-oev0 name=v-oev0 type=pco.oevent value=to_upper
var=p-l-iev2 name=v-iev2 type=pco.ievent value=from_lower
var=p-l-oev2 name=v-oev2 type=pco.oevent value=to_lower
var=p-l-iev3 name=v-iev3 type=pco.ievent value=from_lower
var=p-l-oev3 name=v-oev3 type=pco.oevent value=to_lower
var=p-l-iev4 name=v-iev4 type=pco.ievent value=from_lower
var=p-l-oev4 name=v-oev4 type=pco.oevent value=to_lower

var=l-u-add0 name=v-add0type=address.name value=cf1
var=l-l-add1 name=v-add1type=address.name value=udp1
var=l-l-add2 name=v-add2type=address.name value=udp2
var=l-l-add3 name=v-add3type=address.name value=udp3
var=l-l-add4 name=v-add4type=address.name value=udp4

var=p-u-add0 name=v-add0type=address.name value=cf1
var=p-l-add1 name=v-add1type=address.name value=1
var=p-l-add2 name=v-add2type=address.name value=0
var=p-l-add3 name=v-add3type=address.name value=2
var=p-l-add4 name=v-add4type=address.name value=4

var=l-coding name=v-codingtype=adapter.codingdir
value=$campaign/coding/LOTOS

var=p-coding name=v-codingtype=adapter.codingdir
value=$campaign/coding/PROMELA

experiment=defaults
msg=msg
log=log
dir=$campaign/executions/$experiment
makefile=$campaign/executions/$experiment/torx.mk
config=$campaign/executions/$experiment/torx.if
pre=:
post=:
driver=torx

experiment=templatedefaults
base=defaults
runs=2
seed=v-seed
maxdepth=30
adapter=a

SunOS 5.8 Last change: 10

User Commands campaign (1)

impl=jan
experiment=lotos

base=templatedefaults
primer=pl var=l-coding var=l-l-add1
var=l-u-iev0 var=l-u-oev0 var=l-u-add0
var=l-l-iev2 var=l-l-oev2 var=l-l-add2
var=l-l-iev3 var=l-l-oev3 var=l-l-add3
var=l-l-iev4 var=l-l-oev4 var=l-l-add4

experiment=promela
base=templatedefaults
primer=pp var=p-coding var=p-l-add1
var=p-u-iev0 var=p-u-oev0 var=p-u-add0
var=p-l-iev2 var=p-l-oev2 var=p-l-add2
var=p-l-iev3 var=p-l-oev3 var=p-l-add3
var=p-l-iev4 var=p-l-oev4 var=p-l-add4

foreach=seed
type=experiment.seed
name=v-seed
value=1 value=2 value=3 value=4 value=5

foreach=mutants
type=impl.execparams
name=v-mutant
value=000 value=100 value=111 value=214 value=247
value=276 value=289 value=293 value=294 value=332
value=345 value=348 value=358 value=384 value=398
value=444 value=462 value=467 value=548 value=666
value=687 value=738 value=749 value=782 value=836
value=856 value=945

product=lotosmutants
type=experiment
foreach=mutants
foreach=seed
prefix=lotos-mutants
template=lotos

product=promelamutants
type=experiment
foreach=mutants
foreach=seed
prefix=promela-mutants
template=promela

campaign=one
dir=/home/fmg/belinfan/src/cdr/utest_old_release/Examples/CampaignTemplate
makefile=$campaign/Makefile
product=lotosmutants
product=promelamutants

#==

SECOND EXAMPLE
==

driver=torx

SunOS 5.8 Last change: 11

User Commands campaign (1)

configgen=
exec=torx
execparams=--log
execparams=$(log)
execparams=--seed
execparams=$(seed)
execparams=--depth
execparams=$(maxdepth)
execparams=$(config)
pre=
post=

spec=LOTOS
file=$campaign/specs/LOTOS/cf-pe-sut.caesar.lot
auxfile=$campaign/specs/LOTOS/cf-pe-sut.caesar.t
auxfile=$campaign/specs/LOTOS/cf-pe-sut.caesar.f
language=LOTOS
preproc=
dialect=cadp

primer=pl
spec=LOTOS
gen=mkprimer
genparams=
exec=$campaign/specs/LOTOS/cf-pe-sut.caesar
execdir=$campaign/specs/LOTOS
execparams=
channel=in
channel=out

impl=janbase
pre=
post=
exec=$campaign/impls/confprotv3c/confprot.sh
gen=make
execdir=$campaign/impls/confprotv3c
genparams=confprot
execparams=-a
execparams=pythagoras:1075
execparams=-a
execparams=pythagoras:1076
execparams=-a
execparams=pythagoras:1077
execcontext=hexcontext
execcontextparams=--
iap=up
iap=low

foreach=mutants
type=impl.execparams
type=experiment.mutant
name=v-nr
value=001

SunOS 5.8 Last change: 12

User Commands campaign (1)

value=002
value=003
value=055
value=056
value=057
value=058
value=059
value=099

foreach=seeds
type=experiment.seed
name=var-s
value=789
value=161
value=78
value=102
value=360
value=301
value=24
value=197
value=694
value=278

foreach=maxdepths
type=experiment.maxdepth
name=v-mdepth
value=25
value=50
value=75
value=100
value=125
value=150
value=175
value=200
value=250
value=300

value=400
value=500
value=700
value=750
value=1000
value=2000
value=4000
value=8000
value=50000
value=100000

adapter=a
codingdir=var-coding
pco=up1
pco=low2
pco=low3

SunOS 5.8 Last change: 13

User Commands campaign (1)

pco=upbase
encoder=enCodingOfCFsp
decoder=CFsp_nl2CFsp
regexp={RECVHEX[ˆ0+0

pco=lowbase
encoder=enCodingOfUdp
decoder=udp_nl2udpsp
multiplexer=pcoOfUdp
regexp={RECVHEX[ˆ0+0

pco=up1
base=upbase
address=up
ievent=v-iev0
oevent=v-oev0

pco=low2
base=lowbase
address=low2
ievent=v-iev2
oevent=v-oev2

pco=low3
base=lowbase
address=low3
ievent=v-iev3
oevent=v-oev3

iap=up
address=up

iap=low
address=low1

channel=in
iokind=input
pco=up1
pco=low2
pco=low3

channel=out
iokind=output
pco=up1
pco=low2
pco=low3
timeout=5
sevent=Delta

address=up
name=var-address0
value=pipe

SunOS 5.8 Last change: 14

User Commands campaign (1)

address=low1
name=var-address1
value=udp!∗ !1075

address=low2
name=var-address2
value=udp!∗ !1076

address=low3
name=var-address3
value=udp!∗ !1077

var=l-u-iev0
name=v-iev0
type=pco.ievent
value=cfsap_in!∗ !∗

var=l-u-oev0
name=v-oev0
type=pco.oevent
value=cfsap_out!∗
value=cfsap_out!∗ !∗

var=l-l-iev2
name=v-iev2
type=pco.ievent
value=udp_in!udp1!udp_req(udp2,∗)
value=udp_in!udp2!∗

var=l-l-oev2
name=v-oev2
type=pco.oevent
value=udp_out!udp1!udp_ind(udp2,∗)
value=udp_out!udp2!∗

var=l-l-iev3
name=v-iev3
type=pco.ievent
value=udp_in!udp1!udp_req(udp3,∗)
value=udp_in!udp3!∗

var=l-l-oev3
name=v-oev3
type=pco.oevent
value=udp_out!udp1!udp_ind(udp3,∗)
value=udp_out!udp3!∗

var=l-u-address
name=var-address0
type=address.name
value=cf1

var=l-l-address1

SunOS 5.8 Last change: 15

User Commands campaign (1)

name=var-address1
type=address.name
value=udp1

var=l-l-address2
name=var-address2
type=address.name
value=udp2

var=l-l-address3
name=var-address3
type=address.name
value=udp3

var=l-coding
name=var-coding
type=adapter.codingdir
value=$campaign/coding/LOTOS

experiment=defaults
msg=msg
log=log
dir=$campaign/experiment/$experiment
makefile=$campaign/experiment/$experiment/torx.mk
mkinclude=experiment.incl
config=$campaign/experiment/$experiment/torx.if
runs=var-runs
seed=var-s
maxdepth=v-mdepth
var=l-u-iev0
var=l-u-oev0
var=l-l-iev2
var=l-l-oev2
var=l-l-iev3
var=l-l-oev3
var=l-u-address
var=l-l-address1
var=l-l-address2
var=l-l-address3
var=l-coding
primer=pl
adapter=a
impl=janbase
pre=:
post=:
driver=torx

==

experiment=001
base=defaults
runs=1
maxdepth=1000

SunOS 5.8 Last change: 16

User Commands campaign (1)

product=expr
type=experiment
foreach=seeds
prefix=expr
template=001

==

campaign=main
dir=/home/fmg/feenstra/jf/campaign/confprot
makefile=$campaign/Makefile
experiment=product=expr

==

BUGS
The campaign configuration language, and its tool support, are, at best, an interesting prototype, that still
needs a number of iterations.Too much detail can and must be specified, the variable mechanism could be
improved.

In general, it will be easier to write a shell script to invoke torx (1) in the way described intorx (1) than it is
to usecampaign.

The main problem seems to be that we picked a limited syntax and stayed with it, even though it became
increasingly painful to add to it the features that (we think) we need.

SEE ALSO
torx-intro (1), environ(5)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 of torx.

SunOS 5.8 Last change: 17

User Commands cppmkprimer (1)

NAME
cppmkprimer − preprocess input with cpp before invoking mkprimer

SYNOPSIS
cppmkprimer [preproc-args ...] .newsuffix specification.suffix

DESCRIPTION
cppmkprimer invokes the preprocessorcpp(1) on input filespecification.suffixwith the given preproc-args
to generate the filespecification.newsuffixon which thenmkprimer (1) is invoked.

m4mkprimer is a simple wrapper aroundpreprocmkprimer (1).

SEE ALSO
torx-intro (1), mkprimer (1), cpp(1), m4mkprimer (1), preprocmkprimer (1)

BUGS
It is not possible to specify command line arguments formkprimer (1).

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 ofmkprimer .

SunOS 5.8 Last change: Aug 21, 2002 1

User Commands hexcontext (1)

NAME
hexcontext − run program in hexadecimal context

SYNOPSIS
hexcontext [-debug [nr]] [- port portnr] [- [no]printdata] [-[no]printdatahex] program args ...

DESCRIPTION
hexcontextstarts the given program with given args, keeping pipes between itself and the standard input,
standard output and standard error of the startedprogram. If this succeeds, it waits for commands on stan-
dard input and output of theprogram that arrives on the pipes, until end of file is detected on the standard
input ofhexcontextand the standard output and standard error ofprogram, after whichhexcontextwill wait
for program to exit, and then exits itself.The recognized commands are discussed below. When output of
the program arrives on the pipes,hexcontextoutputs on standard output a line of the form

RECV pipe data
if printing of data is enabled, and/or, if printing of data in hexadecimal form is enabled, a line of the form

RECVHEX pipe datahex
In these linespipewill be stdout if the data was received from the standard output ofprogram, and stderr
if the data was received from the standard error ofprogram, and data anddatahexare the contents of the
message, as received resp. in hexadecimal form. By default, output in hexadecimal format is enabled, and
output in ‘‘normal’’ f ormat is disabled. This can be changed using the command line options-[no]print-
datahexand-[no]printdata and with corresponding commands, as discussed below.

The -debug [nr] option opens a hardcoded pseudo terminal (pty) on which debugging information is
printed. Theamount of information printed depends on the numeric debug mode given. For more informa-
tion, use the source.

COMMANDS
The following commands can be given on the standard input ofhexcontext. The command keyword
(printed in capitals in this section) is recognized regardless of case (uppercase, lowercase, mixed).

SENDHEX datahex
send the data (given as hexadecimal string) to the standard input ofprogram.

PRINTDAT A
enable printing of data ‘‘as received’’, in the form ofRECV lines

NOPRINTDAT A
disable printing of data ‘‘as received’’, in the form ofRECV lines

PRINTDAT AHEX
enable printing of data in hexadecimal form, in the form ofRECVHEX lines

NOPRINTDAT AHEX
disable printing of data in hexadecimal form, in the form ofRECVHEX lines

DEBUG [nr]
set debugging mode. Debugging mode 0 disables debugging, for the other modes, see the source.

NODEBUG
disable debugging

SEE ALSO
torx-intro (1), tcp(1), udp(1), unhexify(1)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 oftorx .

SunOS 5.8 Last change: 1

User Commands instantiator (1)

NAME
instantiator − instantiate free variables for torx

SYNOPSIS
instantiator [-f configFile] [-s seed]

DESCRIPTION
instantiator is an experimental TorX component that is meant as a filter between Driver and Primer: it
reads (on standard input) the messages that are sent from Driver to Primer, and instatiates variables in these
messages, and writes the resulting messages to standard output. The ‘‘instantiation’’ is just syntactical sub-
stitution. Whichvariables have to be instantiated, from which domains, can be expressed in configuration
file, which can be named using the-f configFileflag. If no -f configFileflag is given, instantiator tries to
read file ‘‘instconfig.txt’’. The instatiation values are chosen randomly from the domains given in the con-
figuration file; the seed of the random number generator can be set using the-s seedflag. If necessary,
instantiator will repeatedly (recursively) try to apply instantiation rules, until no changes occur. This can
be used to instantiate a variable with an expression that contains new variables that then will also be instan-
tiated, etc.

USE IN TORX
We usually use theinstantiator in the following way. We make a small wrapper shell script of the follow-
ing form:

#! /bin/sh
instantiator -s 0 -f instconfig.txt | primer-program "$@"

where primer-program is the actual primer program file that has to be invoked. So,all standard input send
to the primer-program first passes through theinstantiator . In the torx-config(4) configuration file (or in
other places where we have to giv e the primer program file) we now giv e the wrapper script instead of the
‘‘ real’’ primer program.

CONFIGURATION FILE FORMA T
The configuration file consists a number of substitution entries of the form:

type : position : prefix : regexp : domain
Empty lines, lines containing only whitespace and comment lines (lines starting with optional whitespace
followed by #) are ignored.Continuation lines are allowed: these should end with a \ character; this charac-
ter is replaced by a space character when the lines are joined.leading and trailing whitespace in the lines,
and in the fields (type, position, prefix, regexp, domain) is ignored.

type is the type of the variable, as given in the expression that we have to instantiate. Ingeneral, vari-
ables in TorX have the formvar_type[$i] with var_ a fixed prefix, and$i an optional numerical
suffix to make the variables unique. Note: variables of the typemtype are treated special: as soon
as a value is found for it, it is substituted, so the found value can be used as ‘‘context’’ in the regu-
lar expressionregexpfield.

position
is a non-negative (usually also non-zero) number that refers to the part of the event (action) that
has to which the rule applies, where we take the ! character as a separator in the action, as in
pos0!pos1!pos2 etc. Thespecial value ‘‘∗ ’’ makes the rule applicable to any position.

prefix is a regular expression that refers to the command in the TorX Primer-Driver interface (seetorx-
primer (5)) for which the rule applies.This will usually be the commandC_INPUT (for torx ver-
sion 2.∗) or the commandC_GETINPUT (for torx version 3.∗). Notethat it will only look at the
ev ent field of this command (this is hardcoded ininstantiator ; maybe this should be configurable
too). Note: all lines belonging to the same instantiation group should have the same prefix
(because, as soon as an instantiation is possible using one of the prefixes, the rules of the other pre-
fixes will not be tried).

regexp is a regular expression that specifies the ‘‘context’’ of the rule. For a rule to be applicable, thereg-
exphas to be matched.

domain specifies (enumerates) the values that can be chosen from.Currently there are two syntaxes

SunOS 5.8 Last change: 1

User Commands instantiator (1)

allowed. Thefirst is a set-like notation, consisting of an enumeration of values, enclosed between
{ and }, separated by commas, where the values themselves do not contain commas. No whites-
pace is allowed between { and }.The disadvantage of this format is that the values may not con-
tain commas. Example: {val1,val2,val3,val4}
The second format does not have this restriction.Also this contains of an enumeration of values,
now enclosed between (and), separated by whitespace, where the values themselves may not con-
tain whitespace. Example: (e1(e2,e3) b1 c1 d1(e3,f3(g,h)))

EXAMPLES
Conference Protocol in Promela

Here we have to instantiate events of the form
from_upper!LEAVE!var_byte!var_byte
from_lower!PDU_JOIN!var_byte!var_byte!var_byte!var_byte

All (most) variables here are of type ‘‘byte’’, even though semantically these ‘‘bytes’’ represent different
things. Thatis why we need theposition field here, to distinguish the different semantical domains.

==================================
empty lines and comment lines are ignored.
comment lines are lines that start with
(optional whitespace followed by) a hash sign (#).
byte:2:C_INPUT:from_upper!JOIN!.∗ !.∗ :{1,2,3,4}
byte:3:C_INPUT:from_upper!JOIN!.∗ !.∗ :{1,2}

NOTE: _both_ lines of this regexp group have same prefix;
if one line has C_INPUT and the other C_INPU(S?) then
only one instantiation will be done even if an input line
contains two var_byte fields...
byte:2:C_INPUT(S?):from_upper!LEAVE!.∗ !.∗ :{1,2,3,4}
byte:3:C_INPUT(S?):from_upper!LEAVE!.∗ !.∗ :{1,2}

byte:2:C_INPUT:from_upper!DREQ!.∗ !.∗ :{1,2,3,4}
byte:3:C_INPUT:from_upper!DREQ!.∗ !.∗ :{1}

byte:2:C_INPUT:from_lower!PDU_JOIN!.∗ !.∗ !.∗ !.∗ :{1,2,3,4}
byte:3:C_INPUT:from_lower!PDU_JOIN!.∗ !.∗ !.∗ !.∗ :{1,2}
byte:4:C_INPUT:from_lower!PDU_JOIN!.∗ !.∗ !.∗ !.∗ :{0,2}
byte:5:C_INPUT:from_lower!PDU_JOIN!.∗ !.∗ !.∗ !.∗ :{1}
==================================

Conference Protocol in Promela
Another more elaborate example for the same events. Herewe first replace the ‘‘byte’’ variables with new
variable names with a more expressive type name, which we then instantiate.

==================================
byte:2:C_INPUT:from_upper!JOIN!.∗ !.∗ :{var_usertitle}
byte:3:C_INPUT:from_upper!JOIN!.∗ !.∗ :{var_conferenceid}

byte:2:C_INPUT:from_upper!LEAVE!.∗ !.∗ :{var_usertitle}
byte:3:C_INPUT:from_upper!LEAVE!.∗ !.∗ :{var_conferenceid}

byte:2:C_INPUT:from_upper!DREQ!.∗ !.∗ :{var_len}
byte:3:C_INPUT:from_upper!DREQ!.∗ !.∗ :{var_data}

byte:2:C_INPUT:from_lower!PDU_JOIN!.∗ !.∗ !.∗ !.∗ :{var_usertitle}
byte:3:C_INPUT:from_lower!PDU_JOIN!.∗ !.∗ !.∗ !.∗ :{var_conferenceid}
byte:4:C_INPUT:from_lower!PDU_JOIN!.∗ !.∗ !.∗ !.∗ :{var_udpaddr_src}

SunOS 5.8 Last change: 2

User Commands instantiator (1)

byte:5:C_INPUT:from_lower!PDU_JOIN!.∗ !.∗ !.∗ !.∗ :{var_udpaddr_dst}

byte:2:C_INPUT:from_lower!PDU_ANSWER!.∗ !.∗ !.∗ !.∗ :{var_usertitle}
byte:3:C_INPUT:from_lower!PDU_ANSWER!.∗ !.∗ !.∗ !.∗ :{var_conferenceid}
byte:4:C_INPUT:from_lower!PDU_ANSWER!.∗ !.∗ !.∗ !.∗ :{var_udpaddr_src}
byte:5:C_INPUT:from_lower!PDU_ANSWER!.∗ !.∗ !.∗ !.∗ :{var_udpaddr_dst}

byte:2:C_INPUT:from_lower!PDU_LEAVE!.∗ !.∗ !.∗ !.∗ :{var_usertitle}
byte:3:C_INPUT:from_lower!PDU_LEAVE!.∗ !.∗ !.∗ !.∗ :{var_conferenceid}
byte:4:C_INPUT:from_lower!PDU_LEAVE!.∗ !.∗ !.∗ !.∗ :{var_udpaddr_src}
byte:5:C_INPUT:from_lower!PDU_LEAVE!.∗ !.∗ !.∗ !.∗ :{var_udpaddr_dst}

byte:2:C_INPUT:from_lower!PDU_DAT A!.∗ !.∗ !.∗ !.∗ :{var_len}
byte:3:C_INPUT:from_lower!PDU_DAT A!.∗ !.∗ !.∗ !.∗ :{var_data}
byte:4:C_INPUT:from_lower!PDU_DAT A!.∗ !.∗ !.∗ !.∗ :{var_udpaddr_src}
byte:5:C_INPUT:from_lower!PDU_DAT A!.∗ !.∗ !.∗ !.∗ :{var_udpaddr_dst}

mtype:1:C_INPUT:from_lower!.∗ !.∗ !.∗ !.∗ !.∗ :{PDU_JOIN,PDU_ANSWER,PDU_LEAVE,PDU_DAT A}
mtype:1:C_INPUT:from_upper!.∗ !.∗ !.∗ :{JOIN,LEAVE,DREQ}

usertitle:∗ :C_INPUT:from_upper!.∗ !.∗ !.∗ :{101,102,103,104}
conferenceid:∗ :C_INPUT:from_upper!.∗ !.∗ !.∗ :{51,52}
udpaddr_src:∗ :C_INPUT:from_upper!.∗ !.∗ !.∗ :{0,2}
udpaddr_dst:∗ :C_INPUT:from_upper!.∗ !.∗ !.∗ :{1}
len:∗ :C_INPUT:from_upper!.∗ !.∗ !.∗ :{21}
data:∗ :C_INPUT:from_upper!.∗ !.∗ !.∗ :{31,32,33,34}

usertitle:∗ :C_INPUT:from_lower!.∗ !.∗ !.∗ !.∗ !.∗ :{101,102,103,104}
conferenceid:∗ :C_INPUT:from_lower!.∗ !.∗ !.∗ !.∗ !.∗ :{51,52}
udpaddr_src:∗ :C_INPUT:from_lower!.∗ !.∗ !.∗ !.∗ !.∗ :{0,2}
udpaddr_dst:∗ :C_INPUT:from_lower!.∗ !.∗ !.∗ !.∗ !.∗ :{1}
len:∗ :C_INPUT:from_lower!.∗ !.∗ !.∗ !.∗ !.∗ :{21}
data:∗ :C_INPUT:from_lower!.∗ !.∗ !.∗ !.∗ !.∗ :{31,32,33,34}

unknown:∗ :C_INPUT:from_upper!.∗ !.∗ !.∗ :(join(var_usertitle,var_conferenceid) \
answer(var_usertitle,var_conferenceid) \
leave(var_usertitle,var_conferenceid) \
data(var_len,var_data))

==================================

Conference Protocol in LOTOS, Symbolic
Here the variables already have a clear type, so we don’t hav eto look at the position instantiate.We do use
the ‘‘repeated rule application’’ f eature to construct ‘‘complex’’ values, by repeatedly instantiating variables
with expressions that contain new variables, that are then instantiated, etc.

==================================
DataField :∗ :C_INPUT:.∗ :{m1,m2,m3,m4}
DataFieldLen :∗ :C_INPUT:.∗ :{l}
UserTitle :∗ :C_INPUT:.∗ :{ut_A,ut_B,ut_C,ut_D}
ConfIdent :∗ :C_INPUT:.∗ :{ci_one}
ConfIdent :∗ :C_INPUT:.∗ :{ci_one,ci_two}
UDPAddress_dst:∗ :C_INPUT:.∗ :{udp1}
UDPAddress_src:∗ :C_INPUT:.∗ :{udp2,udp3}

CFsp :∗ :C_INPUT:.∗ :(datareq(var_DataField) \

SunOS 5.8 Last change: 3

User Commands instantiator (1)

join(var_UserTitle,var_ConfIdent) \
leave)

UDPsp :∗ :C_INPUT:.∗ :(udp_datareq(var_UDPAddress_dst,var_PDU))
#UDPsp :∗ :C_INPUT:.∗ :(udp_dataind(var_UDPAddress_dst,var_PDU))

PDU :∗ :C_INPUT:.∗ :(PDU_J(var_UserTitle,var_ConfIdent) \
PDU_A(var_UserTitle,var_ConfIdent) \
PDU_L(var_UserTitle,var_ConfIdent) \

PDU_D(var_DataFieldLen,var_DataField))
==================================

SEE ALSO
torx-intro (1), torx-primer (5)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 oftorx .

SunOS 5.8 Last change: 4

User Commands intersector (1)

NAME
intersector − combine multiple torx primers

SYNOPSIS
intersector [options ...] configuration-file ...

DESCRIPTION
intersector is an experimental program to integrate the menu’s received from multipletorx-primer (5). It
presents itself as a single Primer to the Driver. One way to see it, is as a kind of multiplexer. So, on the one
hand, it interfaces with each primer, using the primer-driver interface, playing the role of the driver. On the
other hand, it interfaces with the driver, playing the role of the primer.

It is calledintersector because it (sort of) computes the (mathematical) intersection of the menu’s that it
receives.

In addition, for execution of test cases generated with the tool TGVintersector can be configured to inter-
pret action (event) labels as verdicts: the presence of a particular action in the menu then means that a par-
ticular verdict has been given.

intersector takes the command line options as given in torx-primer (5). Mostof these it just passes on to
the Primers that it invokes. Onstart-up, theintersector reads itsconfiguration-filewhich is similar to the
torx-config(4) configuration file, and the configuration file of thepartitioner (1). It then starts thetorx-
primer (5) that are specified in its configuration file, and asks them for their inputs and outputs, after which
it waits for Primer-Driver interface commands on its standard input.

In the interaction with a test-purpose explorer/primer program, theintersector assumes that the test-pur-
pose explorer/primer program knows about suspension (quiescense) actions: inC_OUTPUT interface
commands it will usesuspension=1 where appropriate. Note that this has been changed in TorX version
3.2; in earlier versions of TorX, it would always sendsuspension=0 in the interactions with a test-purpose
explorer/primer program.

OPTIONS
intersector supports the following commandline options, which are all just passed to thetorx-primer (5)
that it invokes.

-s number
the seed for the random number generator

-i gates1,gate2,gate3,...
the list of input gates. Note there are no spaces between the gates!

-o gates1,gate2,gate3,...
the list of output gates. Note there are no spaces between the gates!

-S algorithm
the algorithm which can beioco, tracesor simulation.

-d delta-event-tag
thedelta-event-tagis used for quiescense in the interface.

CONFIGURATION FILE
The configuration file consists of a number of single-line entries as intorx-config(4). Several entries have
a field id. An id is just an arbitrary name, that is intended to group together entries that describe informa-
tion about the same Primer: these entries should contain the same value forid.

SPEC id filename[args]
The filename of explorer/primer programid, and its (optional) arguments. Theexplorer/primer
program will be started from the directory given with the RUNDIR entry for id. Note that the
default value forRUNDIR is not the current working directory!

TEST id filename[args]
The filename of test-case explorer/primer programid, and its (optional) arguments, for execution a

SunOS 5.8 Last change: 1

User Commands intersector (1)

already generated test case.The explorer/primer program will be started from the directory given
with theRUNDIR entry for id. Note that the default value forRUNDIR is not the current work-
ing directory!

GUIDE id filename[args]
The filename of test-purpose explorer/primer programid, and its (optional) arguments. The
explorer/primer program will be started from the directory given with theRUNDIR entry for id.
Note that the default value forRUNDIR is not the current working directory!

RUNDIR id directory
The directory from which the explorer/primer program ofid will be started. Default value: the
directory containing the explorer/primer program as specified in theSPEC, TEST, or GUIDE
entry forid.

LABEL-DEL TA id label ...
The action (label) that represents quiescense (suspension) for sub-primerid. This value should be
parseable as a LOTOS event. Default value: Delta

LABEL-HIT id label ...
The action (label) that represents ‘‘hitting’’ the test-purpose for sub-primerid.

LABEL-MISS id label ...
The action (label) that represents ‘‘missing’’ the test-purpose for sub-primerid.

LABEL-PASS id label ...
The action (label) that represents ‘‘passing’’ the test for sub-primerid.

SEEDnumber
specifies the seed for the random number generator, and is also passed down the the invoked
Primer. Note: it is better tonot specify this in the configuration file, but to just use the value given
with the--seedflag.

CHOOSEINPUTS number
Indicate whether or not theintersector should select inputs from the menu, if the user does not
choose. Thisis needed if aniochooseris used to choose values for ‘‘symbolic’’ events in the
Promelaspecification. Allowed values: 0 (false), 1 (true). Default value: 0

SPECTIMEOUT number
Specify how long to wait for the spec to respond. This value should not be configured by the user.
Default value: -1 (indicating: infinity)

LOGFILE
intersector combines the STATS adn STATEID of the primers that it invokes. EachSTATS and STATEID
line of a primer is prefixed with four space-separated words, followed by a space, resulting in something
like:

id id role role stats line from primer
with id the id used for the primer in theintersector configuration file, androle the role of that primer, i.e.
one ofspec, guide, or test.

EXAMPLE
The following example starts a primer together with a test purpose. The ‘‘hit’ ’ l abel is set to ‘‘epsilon’’,
which is the right value forjararaca(1) (when invoked with the right flag).
#==
SPEC spec ../LOTOS/primer.sh
GUIDE tp ../TP/primer.sh
LABEL-HIT tp epsilon
LABEL-DELTA tp Delta
#==

SunOS 5.8 Last change: 2

User Commands intersector (1)

SEE ALSO
torx-intro (1), torx-primer (5), partitioner (1), torx-log(4)

BUGS
Th implementation is built reusing parts of already existing programs, and thus may contain some ‘‘dead’’
code.

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 oftorx .

SunOS 5.8 Last change: 3

User Commands iochooser (1)

NAME
iochooser − suggest by probabilities to stimulate or observe

SYNOPSIS
iochooser [-sseed] [-debug] [bound:value[: ...]]

DESCRIPTION
iochoosercan be used as a filter between the TorX Driver and a TorX Primer, to use probabilities in the
decision between stimulating and observing.The iochooser program intercepts theC_IOKIND com-
mands send from Driver to Primer, and, when such a command does not have a ‘‘suggestion’’ already
(which means that the Driver leaves the decision to the Primer), theiochooseradds a ‘‘suggestion’’, using
probabilities.

OPTIONS
The following command line options are supported:

-s seed specify the seed for the random number generator (default value: 0)

-debug generate debugging output

bound:value:... specify the possible suggestion values, and their probabilities.This argument is a single
string of colon (:) separated fields. There should always be an even number of fields.
Tw o subsequent fields specify a bound and a suggestion value. Thebound values
should be between 0.0 and 1.0, and should increase from left to right.iochooseruses
this argument as follows: When a suggestion value has to be generated,iochoosergener-
ates a random number between 0.0 and 1.0.It then compares the generated number with
the bounds, from left to right, and uses thevalue field of the firstbound in the argument
that is greater or equal to the generated number. (default value:
0.5:iokind=input:1.0:iokind=output)

EXAMPLE
Below we show a sh(1) shell script that demonstrates how iochoosercan be put as filter between the Driver
and a Primer. The shell script should be specified as explorer/primer program in atorx-config(4) configu-
ration (i.e. as value of aSPEC line). It assumes that the probability of doing an input, and the ‘‘real’’
explorer/primer program are specified asSPECFLAGSvalue in thetorx-config(4) configuration file.

#==
#!/bin/sh
We assume that we specify the probability and the primer program
as values of SPECFLAGS in the torx-config(4) configuration file,
as in:
##
SPECFLAGS 0.3 /my/path/to/my/real/primer
##
which means they will be the last values in the argument list
given to this script.
We store those two values in variables PROB resp. PRIMER,
and then strip them from the list of arguments with which
we invoke the primer.
NOTE there should be (hopefully is) a better way to do the
command line argument dance below.

use: number of arguments we consume here
use=2
if [$# -lt $use]
then

echo "usage: script [primer-args...] prob primer" 1>&2
exit 1

SunOS 5.8 Last change: 1

User Commands iochooser (1)

fi

construct command (cmd) to re-set the positional parameters
to the list of n that we want to pass to the primer, like:
set"$1" "$2" ... "$n"
and set PROB and PRIMER
cmd=set
n=‘expr $# - $use‘
i=1
while [$i -le $n]
do

cmd="$cmd \"\$$i\""
i=‘expr $i + 1‘

done
eval PROB=\$$i
i=‘expr $i + 1‘
eval PRIMER=\$$i
i=‘expr $i + 1‘

only eval the command to re-set the positional parameters
if there are positional parameters to be set
otherwise, unset the positional parameters using shift
(old bourne shells do not allow an argument to shift)
if [$# -gt $use]
then

eval $cmd
else

i=1
while [$i -le $use]
do

shift
i=‘expr $i + 1‘

done
fi

ready to start the real work
xtorx will make sure that iochooser is in its PATH
if [-n "$PROB"]
then

bounds_values="${PROB}:iokind=input:1.0:iokind=output"
iochooser -s 0 $bounds_values | $PRIMER "$@"

else
$PRIMER "$@"

fi
#==

SEE ALSO
torx-intro (1), torx (1), torx-primer (5), torx-config(4), sh(1)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 of torx.

SunOS 5.8 Last change: 2

User Commands jararaca (1)

NAME
jararaca − explore traces generated from regular expressions

SYNOPSIS
jararaca [options ...] [file]
jararaca -h

DESCRIPTION
jararaca implements a (non-symbolic) explorer for regular expressions, given in the jararaca input lan-
guage. Itreads the regular expressions fromfile, if giv en, or otherwise from standard input, and builds an
automaton for it, that generates the set of traces that can be produced from the regular expression. The
automaton is then extended with an epsilon selfloop with (label, event) string "epsilon" on the accept state.
Jararaca then offers the TorX explorer-primer interface on standard input and output, to ‘‘lazily’ ’ explore
this automaton, and hence, the set of traces.Jararaca uses the (label, event) strings defined for its atomic
actions, instead of just using the action identifiers themselves.

OPTIONS
The following command line options are supported:

-h print the version number and an overview of the command line options, and exit.

-a use the action identifiers themselves instead of the (label, event) strings defined for them

-d print RFSM indot(1) format to standard output and exit

-e run the explorer-primer interface on standard input and output (this is the default)

-l eps add epsilon loop with (label, event) stringepsto accept state. When the TorX combinator sees
a special action in the menu of one of its explorer/primers (by default epsilon) it knows that
jararaca has reached the accept state. (by default a selfloop with (label, event) stringepsilon
is added on the accept state)

-L do not add epsilon self loop on the accept state

-p print parsetree indot(1) format to filedest.pt.dot wheredest is either the name of the input
file, or the stringstdin if no input file was given and jararaca read its input from standard
input.

-r print RFSM indot(1) format to filedest.rfsm.dot wheredestis either the name of the input
file, or the stringstdin if no input file was given and jararaca read its input from standard
input.

-s output strings instead of action id’s

-v verbose mode

INPUT FORMA T
The input file contains 4 sections, each of which starts with a special keyword that should appear at the start
of a line. The sections have to appear in order, and the keyword the starts a next section at the same time
closes the previous one. All identifiers should be defined before they can be used.C style comments are
allowed (comments start with/∗ and end with∗ / and can not be nested)

The first section, which starts with the keyword %description on a single line, contains a non-formal
description of the test purpose, its author, goal, date of writing, etc.

The second section, which starts with the keyword %declare on a single line, contains declarations of the
actions that are used in the test purpose. An action declaration has the form

action aid " text-string" ;
This defines an action identifieraid, together with a ‘‘verbose’’ string representationtext-stringof it. The
‘‘ verbose’’ string representation is used unless the-a option ofjararaca is used. If the-a
option is used, the strings may be left empty (i.e. consisting just of "").Action declarations can be grouped
in named sets, as follows:

setsid {

SunOS 5.8 Last change: 1

User Commands jararaca (1)

action aid1 " text-string1" ,
action aid2 " text-string2" ,
...

};
This defines the action identifiersaid1, aid2, etc. with their string representationstext-string1and text-
string2as belonging to the set namedsid. The action identifiers and the set names can be used in the third
and fourth sections, which contain the regular expressions.

The third section, which starts with the keyword %define on a single line, contains named regular expres-
sions, as

eid = regular-expression;
This makes that a namedregular-expressioncan be used as sub-expression in the regular expressions that
follow it (in the third section and in the fourth section), by referring to its nameeid.

The fourth (and last) section, which starts with the keyword %objective on a single line, contains the regu-
lar expression for which the automaton should be build, and which should be explored.

REGULAR EXPRESSIONS
The semantics of the regular expressions are defined via a mapping functionT that maps regular expres-
sions on a set of sequences of actions (i.e. as a set of traces).In the definition we use. as concatenation
operation on sequences of actions. Below we list the valid regular expressions, and their meaning.

Atomic regular expressions are:

aid the action defined with action identifieraid in the%declare section
T(aid) = { aid }

sid the action set defined with set identifiersid in the%declare section, which is interpreted as
the choice over the elementsa1, a2, ..., anif sidwas defined as set{a1, a2, ..., an}
This is equivalent to regular expression(a1|a2| ...|an)
T(sid) = { a | exists <sid,A> and <a,s> in A }

eid the regular expression defined with regular expression identifiereid in the%define section,
which is interpreted as(e) if e is the regular expression that is assigned toeid
T(eid) = { s | exists <eid,re> ands in T(re) }

Regular expressions can be built recursively using the following operators, wheree, e1, and e2are regular
expressions:

e1.e2 this gives the regular expression formed by concatenating regular expressionse1ande2
T(e1.e2) = { s1.s2 | s1 in T(e1) ands2 in T(e2) }

e1|e2 this gives the regular expression formed by choosing regular expressionse1or e2
T(e1|e2) = T(e1) union T(e2)

e1>e2 this gives the regular expression formed by determinstically concatenating regular expres-
sionse1ande2. This is done by removing the actions that appear at the ‘‘head’’ of e2 from
the ‘‘head’’ of e1, and then non-deterministically doinge2, or doing e1 (minus the removed
actions) followed bye2

e[m..n] this general repetion operator gives the regular expression formed by doinge at leastm and
at mostn times. m andn should be greater than or equal to zero, andn should be greater
than or equal tom. The special valueinfinity is also allowed form andn.
T(e[m..n]) = Union(m<=i<=n) T(e[i]) where
T(e[0]) = { EmptyString }
T(e[1]) = T(e)
T(e[2]) = { s1.s2 | s1 in T(e) and s2 in T(e) }
...
T(e[i]) = { s1.si | s1 in T(e) and ... andsi in T(e) }
...

SunOS 5.8 Last change: 2

User Commands jararaca (1)

e∗ this gives the regular expression formed by doingezero or more times.
This is equivalent to regular expressionse[0..] ande[0..infinity]

e+ this gives the regular expression formed by doingeone or more times
This is equivalent to regular expressionse[1..] ande[1..infinity]

e? this gives the regular expression formed by doingezero or one times
This is equivalent to regular expressione[0..1]

e[n] this gives the regular expression formed by doingeexactelyn times.
n should be greater than or equal to zero.
This is equivalent to regular expressione[n..n]

e[infinity] this gives the regular expression formed by doinge infinitely many times.
This is equivalent to regular expressione.e[infinity] or e[infinity..infinity]

(e) this gives the regular expressione.
This is used for grouping, to avoid ambiguous expressions.
jararaca enforces the use of parentheses where necessary.

EXAMPLES
Conference Protocol Requirements

%description

Testpurpose 1-9
d.d. 12 december 2001
author: Rene de Vries

Goal: Test purposes for requirement 1-9 of conference protocol

%declare
set LU {

action o_PduJoin_P1 "udp_out!UDP2!UDP_DAT AIND(UDP1,PDU_J(UT_A,CI_ONE))",
action o_PduJoin_P2 "udp_out!UDP3!UDP_DAT AIND(UDP1,PDU_J(UT_A,CI_ONE))",
action o_PduAnswer_P1_C1 "udp_out!UDP2!UDP_DAT AIND(UDP1,PDU_A(UT_A,CI_ONE))",
action o_PduAnswer_P1_C2 "udp_out!UDP2!UDP_DAT AIND(UDP1,PDU_A(UT_A,CI_TWO))",
action o_PduAnswer_P2_C1 "udp_out!UDP3!UDP_DAT AIND(UDP1,PDU_A(UT_A,CI_ONE))",
action o_PduAnswer_P2_C2 "udp_out!UDP3!UDP_DAT AIND(UDP1,PDU_A(UT_A,CI_TWO))",
action o_PduData_P1 "udp_out!UDP2!UDP_DAT AIND(UDP1,PDU_D(L_1,M1))",
action o_PduData_P2 "udp_out!UDP3!UDP_DAT AIND(UDP1,PDU_D(L_1,M1))",
action o_PduLeave_P1_C1 "udp_out!UDP2!UDP_DAT AIND(UDP1,PDU_L(UT_A,CI_ONE))",
action o_PduLeave_P1_C2 "udp_out!UDP2!UDP_DAT AIND(UDP1,PDU_L(UT_A,CI_TWO))",
action o_PduLeave_P2_C1 "udp_out!UDP3!UDP_DAT AIND(UDP1,PDU_L(UT_A,CI_ONE))",
action o_PduLeave_P2_C2 "udp_out!UDP3!UDP_DAT AIND(UDP1,PDU_L(UT_A,CI_TWO))",
action o_SpDataInd "cfsap_out!CF1!DAT AIND(UT_A,M1)"

};

setLI{
action i_PduJoin_C1 "udp_in!UDP2!UDP_DAT AREQ(UDP1,PDU_J(UT_A,CI_ONE))",
action i_PduJoin_C2 "udp_in!UDP2!UDP_DAT AREQ(UDP1,PDU_J(UT_A,CI_TWO))",
action i_PduAnswer_P1_C1 "udp_in!UDP2!UDP_DAT AREQ(UDP1,PDU_A(UT_A,CI_ONE))",
action i_PduAnswer_P1_C2 "udp_in!UDP2!UDP_DAT AREQ(UDP1,PDU_A(UT_A,CI_TWO))",
action i_PduAnswer_P2_C1 "udp_in!UDP3!UDP_DAT AREQ(UDP1,PDU_A(UT_A,CI_ONE))",
action i_PduAnswer_P2_C2 "udp_in!UDP2!UDP_DAT AREQ(UDP1,PDU_A(UT_A,CI_TWO))",
action i_PduData_P1 "udp_in!UDP2!UDP_DAT AREQ(UDP1,PDU_D(L_1,M1))",
action i_PduData_P2 "udp_in!UDP3!UDP_DAT AREQ(UDP1,PDU_D(L_1,M1))",
action i_PduLeave "udp_in!UDP2!UDP_DAT AREQ(UDP1,PDU_L(UT_A,CI_ONE))",

SunOS 5.8 Last change: 3

User Commands jararaca (1)

action i_SpJoin_C1 "cfsap_in!CF1!JOIN(UT_A,CI_ONE)",
action i_SpDataReq "cfsap_in!CF1!DAT AREQ(M1)",
action i_SpLeave "cfsap_in!CF1!LEAVE"

};

action delta "Delta";

%define

/∗ general strategies∗ /
LUD = LU|delta;
eager = LU∗ .delta;

/∗ rewriting/combinations∗ /
i_PduData = i_PduData_P1 | i_PduData_P2;
SpJoinC1 = i_SpJoin_C1.LUD∗ ;
JoinedConf = SpJoinC1.i_PduAnswer_P1_C1.i_PduAnswer_P2_C1;

o_PduJoin = o_PduJoin_P1 | o_PduJoin_P2;
o_PduAnswer_P1 = o_PduAnswer_P1_C1 | o_PduAnswer_P1_C2;
o_PduAnswer_P2 = o_PduAnswer_P2_C1 | o_PduAnswer_P2_C2;
o_PduAnswer = o_PduAnswer_P1 | o_PduAnswer_P2;

/∗ modeled requirements as test purpose∗ /

/∗ we assume 2 potential conference partners∗ /
Req1 = i_SpJoin_C1.(LUD∗ >o_PduJoin)[2];

Req2 = i_SpJoin_C1.LUD∗ .i_PduJoin_C1.LUD∗ >o_PduAnswer;
Req3 = i_SpJoin_C1.LUD∗ .i_PduJoin_C2.eager;
Req4 = SpJoinC1.i_PduAnswer_P1_C1.i_PduAnswer_P2_C2.

i_SpDataReq.i_PduData_P1.eager;
Req5 = JoinedConf.i_SpDataReq.eager;
Req6 = JoinedConf.i_PduData_P1.i_PduData_P2.eager;
Req7 = JoinedConf.i_SpLeave.i_SpJoin_C1.eager.i_SpDataReq.eager;
Req8 = JoinedConf.i_PduLeave.i_SpDataReq.eager;
Req9 = SpJoinC1.i_PduData_P1.eager;

%objective
Req1/∗ ∗ /
/∗ Req2∗ /
/∗ Req3∗ /
/∗ Req4∗ /
/∗ Req5∗ /
/∗ Req6∗ /
/∗ Req7∗ /
/∗ Req8∗ /
/∗ Req9∗ /
/∗ LUD ∗ /

Using a Preprocessor
Sometimes when we specify multiple requirements in a singlejararaca(1) input file, it is useful to then use
a simple shell script to select one of these requirements with a command line option or an environment

SunOS 5.8 Last change: 4

User Commands jararaca (1)

variable (instead of editing the file to uncomment the selected requirement).Thesh(1) (bourne shell) script
below demonstrates how we inv oke primer (1) astorx-primer (5) with jararaca(1) astorx-explorer (5),
where the input file forjararaca(1) is preprocessed withcpp(1) using environment variableTPFLAG .
The%objectivesection of the above script would then be replaced by just:
%objective

TP
andTPFLAG could then be used to defineTP, for example tosomething like

-DTP=Req1
to select the first requirement.

#!/bin/sh
tpfile=confprot.tp

tmptpfile=/tmp/torx$$.tp
cfg=explorer-primer-config.txt

cpp -C -E -P $TPFLAG $tpfile > $tmptpfile

primer -f $cfg "$@" jararaca $tmptpfile
rm -f $tmptpfile

BUGS
The environment variableTORX_ROOT is not supported.

Because the TorX explorer-primer interface ‘‘works’’ on standard input and standard output, it is not possi-
ble to read the regular expression from standard inputand run the TorX explorer-primer interface or write
thedot file to standard output and run the TorX explorer-primer interface.

SEE ALSO
torx-intro (1), torx-explorer (5), torx-primer (5), primer (1), intersector(1), cpp(1), dot(1), sh(1), envi-
ron(5)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 of torx.

SunOS 5.8 Last change: 5

User Commands jararacy (1)

NAME
jararacy − animate jararaca trace using lefty

SYNOPSIS
jararacy [-m mcastid] [- t title] [-r] [- k key] dotfile

DESCRIPTION
jararacy useslefty(1) to animate the automaton (RFSM) generated byjararaca(1) in dotfile(which should
be indot(1) format). After start up,jararacy creates a window (with the given title) in which it draws the
automaton, and then waits for animation commands on standard input. On end of file on standard input,
jararacy waits for the user to remove the window, after which it exits. The animation commands are
expected to be generated usinglog2jararacy(1), e.g. using a unix command as

log2jararacy < logfile | jararacy dotfile
or

tail -f logfile | log2jararacy | jararacy dotfile
Make sure that thelogfilecontains a run of the automaton present indotfile.

Each animation command consists of a single line of text, of the following form:
[init initinfo] [t rans transinfo]

whereinitinfo andtransinfoare of the following form
[node]states[edgeedges]

wherestatesandedgesconsist of whitespace separated lists of state/location respectively edge identifiers.
Both theinit initinfo and thetrans transinfoparts of the line may be omittted.If edgeedgesis omitted
from from aninitinfo or transinfo, also thenodekeyword may be omitted.
During animation, the states and edges in theinit section will be colored red, and those in thetrans section
will be colored orange. The idea is that theinitstatesare those states directly reached by an observable
action, and thetransstatesare those states that can be reached from the correspondinginitstatesvia internal
(invisible, tau) actions.

By default, the window will scroll to follow the colored states. This setting can be toggled with the ‘‘track
node’’ command in the menu under the right mouse button.

By default, the animation in the window will follo w the animation commands read from standard input.If
this is disabled, the animation has to be done manually using the left and middle mouse button, and/or with
the navigation commands in the menu under the right mouse button (as discussed below). Thissetting can
be toggled with the ‘‘mode’’ command in the menu under the right mouse button.

In addition, the animation can be remotely controlled. If the-m mcastidcommand line option is given, or
environment variableTORXMCASTID was set, jararacy will attempt to make a remote control connec-
tion to the tcp address inmcastid. If it succeeds, it will then interpret lines of text read from the remote
control connection consisting of a single number as commands to show the corresponding step in the ani-
mation. Additionally, whenever the user uses mouse button and/or navigation commands to show a differ-
ent step, its step number is written to the remote control connection.The remote control connection allows
multiple viewers to show the same test step.

The left mouse button and the middle mouse button can be used to ‘‘navigate’’ in the animation: the left
mouse button will show the ‘‘next’’ step in the animation, and the middle mouse button will show the ‘‘pre-
vious’’ step in the animation.The menu under the right mouse button contains navigation commands ‘‘play
fwd’’ and ‘‘play bwd’’ to play the animation forward resp. backward, and ‘‘|<<--’’ and ‘‘-->>|’’ to go to the
start resp. end of the animation.

Other commands, e.g. to zoom, to open a birdseye view, etc. canbe found in the menu under the right
mouse button. For these, and for the other commands in the window, please seedotty(1).

The -r and -k key command line options are only present for compatibility withanifsm(1): they are
ignored.

DIAGNOSTICS
Error messages and navigation diagnostics appear on standard error. The navigation diagnostics can be

SunOS 5.8 Last change: 1

User Commands jararacy (1)

enabled and disabled with the ‘‘verbose’’ command in the menu under the right mouse button.

BUGS
The animation of ‘‘play fwd’’ and ‘‘play bwd’’ is too fast.

The environment variableTORX_ROOT is not supported.

Because the animation commands are read from standard input, it is not possible to read thedotfile from
standard input.

To overcome problems with the use of reverse video inlefty(1), jararacy usesxrdb (1) to set the following
X Windows resource:

LEFTY.reverseVideo: false

SEE ALSO
torx-intro (1), jararaca(1), log2jararacy(1), dot(1), dotty(1), lefty(1), torx-logclient(1), tmcs(1), ani-
fsm(1), aniwait(1), mscviewer(1), environ(5)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 of torx.

SunOS 5.8 Last change: 2

User Commands jararacy2anifsm (1)

NAME
jararacy2anifsm − translate from jararacy to anifsm input format

SYNOPSIS
jararacy2anifsm

DESCRIPTION
jararacy2anifsm translates from our ‘‘old’’ jararacy (1) format to the new anifsm(1) format. It reads from
standard input and writes to standard output.

Eachjararacy (1) animation command consists of a single line of text, of the following form:
[init initinfo] [t rans transinfo]

whereinitinfo andtransinfoare of the following form
[node]states[edgeedges]

wherestatesandedgesconsist of whitespace separated lists of state/location respectively edge identifiers.
Both theinit initinfo and thetrans transinfoparts of the line may be omittted.If edgeedgesis omitted
from from aninitinfo or transinfo, also thenodekeyword may be omitted. The edge identifiers should be
given in the dotfile as the value of anameattribute of an edge, as in

src->dst [label=action, name=e42 , ...];
Alternatively, an edge identifier can be of the form

src->dst
wheresrc anddst are states. Note, however, that if src anddst are linked by multiple edges, an arbitrary
one will be chosen! It is much safer to rely onnameattributes in the dotfile.
During animation, the states and edges in theinit section will be colored red, and those in thetrans section
will be colored darker red.The idea is that theinitstatesare those states directly reached by an observable
action (in initedges), and thetransstatesare those states that can be reached from the correspondinginit-
statesvia internal (invisible, tau) actions (intransedges).

The target format is documented inanifsm(1).

SEE ALSO
torx-intro (1), log2jararacy(1), jararacy (1), anifsm(1), environ(5)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 of torx.

SunOS 5.8 Last change: 1

User Commands log2anifsm (1)

NAME
log2anifsm − translate TorX log to anifsm input

SYNOPSIS
log2anifsm [-ppattern] [logfile]

DESCRIPTION
log2anifsm reads atorx-log(4) from logfile or from standard input when nologfile is given and writes cor-
responding input foranifsm(1) on standard output, to visualize/animate the automaton of the test run.
From the given logfile it takessuper states fromSTATEID lines matching the given patterns, and actions
from ABSTRACT lines. Multiple-p patterncommand line options may be given.

If there are states from multiple torx tool components present in the logfile, the-p patterncommand line
option may be used to extract only the state information of a single tool component.

SEE ALSO
torx-intro (1), anifsm(1), log2aut(1), log2jararacy(1), torx-log(4)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 of torx.

SunOS 5.8 Last change: Nov 4, 2005 1

User Commands log2aniwait (1)

NAME
log2aniwait − extract aniwait animation commands from torx log

SYNOPSIS
log2aniwait [logfile]

DESCRIPTION
log2aniwait extracts state information from aTorX torx-log (4) logfile. It takes the information fromANI-
WAIT lines in the given logfile, and outputs them on standard output in theaniwait(1) format. If nologfile
is given, log2aniwait reads from standard input.

SEE ALSO
torx-intro (1), aniwait(1), torx-log(4)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 of torx.

SunOS 5.8 Last change: 1

User Commands log2aut (1)

NAME
log2aut − translate TorX log to Aldebaran (.aut)

SYNOPSIS
log2aut [options ...]

DESCRIPTION
log2aut reads atorx-log(4) from standard input and writes an automaton in Aldebaran (.aut) format on
standard output. Which information is present in the automaton depends on the options given. It is possi-
ble to generate an automaton that uses both test step numbers and’super’ STATEID information, which
results in an automaton that is no longer valid Aldebaran(.aut) format.Nevertheless it may be useful to do
so, andautexp(1) can deal with such automata.

By default, in the automaton, the number of time an edge has been taken is indicated by a@number(with
numbera decimal number) string added to the end of the edge labels. By default, the automaton will use
’super’ STATEID numbers for its states, if present in the TorX log, or test step numbers otherwise.

OPTIONS
The idea is that options-a, -t, and -T allow the choice of a ’scheme’, and the other options (-c, -C, -n, -N,
-s, -S) allow choice to add or not to add a particular feature.

The following ’scheme’ command line options are supported:

-a show edge count numbers, and use the ’super’ STATEID (if present in the log) as automaton states.
(mnemonic: this results in an automaton)

-t use test step numbers but no ’super’ STATEID numbers in the automaton state numbers
(mnemonic: this results in a trace)

-T use both test step numbers and ’super’ STATEID numbers in the automaton state numbers.

The following feature choice command line options are supported:

-c show edge count numbers

-C do not show edge count numbers

-n use test step numbers in the automaton state numbers

-N do not use test step numbers in the automaton state numbers

-s use ’super’ STATEID numbers in the automaton state numbers

-S do not use ’super’ STATEID numbers in the automaton state numbers

When both-n and-s are given, or when-T is given, the state numbers will be of the formsuper_teststep.
In that case, the following option can be used to influence how the edges are sorted in the automaton.Note
that this isnotvalid Aldebaran (.aut) format (where states should just be numbers).

-r if the automaton state numbers contain a ’_’, give priority to the rightmost element when sorting
(by default priority is given to the leftmost element)

BUGS
The order in which the options is given has no effect. (so,it is not possible to first enable an option and
then disable it and then enable it once more).

SEE ALSO
torx-intro (1), autexp(1), anifsm(1), torx-log(4)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 of torx.

SunOS 5.8 Last change: Nov 4, 2005 1

User Commands log2jararacy (1)

NAME
log2jararacy − extract states from torx log file for jararacy

SYNOPSIS
log2jararacy [-p pattern] [logfile]

DESCRIPTION
log2jararacy extracts state information from aTorX torx-log (4) logfile. It takes init andtrans states and
edges fromSTATEID lines matching the given patterns in the given logfile, and outputs them on standard
output in thejararacy (1) format. Multiple -p patterncommand line options may be given. If no logfile is
given, log2jararacy reads from standard input.

If there are states from multiple torx tool components present in the logfile, the-p patterncommand line
option may be used to extract only the state information of a single tool component.

SEE ALSO
torx-intro (1), jararaca(1), jararacy (1), torx-log(4)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 of torx.

SunOS 5.8 Last change: 1

User Commands log2mctrl (1)

NAME
log2mctrl − translate TorX log to mctrl input

SYNOPSIS
log2mctrl [logfile]

DESCRIPTION
log2mctrl reads atorx-log(4) from logfile or from standard input when nologfile is given and writes corre-
sponding input formctrl (1) on standard output, to update the slider bar. From the given logfile it takes step
numbers fromABSTRACT andEXPECTED lines.

SEE ALSO
torx-intro (1), mctrl (1), log2aut(1), log2jararacy(1), torx-log(4)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 of torx.

SunOS 5.8 Last change: Nov 4, 2005 1

User Commands log2msc (1)

NAME
log2msc − extract Message Sequence Chart from TorX log file

SYNOPSIS
log2msc

DESCRIPTION
The log2msc(1) program reads atorx-log(4) file from standard input, and writes a corresponding MSC file
in ‘‘event oriented textual representation’’ on standard output.

It writes each ‘‘statement’’ of the MSC on its own line, to comply with a limitation in themscviewer(1)
program.

SEE ALSO
torx-intro (1), mscviewer(1), torx-log(4), Ekkart Rudolph, Peter Graubmann and Jens Grabowski Tutorial
on Message Sequence Charts

SunOS 5.8 Last change: Jun 16, 2003 1

User Commands log2primer (1)

NAME
log2primer − generate torx-primer commands from TorX log file

SYNOPSIS
log2primer

DESCRIPTION
log2primer reads atorx-log(4) file from standard input, and writes a corresponding list oftorx-primer (5)
C_INPUT and C_OUTPUT commands on standard output. The idea is that these can then be used to
replay (analyse) the trace from the log file with a primer, for example by copying and pasting the com-
mands into a session withpui(1).

SEE ALSO
torx-intro (1), pui(1), torx-log(4), torx-primer (5)

SunOS 5.8 Last change: Jun 16, 2003 1

User Commands ltsaexp (1)

NAME
ltsaexp − explore fsp specification using ltsa

SYNOPSIS
ltsaexp [-ccomposite] file
ltsaexp -lfile

DESCRIPTION
ltsaexp implements a (non-symbolic) explorer for the languagefsp, using the toolltsa. It reads thefsp
specification from the given file, and then offers the TorX explorer-primer interface on standard input and
output, to ‘‘lazily’’ explore it.

By default ltsaexp explores the ‘‘DEFAULT’’ composite process. When invoked with the -l flag, ltsaexp
reports the names of the composite processes that are present infile and exits. With the -c compositeflag,
ltsaexpwill explore the composite process namedcompositein file, if present, or report an error and exit.

BUGS
The environment variableTORX_ROOT is not supported.

SEE ALSO
torx-intro (1), torx-explorer (5), environ(5)
Jeff Magee and Jeff Kramer,Concurrency : State Models & Java Programs, John Wiley & Sons Ltd, 1999
http://www-dse.doc.ic.ac.uk/concurrency/

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 of torx.

SunOS 5.8 Last change: 1

User Commands m4mkprimer (1)

NAME
m4mkprimer − preprocess input with m4 before invoking mkprimer

SYNOPSIS
m4mkprimer [preproc-args ...] .newsuffix specification.suffix

DESCRIPTION
cppmkprimer invokes the preprocessorm4(1) on input filespecification.suffixwith the given preproc-args
to generate the filespecification.newsuffixon which thenmkprimer (1) is invoked.

m4mkprimer is a simple wrapper aroundpreprocmkprimer (1).

SEE ALSO
torx-intro (1), mkprimer (1), m4(1) cppmkprimer (1), preprocmkprimer (1)

BUGS
It is not possible to specify command line arguments formkprimer (1).

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 ofmkprimer .

SunOS 5.8 Last change: Aug 21, 2002 1

User Commands mctrl (1)

NAME
mctrl − animation progress scrollbar

SYNOPSIS
mctrl [-r] [-m mcastid] [- t title]
mctrlsrv
mctrl -exit

DESCRIPTION
mctrl ‘animates’ a scrollbar that allows to control other ‘connected’ animation viewers like anifsm(1), ani-
wait(1), mscviewer(1), and alsoxtorx (1). After start up,mctrl connects to the given mcast(1) session,
creates a window (with the given title) containing a scrollbar, and waits for animation step commands on
the mcast connection. It reads step numbers (integers, one per line) on its standard input, and uses them to
update the scrollbar. The mcastidwill usually be of the formtcp!hostname!portnumberlike tcp!local-
host!3456. Onend of file on standard input,mctrl waits for the user to remove the window (or press the
Quit button), after which it exits.

Actually, mctrl is a shell-level command that uses a runningmctrlsrv to create or reuse a scrollbar win-
dow, and animate it using animation commands received over the mcast connection. The connection
betweenmctrl and a runningmctrlsrv will not be closed until the complete standard input of themctrl
command has been processed bymctrlsrv . If mctrl cannot find a runningmctrlsrv , it will start a new one.
In general, it should not be necessary to startmctrlsrv by hand. However, if startup time ofmctrl is an
issue, it may be advantageous to startmctrlsrv (by hand) in advance, because a startingmctrlsrv may
spend some time to check if anothermctrlsrv is already running.

To display a new scrollbar,mctrlsrv will reuse windows that contain a completed animation and have the
Reusetoggle activated. Ifmore windows are needed, they are created.

The-r command line option ofmctrl will activate theReusetoggle button for the mctrl window.

The animation in the window will follo w the step numbers read from standard input and the animation
commands read from the mcast connection.The animation can be be done manually using the scrollbar,
and/or with theStepup and down arrow buttons (as discussed below).

As stated above, the animation can be remotely controlled.Using the-m mcastidcommand line option, if
given, or environment variableTORXMCASTID if set,mctrl will attempt to make a remote control con-
nection to the tcp address inmcastid. (If neither -m mcastidis given nor TORXMCASTID if set, mctrl
will exit with a usage message.)If it succeeds, it will then interpret lines of text read from the remote con-
trol connection consisting of a single number as commands to show the corresponding step in the anima-
tion. Additionally, whenever the user uses the scrollbar and/or navigation commands to show a different
step, its step number is written to the remote control connection.The remote control connection allows
multiple viewers to show the same test step.

To stop a runningmctrlsrv , inv okemctrl with the-exit command line option.

BUTTONS
At the bottom of an mctrl window there are several buttons. Thestep numberof the animation step in the
trace is shown in theStep field. Stepnumbers start at 0, for the initial state.To visualize the animation
step for a known step, enter the step number in theStepentry field, and hit the return key. If a step number
is present in theStepfield, the down and up arrow buttons can be used to step backwards resp. forwards in
the animation.
The ’media player control buttons’ can be used to go to the beginning or end of the animation, to (re)play
the animation backwards or forwards with a given delay between the steps, and to stop or pause a playing
animation. Thedelay between the steps in an animation is given in theDelay entry field (in seconds).To
change the delay, enter a positive real number in theDelay entry field, and hit the return key, or use the up
and down arrow buttons next to the entry field. If theLoop toggle button is set when a playing animation
reaches the beginning (when playing backwards) or the end (when playing forwards) of the animation, the
animation will ’wrap around’ and restart at the end resp. beginning.
The Reusetoggle button indicates that its window may be reused for a new animation, when end-of-input

SunOS 5.8 Last change: 1

User Commands mctrl (1)

has been seen for the animation currently displayed in it. While an animation is in progress (so, when end-
of-input has not yet been seen) theReusebutton is disabled.(default value: unset, except when overridden
by a-r command line option ofmctrl).
TheClosebutton closes the window, and, if this was the last remaining mctrl window, exits the progam.
TheQuit button closes all mctrl windows and exits the progam.

DIAGNOSTICS
Error messages and navigation diagnostics appear on standard error.

BUGS
The environment variableTORX_ROOT is not supported.

It should be possible to replay an animation ortorx-log(4) using the timing information present in the origi-
nal animation or log (i.e. use the same time between the steps as during the original test run).

A more appropriate name might beanictrl .

SEE ALSO
torx-intro (1), torx-logclient(1), tmcs(1), anifsm(1), aniwait(1), mscviewer(1), xtorx (1), environ(5)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 of torx.

SunOS 5.8 Last change: 2

User Commands mctrl (1)

NAME
mctrl − animation progress scrollbar

SYNOPSIS
mctrl [-r] [-m mcastid] [- t title]
mctrlsrv
mctrl -exit

DESCRIPTION
mctrl ‘animates’ a scrollbar that allows to control other ‘connected’ animation viewers like anifsm(1), ani-
wait(1), mscviewer(1), and alsoxtorx (1). After start up,mctrl connects to the given mcast(1) session,
creates a window (with the given title) containing a scrollbar, and waits for animation step commands on
the mcast connection. It reads step numbers (integers, one per line) on its standard input, and uses them to
update the scrollbar. The mcastidwill usually be of the formtcp!hostname!portnumberlike tcp!local-
host!3456. Onend of file on standard input,mctrl waits for the user to remove the window (or press the
Quit button), after which it exits.

Actually, mctrl is a shell-level command that uses a runningmctrlsrv to create or reuse a scrollbar win-
dow, and animate it using animation commands received over the mcast connection. The connection
betweenmctrl and a runningmctrlsrv will not be closed until the complete standard input of themctrl
command has been processed bymctrlsrv . If mctrl cannot find a runningmctrlsrv , it will start a new one.
In general, it should not be necessary to startmctrlsrv by hand. However, if startup time ofmctrl is an
issue, it may be advantageous to startmctrlsrv (by hand) in advance, because a startingmctrlsrv may
spend some time to check if anothermctrlsrv is already running.

To display a new scrollbar,mctrlsrv will reuse windows that contain a completed animation and have the
Reusetoggle activated. Ifmore windows are needed, they are created.

The-r command line option ofmctrl will activate theReusetoggle button for the mctrl window.

The animation in the window will follo w the step numbers read from standard input and the animation
commands read from the mcast connection.The animation can be be done manually using the scrollbar,
and/or with theStepup and down arrow buttons (as discussed below).

As stated above, the animation can be remotely controlled.Using the-m mcastidcommand line option, if
given, or environment variableTORXMCASTID if set,mctrl will attempt to make a remote control con-
nection to the tcp address inmcastid. (If neither -m mcastidis given nor TORXMCASTID if set, mctrl
will exit with a usage message.)If it succeeds, it will then interpret lines of text read from the remote con-
trol connection consisting of a single number as commands to show the corresponding step in the anima-
tion. Additionally, whenever the user uses the scrollbar and/or navigation commands to show a different
step, its step number is written to the remote control connection.The remote control connection allows
multiple viewers to show the same test step.

To stop a runningmctrlsrv , inv okemctrl with the-exit command line option.

BUTTONS
At the bottom of an mctrl window there are several buttons. Thestep numberof the animation step in the
trace is shown in theStep field. Stepnumbers start at 0, for the initial state.To visualize the animation
step for a known step, enter the step number in theStepentry field, and hit the return key. If a step number
is present in theStepfield, the down and up arrow buttons can be used to step backwards resp. forwards in
the animation.
The ’media player control buttons’ can be used to go to the beginning or end of the animation, to (re)play
the animation backwards or forwards with a given delay between the steps, and to stop or pause a playing
animation. Thedelay between the steps in an animation is given in theDelay entry field (in seconds).To
change the delay, enter a positive real number in theDelay entry field, and hit the return key, or use the up
and down arrow buttons next to the entry field. If theLoop toggle button is set when a playing animation
reaches the beginning (when playing backwards) or the end (when playing forwards) of the animation, the
animation will ’wrap around’ and restart at the end resp. beginning.
The Reusetoggle button indicates that its window may be reused for a new animation, when end-of-input

SunOS 5.8 Last change: 1

User Commands mctrl (1)

has been seen for the animation currently displayed in it. While an animation is in progress (so, when end-
of-input has not yet been seen) theReusebutton is disabled.(default value: unset, except when overridden
by a-r command line option ofmctrl).
TheClosebutton closes the window, and, if this was the last remaining mctrl window, exits the progam.
TheQuit button closes all mctrl windows and exits the progam.

DIAGNOSTICS
Error messages and navigation diagnostics appear on standard error.

BUGS
The environment variableTORX_ROOT is not supported.

It should be possible to replay an animation ortorx-log(4) using the timing information present in the origi-
nal animation or log (i.e. use the same time between the steps as during the original test run).

A more appropriate name might beanictrl .

SEE ALSO
torx-intro (1), torx-logclient(1), tmcs(1), anifsm(1), aniwait(1), mscviewer(1), xtorx (1), environ(5)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 of torx.

SunOS 5.8 Last change: 2

User Commands mkprimer-aut (1)

NAME
mkprimer-aut − generate a torx primer for aut using autexp

SYNOPSIS
mkprimer [options ...] specification.aut

DESCRIPTION
From the specification filemkprimer (1) generates atorx-primer (5) program. In this manual page we
describe specific features of primers generated usingautexp(1).

Whenmkprimer (1) is invoked on a specification file with a.aut suffix, or when the command line option
--language AUT is given, the specification file is interpreted as a Aldebaran (.aut) specification file.From
the specification filemkprimer (1) generates atorx-primer (5) program: a shell-script that invokes the
primer (1) and via it the explorerautexp(1).

LOGFILE
A autexp(1) Primer generates a STATEID torx-log(4) line containing the following whitespace-separated
name valuepairs:

supernr
wherenr is just an integer number representing a superstate state set

init state-list
wherestate-list is a list of comma-separated state identifiers, of the states that are present in the
superstate state set, by the last transition done.

trans state-list
is a list of comma-separated state identifiers, of the states that are present in the superstate state
set, by expansion of the state-list given in the init field.

The state identifiers in theinit andtrans fields have the following form:nodeid_edgeid.numberwhere the
nodeidandedgeidcorrespond to node names and edge names in the.dot file that can be generated byaut-
exp(1), andnumberrepresent a state.Thenumberis not (directly) related to the structure of the automaton,
but dynamically computed during exploration of the automaton (whereas thenodeidandedgeidnames are
statically derived from the automaton).

SEE ALSO
torx-intro (1), mkprimer (1), torx-primer (5), torx-adaptor (5), torx-log(4)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 oftorx .

SunOS 5.8 Last change: 1

User Commands mkprimer-cadp (1)

NAME
mkprimer-cadp − generate a torx primer for lotos, bcg, fc2 or aut using cadp

SYNOPSIS
mkprimer [options ...] specification.lot
mkprimer [options ...] specification.bcg
mkprimer [options ...] specification.fc2
mkprimer --language AUT-CADP [options ...] specification.aut

DESCRIPTION
From the specification filemkprimer (1) generates atorx-primer (5) program. In this manual page we
describe specific features of primers generated using CADP (the Caesar Aldebaran Development Package).

Whenmkprimer (1) is invoked on a specification file with a.lot, .bcg, or .fc2 suffix, or when the command
line option --language LOTOS, --language BCG, or --language FC2is given, the specification file is
interpreted as a LOTOS, BCG resp. FC2 specification file, adapted for use with TorX and CADP. The com-
mand line option--language AUT-CADP can be given to generate a CADP primer for Aldebaran (.aut)
files -- by default, when given a file with a.aut suffix mkprimer (1) generates a primer usingautexp(1).

LOGFILE
A CADP Primer generates a STATEID torx-log(4) line containing the following whitespace-separated
name valuetuples:

supernr
wherenr is just an integer number representing a superstate state set

init state-list
wherestate-list is a list of comma-separated state numbers, of the states that are present in the
superstate state set, by the last transition done. In the state-list, monotonic increasing sequences of
the formm,m+1,...,n are abbreviated asm-n

trans state-list
is a list of comma-separated state numbers, of the states that are present in the superstate state set,
by expansion of the state-list given in the init field. In the state-list, monotonic increasing
sequences of the formm,m+1,...,n are abbreviated asm-n

The STATS torx-log(4) line generated by a CADP Primer consists of a number of whitespace separated
‘‘ name value’’ tuples.

#statesininr
number of states in stateset (representing current state) reached by direct action (‘‘visible’’ t ransi-
tion) from the last menu, before expanding (by following internal steps)

#statesallnr
number of states in stateset (representing current state), reached by direct action from the last
menu, after expanding (by following internal steps)

#statesexpnr
number of states added during expansion (by following internal steps)

#statesmaxrunnr
maximum number of states reported in #statesall during this test run

#statesmatchininr
number of states matched from the states in #statesini

#statesmatchexpnr
number of states matched during expansion (following internal steps)

#statesmatchallnr
number of states matched from those in #statesall

#sinkstatesnr

SunOS 5.8 Last change: 1

User Commands mkprimer-cadp (1)

number of sink states (without outgoing edges)

#events nr
number of different actions possible (after expansion)

#eventsmaxnr
max number of different actions possible in individual state

#eventsexpnr
number of different actions encountered during analysis of the states in the stateset

SEE ALSO
torx-intro (1), mkprimer (1), torx-primer (5), torx-adaptor (5), torx-log(4)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 oftorx .

SunOS 5.8 Last change: 2

User Commands mkprimer-jararaca (1)

NAME
mkprimer-jararaca − generate a torx primer using jararaca

SYNOPSIS
mkprimer [options ...] specification.tp mkprimer [options ...] specification.jrrc

DESCRIPTION
From the specification filemkprimer (1) generates atorx-primer (5) program. In this manual page we
describe specific features of primers generated usingjararaca(1).

Whenmkprimer (1) is invoked on a specification file with a.tp suffix, or when the command line option
--language TPis given, the specification file is interpreted as a jararaca test purpose specification file, to be
used in the role of ’guide’ with anintersector(1). In particular, an epsilon selfloop is added to the accept
state, to help theintersector(1) to detect when the test purpose (guide) has arrived in its accept state.

Whenmkprimer (1) is invoked on a specification file with a.jrrc suffix, or when the command line option
--language JARARACA is given, the specification file is interpreted as a jararaca specification file, to be
used as specification. In particular, no epsilon selfloop is added to the accept state.

In both cases, from the specification filemkprimer (1) generates atorx-primer (5) program: a shell-script
that invokes theprimer (1) and via it the explorerjararaca(1).

LOGFILE
A jararaca(1) Primer generates a STATEID torx-log(4) line containing the following whitespace-separated
name valuepairs:

supernr
wherenr is just an integer number representing a superstate state set

init state-list
wherestate-list is a list of comma-separated state identifiers, of the states that are present in the
superstate state set, by the last transition done.

trans state-list
is a list of comma-separated state identifiers, of the states that are present in the superstate state
set, by expansion of the state-list given in the init field.

The state identifiers in theinit andtrans fields have the following form:nodeid_edgeid.numberwhere the
nodeidand edgeidcorrespond to node names and edge names in the.dot file that can be generated by
jararaca(1), andnumberrepresent a state.

SEE ALSO
torx-intro (1), mkprimer (1), intersector(1), torx-primer (5), torx-adaptor (5), torx-log(4)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 oftorx .

SunOS 5.8 Last change: 1

User Commands mkprimer-ltsa (1)

NAME
mkprimer-ltsa − generate an fsp primer for torx using ltsa

SYNOPSIS
mkprimer [options ...] specification.lts

DESCRIPTION
Whenmkprimer (1) is invoked on a specification file with a.lts suffix, or when the--language fspcom-
mand line option is given, the specification file is interpreted as an FSP specification file, by the FSP
(LTSA) explorer ltsaexp(1), using the ‘generic’primer (1). Fromthe specification filemkprimer (1) gen-
erates atorx-primer (5) program: a shell-script that invokes the primer (1) and via it the LTSA explorer
ltsaexp(1). In this manual page we describe specific features of primers generated by ltsa from FSP speci-
fications.

LOGFILE
An LTSA Primer generates a STATEID torx-log(4) line containing the following whitespace-separated
name valuepairs:

supernr
wherenr is just an integer number representing a superstate state set

init state-list
wherestate-list is a list of comma-separated state numbers, of the states that are present in the
superstate state set, by the last transition done.

trans state-list
is a list of comma-separated state numbers, of the states that are present in the superstate state set,
by expansion of the state-list given in the init field.

SEE ALSO
torx-intro (1), mkprimer (1), torx-primer (5), torx-adaptor (5), torx-log(4)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 oftorx .

SunOS 5.8 Last change: 1

User Commands mkprimer-mcrl (1)

NAME
mkprimer-mcrl − generate a torx primer for mcrl using mcrl2 and mcrl

SYNOPSIS
mkprimer [options ...] specification.mcrl

DESCRIPTION
From the specification filemkprimer (1) generates atorx-primer (5) program. In this manual page we
describe specific features of primers generated using the mcrl and mcrl2 toolkits.

Whenmkprimer (1) is invoked on a specification file with a.mcrl suffix, or when the command line option
--language MCRL is given, the specification file is interpreted as a mCRL specification file and translated
to a.lpe file which is then accessed using explorerlpe2torx(1) using the ‘generic’primer (1).

LOGFILE
A mcrl Primer generates a STATEID torx-log(4) line containing the following whitespace-separatedname
valuepairs:

supernr
wherenr is just an integer number representing a superstate state set

init state-list
wherestate-list is a list of comma-separated state numbers, of the states that are present in the
superstate state set, by the last transition done.

trans state-list
is a list of comma-separated state numbers, of the states that are present in the superstate state set,
by expansion of the state-list given in the init field.

SEE ALSO
torx-intro (1), mkprimer (1), torx-primer (5), torx-adaptor (5), torx-log(4)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 oftorx .

SunOS 5.8 Last change: 1

User Commands mkprimer-mcrl2 (1)

NAME
mkprimer-mcrl2 − generate a torx primer for mcrl2 using mcrl2

SYNOPSIS
mkprimer [options ...] specification.mcrl2

DESCRIPTION
From the specification filemkprimer (1) generates atorx-primer (5) program. In this manual page we
describe specific features of primers generated using the mcrl2 toolkit.

When mkprimer (1) is invoked on a specification file with a.mcrl2 suffix, or when the command line
option --language MCRL2 is given, the specification file is interpreted as a mCRL2 specification file and
translated to a.lpe file which is then accessed using explorerlpe2torx(1) using the ‘generic’primer (1).

LOGFILE
A mcrl2 Primer generates a STATEID torx-log(4) line containing the following whitespace-separatedname
valuepairs:

supernr
wherenr is just an integer number representing a superstate state set

init state-list
wherestate-list is a list of comma-separated state numbers, of the states that are present in the
superstate state set, by the last transition done.

trans state-list
is a list of comma-separated state numbers, of the states that are present in the superstate state set,
by expansion of the state-list given in the init field.

SEE ALSO
torx-intro (1), mkprimer (1), torx-primer (5), torx-adaptor (5), torx-log(4)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 oftorx .

SunOS 5.8 Last change: 1

User Commands mkprimer-trojka (1)

NAME
mkprimer-trojka − generate a promela primer for torx using trojka

SYNOPSIS
mkprimer [options ...] specification.trojka

DESCRIPTION
When mkprimer (1) is invoked on a specification file with a.trojka suffix, or when the--language
promela command line option is given, the specification file is interpreted as a promela specification file,
adapted for use with TorX. Fromthe specification filemkprimer (1) generates atorx-primer (5) program.
In this manual page we describe how to adapt a promela specification for use with TorX, and we describe
specific features of primers generated by trojka from promela specifications.

PREPROCESSOR
The promela specification compiler of TorX, trojka , runs its input file through thecpp(1) preprocessor,
with the preprocessor symbolTROJKA defined. Thiscan be used to make a single specification that can
be used with both spin and trojka (TorX).

CHANNELS and ENVIRONMENT PR OCTYPE
In a promela specification for trojka, we describe the implmementation or system under test (IUT, SUT).
All communication via channels is taken to be ‘‘internal’’, invisible, except for channels that are declared
observable. On an observable channel, we either only send or only receive; such a channel is used to
communicate with the ‘‘environment’’. Becausewe describe the system (and its context, as far as neces-
sary), seen from ‘‘within’ ’ the IUT/SUT, we interpret a send statement (‘‘!’ ’) on an observable channel as
output from the IUT/SUT (i.e. as an observation from the tester’s view), and a receive statement (‘‘?’’) on
an observable channel as input to the IUT/SUT, (i.e. as a stimulus from the tester’s view).

For use of such a specification with the spin tool, we have to do two things: to remove the observable
keyword from the channel declaration (spin does not know about observable), and to provide an environ-
ment prorcess that produces and consumes the actions communicated over the observable channels.We
usually do that as indicated in the example below. This example consists of four parts: 1) the definition of
the macro OBSERVABLE, 2) the declaration of a channel, 3) the spefication of the environment, and 4) the
init statement in which we conditionally start theenvironmentprocess.

SYMBOLIC TESTING
The Trojka promela primer has limited support for symbolic testing.We first discuss the language support
for them, and then how they appear in the Primer-Driver interface.

LANGUAGE SUPPORT
Traditionally, in spin it is possible to use variables in input (recveive, ?) statements, to bind variables to the
values received. In Trojka, the promela language (syntax) has been extended to also allow the use of vari-
ables on output (send, !) statements. The syntax extension has been derived from the C programming lan-
guage. Note:this extension isnot compatible with spin, so when the extension is used, some #ifdef state-
ments may be needed to make the specification also usable with spin. The following example statement
specifies an output action on channel ‘‘c’ ’, with mtype ‘‘something’’, values ‘‘10’’, ‘ ‘value’’ and variable
‘‘ variable’’.

c ! something,10,value,&variable
As usual, variables need to be declared in advance.

VARIABLES IN PRIMER
Variables in input and output actions will appear asvar_type(with typethe type of the variable in promela)
in the list of actions generated with the commands C_INPUTS and C_OUTPUTS (seetorx-primer (5) for
these and other commands from the Primer-Driver interface). Thatmeans that they also appear like that in
the lists of possible stimuli and observations shown in torx (1) (when themenu command is given) and in
xtorx (1).

When an input action (stimulus) is requested or done with the C_GETINPUT and C_INPUT commands, all
variables are automatically instantiated (by choosing random values). Thiscan be influenced by giving
explicit values instead ofvar_typefields in the event parameter given with C_GETINPUT and C_INPUT

SunOS 5.8 Last change: 1

User Commands mkprimer-trojka (1)

commands. Theinstantiator (1) is a TorX tool component that uses this functionality, by substituting
(amongs others) values randomly chosen from the values sets in its configuration file forvar_typefields in
the event parameter of C_GETINPUT or C_INPUT (as specified in its configuration file).

Another way to influence the automatic subsitution is by invoking the generated primer with a-I command
line option, to disable automatic instantiation for the C_GETINPUT command. This can be useful if
(some) variable(s) should not be instantiated by the Primer, but by the Adapter (because the information
needed to instantiate is not available in the primer, but only in the adapter; an example might be time-
related information).

LOGFILE
A trojka primer does not generate a STATEID torx-log(4) line.

The STATS torx-log(4) line generated by a trojka Primer consists of a number of whitespace separated
‘‘ name value’’ tuples.

#statevector nr
number of allocated statevectors

#statevectorstruct nr
number of allocated statevector structures

memusagesize
size of memory used for the trojka state space representation, in bytes (the trojka primer also con-
sumes memory for other things)

#cutbranch nr
number of branches that were cut in the analysis.A branch may be cut if it contains a large (100?)
sequence consisting of only internal steps.Warning: if nr is non-zero, your test case may be
unsound (because the behaviour reached by the branch that was cut will not be taken into
accound).

#analysedstatesnr
number of states analyed

#matchedstatesnr
number of states that match states already analysed

maxdepthnr
lenght of the longest trace that was analysed

#superstatenr
number of states in the superstate (state set representing current state, to handle non-determinism)

#execactionnr
number of actions executed to do the chosen action.This nr gives an indication of the amount of
non-determinism

#possactionnr
number of different actions possible

PRIMER-DRIVER INTERF ACE
When the driver provides an mtype as part of a request to the primer, the matching is done in a case-insen-
sitive way.

EXAMPLES
MACRO OBSERVABLE

#ifdef TROJKA
#define OBSERVABLE observable
#else
#define OBSERVABLE
#endif

SunOS 5.8 Last change: 2

User Commands mkprimer-trojka (1)

CHANNEL DEFINITION
chan c= [0] of { mtype, byte, byte, byte } OBSERVABLE;
chan d= [0] of { byte } OBSERVABLE;

ENVIRONMENT
#ifndef TROJKA
proctype environment() {

do
:: c ? _,_,_,_
:: d ! 1
:: d ! 2
:: /∗ all other actions that need to be produced or consumed∗ /
od
/∗
∗ instead of this all producing, all consuming environment,
∗ we may want to give a special scenario here
∗ /

}
#endif

INIT STATEMENT
init {

atomic {
run input(something);
run underlying_service(something);
...

#ifndef TROJKA
; run environment()

#endif
}

}

SEE ALSO
torx-intro (1), mkprimer (1), torx-primer (5), torx-adaptor (5), torx-log(4)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 oftorx .

SunOS 5.8 Last change: 3

User Commands mkprimer (1)

NAME
mkprimer − generate a primer for torx

SYNOPSIS
mkprimer [options ...] specification
mkprimer --list
mkprimer

DESCRIPTION
mkprimer generates from a given specification file an executableprimer program (seetorx-primer (5))
and two configuration files. By default, mkprimer tries to use the suffix of the given specification file to
detect the specification language.This can be overruled with the--languageoption. Bydefault, the name
of the generated primer file is derived from the given specification file name by omitting the file name suf-
fix. This can be overruled with a-o option.

If no specification is given, mkprimer lists the specifcation languages that it can handle, together with their
corresponding file name suffixes. If the --list flag is given, mkprimer lists the specifcation languages that
it can handle, one per line, on standard output, and exits.

mkprimer takes its information about specification languages and file name suffixes from a number of
mkprimer (5) modules in the distribution of TorX.

Use of a preprocessor withmkprimer (1) is discussed incppmkprimer (1), m4mkprimer (1), andpre-
procmkprimer (1).

OPTIONS
-o primer

This option specificies the name of theprimer that will be generated. By default the name is
derived from input-name, by omitting the recognized language suffix.

--languagename
This option specificies the format of the input file.It overrules the default file suffix association.
This option has to be accompanied by the-o option.

--list This option makesmkprimer list the specifcation languages that it can handle, one per line, on
standard output, after which it exits.

--configconfig-file
This option is only relevant for specifications for which the generic, language independent
primer (1) is used. This option indicates that in the generatef primer program theprimer (1)
should be invoked with a -f config-fileoption.

--inputs gate-names
This option is not relevant for Promela specifications. This option indicates that events that ‘hap-
pen’ on gates ingate-namesshould be treated as inputs.It also triggers the generation of the
file.torx and thefile.gates configuration files. (this command line option will probably be
removed, eventually)

--outputs gate-names
This option is not relevant for Promela specifications. This option indicates that events that ‘hap-
pen’ on gates ingate-namesshould be treated as outputs. It also triggers the generation of the
file.torx and thefile.gatesconfiguration files.(this command line option will probably be depre-
cated)

FILES
primer The generated primer executable. Theinterface to it is described intorx-primer (5).

primer.gates
this file contains the information given with the --inputs and--outputs options, astorx-config(4)
INPUT andOUTPUT entries containing only gate names, which makes it a suitable (additional)
configuration file fortorx .

SunOS 5.8 Last change: Nov 15, 2000 1

User Commands mkprimer (1)

primer.torx
this file contains information about the location of the specification file, in the form of the follow-
ing entries in thetorx-config(4) format. The entries in this file can be used to generate a
SOURCESPECor SOURCEIUT entry for torx-config(4), for example in axtorx-extension(n)
file.

SOURCEGIVEN specification-given
Thespecificationfilename with whichmkprimer (1) is invoked.

SOURCEABSspecification-absolute
Thespecificationfilename, but translated to an absolute path.

SOURCEREL specification-relative
The specificationfilename, but translated to a relative path, relative to the directory in
which the generated primer is written.

SOURCECWD directory
The absolute path name to the directory in which the generated primer is written.

TorXdir /share/torx/Primer/language-or-toolkit.pm
amkprimer (5) description file for a language or toolkit supported by TorX.

SEE ALSO
torx-intro (1), mkprimer-cadp (1), mkprimer-ltsa (1), mkprimer-trojka (1), torx (1), torx-primer (5),
cppmkprimer (1), m4mkprimer (1), preprocmkprimer (1), torx-config(4), mkprimer (5)

BUGS
For LOT OS specifications the input specification needs to have a known suffix, which will guarantee that
this suffix is recognized byopen.caesar, the tool that is used to generate part of LOTOS primers. Usingthe
mkprimer --language option does not help here.

Theprimer.gatesfile (and the--inputs and--outputs options) are only useful if no other information needs
to be specified with theINPUT andOUTPUT torx-config(4) configuration entries.

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 ofmkprimer .

SunOS 5.8 Last change: Nov 15, 2000 2

User Commands mscviewer (1)

NAME
mscviewer − view a Message Sequence Chart

SYNOPSIS
mscviewer [-r] [-m mcastid] [files ...]
Bmsc [-r] [-m mcastid] [files ...]
Bmsc -exit

DESCRIPTION
Themscviewerprogram reads MSC’s from files, or from standard input if no files are given, and displays it
to the user, step by step.Each MSC is displayed in a separate window. Instead of waiting for the whole
MSC to be available, it will immediately start displaying what it has read, and update the display as soon as
it has been able to read more of the MSC.

Bmsc is a shell-level command that causes a runningmscviewerto load the named MSC files, or to display
its standard input. The connection betweenBmscand a runningmscviewerwill not be closed until allfiles
(or the complete standard input) of theBmsc command have been processed bymscviewer, in order to
allow the runningmscviewerto report possible error messages (e.g. about syntax errors) about the files that
it processes via the standard error of theBmsccommand that sent the files to it.If Bmsccannot find a run-
ning mscviewer, it will start a new one. To display the new MSC file(s),mscviewerwill reuse windows
that contain a complete MSC and have the Reusetoggle activated. If more windows are needed, they are
created.

In general, it is probably best to only use theBmsc command, and let it startmscviewerwhen necessary.
However, one should be aware of the fact that when aBmsccommand is given when nomscvieweris cur-
rently running, theBmsc will ‘ ‘become’’ a mscviewercommand, which is ‘‘long-running’’ and will only
exit when all its windows are closed or theQuit button is pressed (or aBmsc -exitcommand is given). In
contrast, aBmsccommand given when amscvieweris already running will exit as soon as its files or stan-
dard input are processed by the runningmscviewer.

The -r command line option of bothmscviewerandBmsc will activate theReusetoggle button for the
windows that will contain the MSC’s giv en on the same command line or via standard input.

When Bmsc is started with only command line option-m mcastid, or when environment variable
TORXMCASTID was set, the MSC viewer tries to connect to the address given in themcastidand to use
the resulting connection as a remote control connection to synchronise displaying a particular step in the
MSC viewer. Whenever the user does something in the user interface that selects a different step in the
MSC, its step number is written to the remote control connection.Whenever a step number can be read
from the remote control connection, the corresponding step is displayed in the MSC viewer.

WhenBmsc is started with only one command line parameter:-exit, the runningmscviewerwill clean up
and exit.

The MSC file should be inevent orientedtextual representation.mscviewerindicates both ‘‘normal’’ end-
of-msc and ‘‘abnormal’’ end-of-input without having seen end-of-msc. The ‘‘normal’’ end-of-msc is visu-
alized by drawing horizontal bars at the end of every instance in the MSC.The ‘‘abnormal’’ end-of-input is
visualized by drawing at the end of each instance of the MSC a stippled/dotted contininuation of the
instance, and ending that with stippled/dotted horizontal bars.

BUTTONS
At the bottom of the MSC viewer there are several buttons. TheSave as button opens a dialog box that
allows saving of the MSC in postscript form (by choosing or entering a file name ending in a .ps suffix) and
in textual form (by choosing or entering any other file name).
The Font down and up arrow buttons decrement resp. increment the font size. When a font size change
makes this necessary, labels are moved to the right to keep them visible.
TheHighlight toggle button enables and disables highlighting (default: enabled). Independent of this but-
ton, thestep numberof the MSC item under the mouse is shown in theStepfield. Stepnumbers start at 1,
and are assigened when thesecondpart (target) of a message is seen.Step number 0 is special: it used to
refer to the instance headers.When highlighting is enabled, the item under the mouse is highlighted by

SunOS 5.8 Last change: Jun 16, 2003 1

User Commands mscviewer (1)

drawing a box arround it and making the arrow slightly bigger. Also, when a new item is added to the
MSC, it is highlighed.To highlight the item for a known step, enter the step number in theStepentry field,
and hit the return key. The MSC window automatically scrolls to make the highlighted item visible. If a
step number is present in theStep field, the down and up arrow buttons can be used to decrement resp.
increment the step number, to move the highlight up resp. down in the MSC.
The Reusetoggle button indicates that its window may be reused for a new MSC, when end-of-input has
been seen for the MSC currently displayed in it.(default value: unset, except when overridden by a-r com-
mand line option ofmscvieweror Bmsc).
TheClosebutton closes the MSC window, and, if this was the last remaining window, exits the progam.
TheQuit button closes all MSC windows and exits the progam.

SEE ALSO
torx-intro (1), xtorx-showmsc(1), log2msc(1), torx-logclient(1), jararacy (1), tmcs(1),
Ekkart Rudolph, Peter Graubmann and Jens Grabowski: Tutorial on Message Sequence Charts, Computer
Networks and ISDN Systems, Volume 28, Issue 12, June 1996, Pages 1629-1641

FILES
/tmp/mscviewer-$USER-$DISPLAY

file to communicate tcp port number on whichmscviewerlistens forBmscto connect

/tmp/mscviewer-$USER-$DISPLAY.pid
the file containing a list of process identifiers (one per line) ofmscviewerand its subprocesses

NOTE
TheBmsccommand was named (and designed) after theB shell-level command of thesam(1) editor.

BUGS
The current implementation expects each ‘‘statement’’ of the MSC in event oriented textual representation
to be on a separate line. The output oflog2msc(1) complies to this limitation.

The ‘‘endinstance’’ statements in the MSC are ignored; the ‘‘endsmsc’’ statement is used to close all
instances.

Only a limited subset of the MSC language is implemented.Valid input is assumed; only very limited
checking is done.

The syntax recognized for the MSC language is inferred from the tutorial mentioned above, but not checked
with a more formal syntax description. In particular, mscviewerexpects double quotes (") to be present
for MSC items containing whitespace -- whether this is consistent with the MSC standard has not been
checked.

Whenmscviewer is started, it checks if other instances of it are running. If so, they are killed. This was
added to clean up run-away processes.

Whenmscviewer is given multiple files that are to be processed simultaneously, it has a tendency to pro-
cess the files one after the other, in rev erse order, instead of procesing them in parallel, step by step.

It is counter-intuitive that theStepup arrow button moves the highlightdown(because the up button incre-
ments the step number, and the steps are numbered increasing from top to bottom).

SunOS 5.8 Last change: Jun 16, 2003 2

User Commands partitioner (1)

NAME
partitioner − weight-based test primitive selection for primer

SYNOPSIS
partitioner [options ...] configuration-file ...

DESCRIPTION
partitioner is anexperimentalprogram to partition input test primitives (stimuli), associate weights with
the partitions, and to use those weights when a stimulus has to be randomly chosen.In the TorX tool archi-
tecture it is placed between the Driver and the Primer. partitioner ‘‘ speaks’’ the torx-primer (5) interface
on its standard input and output, and it starts its Primer sub-program (process). It is possible to have multi-
ple partitioners, one after the other.

partitioner partitions the input actions (stimuli) that it gets from the Primer based on information that it
reads from a configuration file.It then adds weight information to the partitions, and uses this information
when the Driver asks it for a random input.

partitioner takes the command line options as given in torx-primer (5). Mostof these it just passes on to
the Primer that it invokes. Onstart-up, thepartitioner reads itsconfiguration-filewhich is similar to the
torx-config(4) configuration file, and the configuration file of theintersector(1). partitioner looks for the
entriesPARTFILE (which contains the name of the file containing the weights-patterns combination),
SPEC, SPECFLAGS, RUNDIR andSEED.

OPTIONS
partitioner supports the following commandline options, which are all just passed to thetorx-primer (5)
that it invokes.

-s number
the seed for the random number generator

-i gates1,gate2,gate3,...
the list of input gates. Note there are no spaces between the gates!

-o gates1,gate2,gate3,...
the list of output gates. Note there are no spaces between the gates!

-S algorithm
the algorithm which can beioco, tracesor simulation.

-d delta-event-tag
thedelta-event-tagis used for quiescense in the interface.

CONFIGURATION FILE
The configuration file consists of a number of single-line entries as intorx-config(4). Several entries have
a field id. An id is just an arbitrary name, that is intended to group together entries that describe informa-
tion about the same Primer: these entries should contain the same value forid.

PARTFILE filename
the name of the file that contains the association between actions (action patterns) and the weights.
The format of this file is described in the section PARTITION FILE below.

SPEC id filename
The filename of explorer/primer programid. The explorer/primer program will be started from
the directory given with theRUNDIR entry forid. Note that the default value forRUNDIR is not
the current working directory!

SPECFLAGS id arguments
(Additional) arguments that will be given as arguments to the explorer/primer program ofid when
it is started. Default value: unset

RUNDIR id directory
The directory from which the explorer/primer program ofid will be started. Default value: the

SunOS 5.8 Last change: 1

User Commands partitioner (1)

directory containing the explorer/primer program as specified in theSPECentry forid.

SEEDnumber
specifies the seed for the random number generator, and is also passed down the the invoked
Primer. Note: it is better tonot specify this in the configuration file, but to just use the value given
with the--seedflag.

PARTITION FILE
The partition file format is experimental. Currently, it just contains Tcl commands to associate names and
weights to patterns. The command to make the association is

em_add_patternpattern [list name weight]
(where the square brackets [and] are part of the Tcl command).The namegives the partition name, and
weightgives the weight for that partition.Theweightcan be the empty string (which is interpreted as ‘‘1
diveded by the number of partitions’’. The weight of an individual input action is then computed as ‘‘1
divided by the number of elements in its partition’’. The Tcl variablePARCOUNT is set to the number of
partititions.

PRIMER-DRIVER INTERF ACE EXTENSION
The partition names and the weights of the individual actions is shown in the output of theC_INPUTS
torx-primer (5) command.The partitioner extends the output that it gets from its Primer with two addi-
tional fields:

partition= name1,name2,...
wherenameis the name of the partition to which the event belongs. If there are more partitioners
between Primer and Driver, then eachpartitioner adds its own partition name (preceded by a
comma) to the right of the partition name(s) already put their by its subprocess (Primer).
Rephrased: the partition names from partitioners from Primer to Driver appear in order, from left
to right, separated by commas.

weight=value
the weight of the individual action.The weights are normalised: the sum of all weights of the
input actions should be 1.

EXAMPLES
We giv e here as example the configuration files and partition files for a two-level partition scheme, i.e. we
have a ‘‘top-level’ ’ partitioner and a ‘‘level-1’’ partititoner. The ‘‘top-level’ ’ partitioner is supposed to be
invoked by the Driver, and the ‘‘level-1’’ partititoner invokes the Primer.

CONFIGURATION FILE: top.cfg
#==
SPEC s ./partitioner
SPECFLAGS s lvl1.cfg
PARTFILE top.part
#==

PARTITION FILE: top.part
#==
initialise patterns
set user 1
while {$user < 20} {
em_add_pattern "∗ !∗ !user$user" [list user$user {1.0 / $PARCOUNT}]

em_add_pattern "∗ !∗ !user$user" [list user$user "1.0 / $user"]
incr purid

}
#==

SUB-PARTITIONER CONFIGURATION FILE: lvl1.cfg
#==
SPEC s dir/sub/spec/SUT.expr8

SunOS 5.8 Last change: 2

User Commands partitioner (1)

PARTFILE lvl1.part
#==

SUB-PARTITIONER P ARTITION FILE: lvl1.part
#==
em_add_pattern "∗ !A! ∗ " [list a "0.1"]
em_add_pattern "∗ !B! ∗ " [list b "0.1"]
em_add_pattern "∗ !C!∗ " [list c "0.8"]
em_add_pattern "∗ !D! ∗ " [list d ""]
em_add_pattern "∗ !E!∗ " [list e ""]
em_add_pattern "∗ !F!∗ " [list f ""]
em_add_pattern "∗ !error!∗ " [list err "0.1"]
#==

PARTITIONER PRIMER-DRIVER INTERF ACE OUTPUT
Below follows an example of output of theC_INPUTS torx-primer (5) command using the configuration
and partition files shown above.

C_INPUTS
A_INPUTS_START
A_EVENT event=cin!A!user13 channel=in partition=a,user13 weight=0.00268762549161
A_EVENT event=cin!C!user13 channel=in partition=c,user13 weight=0.0215010039329
A_EVENT event=cin!A!user12 channel=in partition=a,user12 weight=0.00291159428257
A_EVENT event=cin!C!user12 channel=in partition=c,user12 weight=0.0232927542606
...

A_INPUTS_END

SEE ALSO
torx-intro (1), torx-primer (5), intersector(1)

BUGS
Th implementation is built reusing parts of already existing programs, and thus contains quite some ‘‘dead’’
code, even in the configuration file format (theid parameter was introduced in theintersector(1) but is not
used here).

There should be a simpler format for the partition file. On the other hand, the full expressivity of Tcl may
have advantages too, as demonstrated with thewhile construct in the example ‘‘top.part’’ partition file.

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 oftorx .

SunOS 5.8 Last change: 3

User Commands preprocmkprimer (1)

NAME
preprocmkprimer − preprocess input before invoking mkprimer

SYNOPSIS
preprocmkprimer preprocessor[preproc-args ...] .newsuffix specification.suffix

DESCRIPTION
preprocmkprimer invokes the given preprocessoron input filespecification.suffixwith the given preproc-
argsto generate the filespecification.newsuffixon which thenmkprimer (1) is invoked.

SEE ALSO
torx-intro (1), mkprimer (1), m4(1) cppmkprimer (1), m4mkprimer (1)

BUGS
It is not possible to specify command line arguments formkprimer (1).

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 ofmkprimer .

SunOS 5.8 Last change: Aug 21, 2002 1

User Commands primer (1)

NAME
primer − compute test primitives using explorer

SYNOPSIS
primer [options ...] explorer [explorer-options ...]
torx --help

DESCRIPTION
primer starts the given explorer with theexplorer-optionsand then offers thetorx-primer (5) interface on
its standard input and output. Theexplorer should implement thetorx-explorer (5) interface.

Theprimer can be used in multiple ‘‘roles’’. Usually it will be used to derive test primitives using theioco
algorithm, (no-a or -S flag is needed:ioco is the default). It can be used to generate the traces of a specifi-
cation, without building the suspension automaton as is done forioco, for example, to generate the traces of
a test purpose (as in the configuration example below, if used with a-a tracescommand line flag). It can
also be used to execute a test that was derived in batch mode, by specifying special events (actions) that
denote verdicts in theprimer configuration file (see below).

OPTIONS
The following command line options are supported:

-s nr seed for the random number generator(s)

-a algorithm -S algorithm the test derivation algorithm to use. Accepted values:ioco, sim (use as
simulator), andtraces. Default value:ioco

-D rundir start theexplorer in directoryrundir

-f configfile the configfiledefines the partitioning of the actions over input and output (and in the
future, over multiple mioco channels). Italso contains the representation of the suspen-
sion action. Theconfigfileformat is discussed below.

-T enable theioct algorithm. Thisalgorithm differs fromioco in the way tau (internal,
invisible) actions are treated when the suspension automaton is built. ioco will not add a
suspension action to a state if it contains an outgoing tau (internal, invisible) transition.
If for ioco for a particular state the presence of such a tau action the only reason is to not
add a suspension action, then theioct algorithm will add the suspension action to the
state.

-C iokind whereiokind is input , output, or input ,output enables input, output (or both) comple-
tion. Whenwe want to do a ‘‘next’’, we look if the action that we want to do is in the
menu, if so, we handle as before. If the action is not in the menu, and completion is
enabled for thisiokind, then we just accept (‘‘do’’) the action, but remain in the current
superstate, and change nothing.

The following obsolete command line options are recognized but silently ignored:

-i inputg1,g2,... input gate names
this is obsoleted by the-f configfileoption

-o outputg1,g2,...output gate names
this is obsoleted by the-f configfileoption

-d event representation of delta (suspension) action
this is obsoleted by the-f configfileoption

-t iokind channel types for which suspension events should be added
this is obsoleted by the-f configfileoption, and is now set automaticly for the ‘‘known’’
algorithms

CONFIGURATION FILE
The (optional) configuration file contains blocks ofname=value tuples. Thefirst name=value pair of a
block should start in column 0 (i.e. not be preceded by whitespace), the othername=valuepairs of a block

SunOS 5.8 Last change: 1

User Commands primer (1)

should be preceded by whitespace.Multiple name=valuepairs may appear on the same line, separated by
whitespace.

In principle, the fields of a block may appear in any order. The following values fornameare recognized:

channel thevalueshould be a channel name (forioco by convention in for the input channel andout
for the output channel).A block should contain exactely onechannelor verdict definition.

ev ent the value is a pattern for the events that belong to the block.The pattern looks quite a bit
like a LOT OS action. Thepattern consists of one or more expressions, where the expres-
sions in the pattern are separated by exclamation marks (’!’). An expression can be a word
(consisting of letters, digits and underscore), or a word followed by a comma(’,’)-separated
list of expressions between parentheses (’(’ and ’)’). In the pattern a star ’∗ ’ can be used
instead of an expression or subexpression. Thenumber of ’!’ in a pattern must match the
number of ’!’ of the event from the specification that it tries to match.A block may contain
multipleev ent occurences.

iokind thevalueshould beinput or output to indicate whether the block lists input (stimuli) or out-
put (observation) actions.A block should contain at most oneiokind definition.

suspension the value is the event (action) that denotes quiescense (or suspension).For the algorithms
ioco, sim and traces an action ‘‘delta’’ is automatically added for channelout. A block
should contain at most onesuspensiondefinition. If thesuspmode(see below) for a chan-
nel isrecognize, thensuspensioncan be a pattern as described forev ent.

suspmode thevalueshould becomputeor recognizeto indicate whether suspension actions should be
computed or recognized for the channel.For the algorithmsioco andsim suspmodeis auto-
matically set tocompute for channelout; for algorithmtraces suspmodeis automatically
set torecognizefor channelout. A block should contain at most onesuspmodedefinition.

verdict thevalueshould be a verdict: the verdict that is to be associated with theev ent name=value
pairs of the block.A block should contain exactely onechannelor verdict definition.

EXAMPLE
The following exampleprimer configuration file defines two channels (in,out) with their respective input
and output types (iokind=input) resp. (iokind=output), and the actions that ‘‘belong’’ to the channels,
which are given using patterns. The default algorithm (ioco) automatically adds the implicit action ‘‘delta’’
to the list of output actions. This value ‘‘delta’’ can be overruled by explicitly adding the wanted value to
thechannel=outblock, for examplesuspension=my_delta.

channel=in
ev ent=cfsap_in!∗ !join(∗ ,∗)
ev ent=cfsap_in!∗ !datareq(∗)
ev ent=cfsap_in!∗ !leave
ev ent=udp_in!udp1!∗
ev ent=udp_in!udp2!∗
ev ent=udp_in!udp3!∗
iokind=input

channel=out
ev ent=cfsap_out!∗
ev ent=cfsap_out!∗ !∗
ev ent=udp_out!udp1!∗
ev ent=udp_out!udp2!∗
ev ent=udp_out!udp3!∗
iokind=output

SunOS 5.8 Last change: 2

User Commands primer (1)

SEE ALSO
torx-intro (1), torx-primer (5), torx-explorer (5)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 oftorx .

SunOS 5.8 Last change: 3

User Commands primexp (1)

NAME
primexp − provide torx-explorer interface to torx primer

SYNOPSIS
primexp primerprog [primerprog-args ...]

DESCRIPTION
primexp provides access to a TorX primer via the TorX torx-explorer (5) interface. primexp starts the
given primerprog program with the optionalprimerprog-args and communicates with it using thetorx-
primer (5) interface on the standard input and output ofprimerprog. primexp offers the TorX torx-
explorer(5) interface on its own standard input and output.

This allows the use of CADP tools with TorX primers usingtorx_open(1). For example, the CADPocis(1)
simulator can be run on programprimerprogas follows:

torx_open ’primexp primerprog’ ocis

BUGS
The environment variableTORX_ROOT is not supported.

NOTE
TorX used to contain a different (undocumented) program with the nameprimexp. That program was just
a wrapper aroundprimer (1). It did not add any functionality to TorX and was therefore removed, and the
name is now reused.

SEE ALSO
torx-intro (1), torx_open(1), torx-explorer (5), torx-primer (5), environ(5)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 of torx.

SunOS 5.8 Last change: 1

User Commands pui (1)

NAME
pui − simple primer user interface

SYNOPSIS
pui primer [primer-args...]

DESCRIPTION
pui offers a simple (textual) user interface to a primer, that is just a bit nicer than thetorx-primer (5) com-
mands offered directly by a primer. It is mainly meant for debugging (or getting a better understanding of)
a primer. Whenpui is started, it prints an overview of the commands that it recognizes.

SEE ALSO
torx-intro (1), torx-primer (5).

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 of torx.

SunOS 5.8 Last change: 1

User Commands smileexp (1)

NAME
smileexp − use smile as symbolic explorer for LOTOS

SYNOPSIS
smileexpcr-file

DESCRIPTION
smileexpimplements a symbolic explorer for LOTOS using the symbolic LOTOS simulatorsmile. It starts
smile with the given common representation filecr-file and offers the TorX explorer-primer interface on
standard input and output.

BUGS
The environment variableTORX_ROOT is not supported.

Becausesmileneed X Windows to run, alsosmileexpcan only be run when X Windows is running.

SEE ALSO
smile(1), torx-intro (1), torx-explorer (5), environ(5)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 of torx.

SunOS 5.8 Last change: 1

User Commands tcp (1)

NAME
tcp − tcp connection program

SYNOPSIS
tcp [-w] [peerhost] peerport

DESCRIPTION
tcp opens a connection to port numberpeerportof hostpeerhost, if giv en, or the local host otherwise.If
takes more than 10 seconds to make the connection,tcp reports an error and exits. If this succeeds, it waits
for input on standard input and messages that arrive over the connection, until end of file is detected on
either one of these. If the-w flag is given, after end of file on standard input it will continue to wait for end
of file on the connection.

Input arriving on standard input is send over the connection to the peer, and messages arriving over the con-
nection are printed on standard output. When end of file is detected either on standard input or on the con-
nection,tcp prints a diagnostic and exits.

Diagnostics are printed on standard error.

SEE ALSO
torx-intro (1), udp(1), hexcontext(1), unhexify(1)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 oftorx .

SunOS 5.8 Last change: 1

User Commands tmcs (1)

NAME
tmcs − tcp multicast service

SYNOPSIS
tmcs [-i] [-p portnr]

DESCRIPTION
tmcs implements a simple tcp multicasting service. It is used bytorx (1) to keep multiple viewers (that
visualize the test run) synchronized.

tmcs opens a socket at portportnr, if giv en, or the first free one. If this succeeds, it prints on standard out-
put a line of the form

ipaddr hostname localportnr
wherelocalportnr is the number of the opened port.Both ipaddr andhostnamemay have the value0.0.0.0.
After this it waits for connections that are made to the socket, and for messages that arrive over these con-
nections. Eachmessage (usually: line of text) received over one connection is forwarded over all other con-
nections. tmcs will exit when its last connection is closed. Initially it has no connections, so in order to
make it exit (without explicitly killing it) at least one connection must be made to it.

When invoked with the -i flag, it will start a command interpreter. Otherwise, invoke it as for example
var=‘tmcs|head -1‘

to get the port number of tmcs invar.

COMMANDS
The following commands can be given on the standard input oftmcs, when it was invoked with the-i com-
mand line option. The command keyword (printed in capitals in this section) is recognized regardless of
case (uppercase, lowercase, mixed).

PARTNERS
prints a list of partners (connections) on standard output

ADDRESS
prints line containing the local address to standard output (as done after startup)

DEBUGLVL [nr]
sets debugging level. Debug level 0 disables debugging, for the other modes, see the source.

HELP prints an overview of accepted commands on standard output

SEE ALSO
torx-intro (1), torx-logclient(1), tcp (1), torx (1), kill (1)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 oftorx .

SunOS 5.8 Last change: 1

User Commands torx-hostname (1)

NAME
torx-hostname − print hostname taken from network database

SYNOPSIS
torx-hostname

DESCRIPTION
torx-hostnameprints the result of

gethostbyaddr(gethostbyname(hostname()), AF_INET)
Rephrased: it prints the name of the current host, as seen by the networking code.

torx-hostname is invoked by adaptor(1) to get the name of the current host, when anADDRESSentry in
a torx-config(4) configuration file contains the special host namecurrenthost. See the first example in
torx-config(4).

This ugly hack is there, to avoid problems when we run torx in cygwin under windows, where the normal
hostname(1) anduname(1) (when invoked with the-n option) commands return the hostname as set under
windows, which may have no relation whatsoever with the current (networking) host name.

Essentially, this command is only there to make the conference protocol example work.

SEE ALSO
torx-intro (1), adaptor(1), torx (1), torx-config(4), hostname(1), uname(1)

BUGS
If, in theadaptor(1) and the encoding/decoding rules and configuration, we would use IP addresses instead
of host names to identify machines, we would not have this problem.

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 oftorx .

SunOS 5.8 Last change: 1

User Commands torx (1)

NAME
torx-logclient − connect torx log monitor command to torx

SYNOPSIS
torx-logclient [-m mcastid] host port-- command[options ...]

DESCRIPTION
Utility program to connect the given command(with its options) as log monitor to thetorx (1) that is
already running and waiting for log monitor connections at tcp port numberport of host (or ip number)
host.

When invoced with the-m mcastidcommand line option, it sets environment variableTORXMCASTID to
mcastidbefore starting the given command.

Usually this command will be invoked by torx (1); it is not expected to be used directly by the user.

SEE ALSO
torx-intro (1), torx (1), torx-log(4)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 oftorx .

SunOS 5.8 Last change: Jan 2, 2001 1

User Commands torx-mans (1)

NAME
torx-mans − list TorX manual page file names

SYNOPSIS
torx-mans

DESCRIPTION
torx-mans prints the names of the manual pages of TorX (followed by a newline character) on standard
output. (Actually, it prints the names of the files in theman subdirectory of the directory in which TorX is
installed.) Thetorx-intro (1) man page will be the first in the list; the other pages will apear per section in
alfabetical order. This list can then be used to produce a listing of all manual pages.

EXAMPLES
nroff -man ‘torx-mans‘
groff -man ‘torx-mans‘ > /tmp/torx-mans.ps

NOTE
Here, TorX refers to the distribution, not to the program; the programtorx (1) will usually be installed in a
subdirectory ‘‘bin’’ of the TorX installation directory.

SEE ALSO
torx-intro (1), torx-root (1), environ(5)

BUGS
The environment variableTORX_ROOT is not supported.

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 of torx.

SunOS 5.8 Last change: 1

User Commands torx-querypr (1)

NAME
torx-querypr − query the TkGnats database

SYNOPSIS
torx-querypr

DESCRIPTION
torx-querypr is a (Tcl/Tk) utility to query the TkGnats problem database for the available problems or
about the status of a submitted problem.

The torx-sendpr main window supports context sensitive online help for most fields shown on the window.
By clicking on the text field, for example ’Class:’, the online help will popup.

If you click the ’Do Query’ button without selecting anything else you will get all problems available. To
restrict this number you fill in one or several fields avaible on the window. This selects only those problem
reports which comply with the selection you just entered.

SEE ALSO
torx-intro (1), mkprimer (1), torx-primer (5), torx-adaptor (5), torx-config(4), torx-log(4), xtorx (1).

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 oftorx .

SunOS 5.8 Last change: Jan 2, 2001 1

User Commands torx-root (1)

NAME
torx-root − report TorX installation directory

SYNOPSIS
torx-root

DESCRIPTION
torx-root prints the name of the directory in which TorX is installed (followed by a newline character) on
standard output. If the variableTORX_ROOT is present in the environment, and its value is not the empty
string, its value will be printed.Otherwise, the directory name that was configured during the installation
of TorX will be printed.

NOTE
Here, TorX refers to the distribution, not to the program; the programtorx (1) will usually be installed in a
subdirectory ‘‘bin’’ of the TorX installation directory.

SEE ALSO
torx-intro (1), environ(5)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 of torx.

SunOS 5.8 Last change: 1

User Commands torx-sendpr (1)

NAME
torx-sendpr − problem report utility

SYNOPSIS
torx-sendpr

DESCRIPTION
torx-sendpr is a utility to report problems, mistakes or requests for new features in TorX.

The main window contains a number of fields which have to be filled in by the user to report a problem.
For a proper and quick diagnostic we advise you to fill in all the fields of the form.

Some fields are already filled in bytorx-sendpr to lift the burden of the user of filling in all the fields, :-).

The torx-sendpr main window supports context sensitive online help of the most fields shown on the win-
dow. By clicking on the text field, for example ’Class:’, the online help will popup.

The fieldsCategory, Submitter-Id , Originator and are obligatory and need to be filled in.

TheSynopsisfield is used to describe the problem in one line, a short summary of the problem. This field
is used in the ‘‘Subject’’ l ine of the emails send out by the problem-report tracking system.

The text fieldsDescription, How-To-RepeatandFix are used to get a full detailed description of the prob-
lem, how to repeat the problem, and how to fix the problem, if you know a solution.

SEE ALSO
torx-intro (1), mkprimer (1), torx-primer (5), torx-adaptor (5), torx-config(4), torx-log(4), xtorx (1).

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 oftorx .

SunOS 5.8 Last change: Jan 2, 2001 1

User Commands torx (1)

NAME
torx − execute test on-the-fly

SYNOPSIS
torx [options ...] configuration-file ...
torx --help

DESCRIPTION
torx reads the given configuration file(s), starts theprimer and adaptor specified in the configuration
file(s) (seetorx-config(4)), after which it either starts on-the-fly test generation and execution (when the
--depthoption was given) or prints its prompt (tester>) on standard output and waits for user commands
from standard input.When torx detects an error, it prints a Fail verdict together with the the list of
expected output events to standard output and exits. Theoutput of the commands given to torx is written to
standard output; diagnostics of theprimer andadaptor are printed to standard error.

To be added: the command line arguments with whichprimer andadaptor are invoked.

A basic concept intorx is thebasic test actionor event. As representation of an event torx basically uses
LOTOS-like notation (consisting of agatename followed by zero or morevalue-expressions, where each
value-expression is preceded by an exclamation mark (!)), with the extension that it may containvariables
in the value-expressions. Thesevariables have the following form: var_type$nr where the$nr part is
optional. Heretype is the type of the variable, andnr is a sequence number to make variable occurences
unique in theevent. The special event suspensionis represented by(Suspension).

Each test step thattorx executes (as result of a command, or during execution in automatic mode) is
reported on standard output.Each test step appears on a separate line, containing from left to right: the test
step number, the iokind (input or output), an opening parenthesis (() thechannelname, a colon (:), thepco
name, a closing parenthesis ()), a colon (:), followed by theevent. For suspensionev ents thepconame and
preceding colon are omitted.

OPTIONS
Apart from the--help option, alltorx options that can be set from the command line can also be set as con-
figuration file option (seetorx-config(4)). Thecommand line options overrule settings specified in a con-
figuration file.

The following command line options are supported:

--help print the version number and an overview of the command line options, and exit.

--batch start the tester in batch mode.In this mode noadapter is started, but a batch test in
Aldebaran (.aut) format is generated on standard output, of depth as given with the
--depth flag. Bydefault, this will have the format of a tree (i.e. there will be no cycles)
This is rather new and not

--batch-automaton
generate the batch test in the form of an automaton (may contain cycles). Note:this flag
does not imply the--batch flagwhich must be separately given.

--depth nr (config: MAXSTEPS) start the tester in automatic mode, try to executenr of test events,
and exit when done.The automatic execution can be interrupted by giving astop com-
mand, which causes a prompt to be printed.

--no-depth (config: MAXSTEPS) starttorx in manual mode, with unlimited depth (this is the
default)

--seednr (config: SEED) usenr as seed for random number generator(s)

--no-seed (config: SEED) use random seed (based on current time) (this is the default)

--log file (config: LOGFILE) write log tofile. If file already exists torx will extend the file name
to be unique, by extending it with the string.˜n˜ wheren is the smallest number (from 0)
that makes the file name unique.

SunOS 5.8 Last change: Jan 2, 2001 1

User Commands torx (1)

--no-log (config: LOGFILE) do not write a log-file (this is the default)

--logmoncommand
(config: LOGMON) start torx log monitoringcommandas background process that can
continue to run even after torx itself has exited, and write log to its standard input.Mul-
tiple --logmon command line options may be given, to start multiple commands (e.g. to
use multiple viewers). Theconnection tocommandis made via the utility programtorx-
logclient(1).

--no-logmon (config: LOGMON) do not start a log monitoring command (this is the default)

--trace file (config: TRACEFILE) read trace fromfile.

--no-trace (config: TRACEFILE) do not use a trace-file (this is the default)

COMMANDS
The commands oftorx are grouped in three sections: 1) general ones, 2) commands that give information
about the current test execution status, without changing the current execution ‘state’, and 3) commands
that execute a (sequence of) testing step(s).

general
help print an overview of the recognized commands.

quit (clean up and) exit the tester

informational
The following commands only print information, without doing a test step. These commands do not cause
a state change inprimer or adaptor.

path print the path (the events done from start till now)

menu print the menu (distinquishes inputs from outputs).Each menu-element is printed on a
separate line, containing from left to right: theiokind (input or output), followed by a
colon (:), thechannelname between parentheses, followed by theevent.

trace print the current event from the trace that we follow

state print the state(vector) (internal format of theprimer)

menusize print the size of the menu(this command will probably be deprecated)

statesize print the size of the state(vector) (internal format)(this command will probably be depre-
cated)

execution
The following commands (may) cause the execution of a testing step. Some commands can only be
executed if the (parenthesized) condition at the start of their explanation below holds. If torx is unable to
execute a command, it will print an error message to standard output, and issue a new prompt. Note:in the
commandsnext, step, input , andoutput, the parentheses around the channel name argument are part of the
command syntax and can not be omitted.

io select randomly input or output, to be used in next step

next (chan) input-event
(input-eventisin menu) do one step usinginput-event

next do one step (using the result of lastio command)

step (chan) input-event
synonym fornext (chan) event

step synonym fornext

input (chan) event
(event isin menu) do one input step usingevent

input event (event isin menu) do one input step usingevent

SunOS 5.8 Last change: Jan 2, 2001 2

User Commands torx (1)

input (chan) (menu ofchan is non-empty) do one input step, from channelchan

input (input menu is non-empty) do one input step, from randomly chosen channel

output (chan) do one output step, from channelchan

output do one output step, from randomly chosen channel

auto switch to automatic mode: do steps, randomly choosing in- and outputs until end of test,
or until interrupted by thestopcommand

auto nr asauto, but do at mostnr steps

usetrace use the current trace event for next step

autotrace switch to automatic mode: do steps, following the trace, until end of test, or end of trace,
or until interrupted by thestopcommand

autotracenr asautotrace, but do at mostnr steps

stop interrupt theauto or autotracecommand and print a prompt.

EXAMPLE
Below we show a sh(1) shell script that demonstrates how torx can be used in ‘batch’ mode to repeatedly
execute tests upto a given number of test steps, for a given set of mutants, using a different random number
seed in each execution run. We assume here that the mutant can be selected by setting the variable
MUTANT in the environment. Thecommand used to invoke torx is split-up over sev eral lines for clarity.

#!/bin/sh
first=1
beyond=1000
depth=1000000
mutants="111 222 333 444 555 666 777 888 999 000"
export MUTANT

i=$first
while test $i -lt $beyond
do

for m in $mutants
do

MUTANT=$m
torx --depth $depth \

--seed $i \
--log testloop.$i.$m.log \
config.if \
> testloop.$i.$m.out 2>&1

sleep 60
done
i=‘expr $i + 1‘

done
The assumption behind this script is that the implementation under test will be started by (a shell script
started by)torx (actually: by the torxadaptor) which means that it (the implementation resp. the shell
script) will see variable MUTANT in its environment, and act on it.

SEE ALSO
torx-intro (1), mkprimer (1), torx-logclient(1), torx-primer (5), torx-adaptor (5), torx-config(4), torx-
log(4), xtorx (1), sh(1)

DIAGNOSTICS
The diagnostic messages ofprimer andadaptor are passed on to the standard error. If an error is encoun-
tered in an command given to torx , an appropriate error message is given (on standard output), and a new
prompt is printed. The error messages should be self-explanatory.

SunOS 5.8 Last change: Jan 2, 2001 3

User Commands torx (1)

RETURN-VALUE
In case of normal termination (whether or not an error is found)torx always returns with a 0 exit status.A
non-zero exit status will only be given when an (unforeseen?)internal or external error makes normal ter-
mination impossible.

BUGS
The diagnostics ofprimer andadaptor appear interspersed with the output oftorx ; giving torx an empty
command (just press return) prints a new prompt.

Using a syntactically wrongeventas argument to a command will causetorx to exit.

The --depth flag should be treated in a slightly different way: after automatically doing the test steps
required by this flag,torx should execute commands given on standard input, until end-of-file on standard
input, or until aquit command is given. (however, this would require batch scripts to be updated, to invoke
torx with standard input redirected from /dev/null)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 oftorx .

SunOS 5.8 Last change: Jan 2, 2001 4

User Commands torx_open (1)

NAME
torx_open − run open/caesar tool on torx explorer program

SYNOPSIS
torx_openexplorerprog-with-arguments[c-options] tool [.a|.o|.c] [tool-options]

DESCRIPTION
torx_open applies Open/Caesar tooltool to the (state space made accessable by) TorX explorer (with
optional arguments)explorerprog-with-arguments. Theexplorerprog is accessed via its standard input and
output using thetorx-explorer (5) interface. Ifexplorerprog needs to be invoked with argumentsthen the
whole stringexplorerprog-with-argumentsmust be put between quotes in the invocation oftorx_open such
that totorx_open it appears as a single command line argument, as shown below.

This allows the use of CADP tools with TorX explorers. For example, the CADPocis(1) simulator can be
run on programjararaca(1) with specificationspec.jrrc as follows:

torx_open ’jararaca -s -espec.jrrc’ ocis

This allows the use of CADP tools with TorX primers usingprimexp(1). For example, the CADPocis(1)
simulator can be run on primer programprimerprog (with argumentsargs ...) as follows:

torx_open ’primexp primerprog args ...’ ocis
The automaton of the tester ofprimerprog (with argumentsargs ...) can be generated inbcg format as file
tester.bcgas follows:

torx_open ’primexp primerprog args ...’ generator tester.bcg

BUGS
The environment variableTORX_ROOT is not supported.

NOTE
TorX used to contain a different (undocumented) program with the nameprimexp. That program was just
a wrapper aroundprimer (1). It did not add any functionality to TorX and was therefore removed, and the
name is now reused.

SEE ALSO
torx-intro (1), primexp(1), torx-explorer (5), torx-primer (5), bcg(LOCAL), environ(5)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 of torx.

SunOS 5.8 Last change: 1

User Commands udp (1)

NAME
udp − udp connection program

SYNOPSIS
udp [-debug [nr]] [- port portnr] [- [no]printdata] [-[no]printdatahex] [-[no]delay]

DESCRIPTION
udp opens a socket at portportnr, if giv en, or the first free one. If this succeeds, it prints on standard out-
put a line of the form

HOSTPORT localportnr
wherelocalportnr is the number of the opened port, after which it waits for commands on standard input
and messages that arrive on the socket, until it detects end of file on its standard input, after which it closes
the socket and exits. The recognized commands are discussed below. When a message arrives on the
socket, it outputs on standard output a line of the form

RECV peerhost peeraddr peerport data
if printing of data is enabled, and/or, if printing of data in hexadecimal form is enabled, a line of the form

RECVHEX peerhost peeraddr peerport datahex
In these linespeerhost, peeraddrandpeerportare the hostname, the IP number and the port number of the
peer, and data and datahexare the contents of the message, as received resp. in hexadecimal form.By
default, output in hexadecimal format is enabled, and output in ‘‘normal’’ f ormat is disabled. This can be
changed using the command line options-[no]printdatahex and -[no]printdata and with corresponding
commands, as discussed below.

The-delay option enables randomly chosen 1-second delays (sleeps) between receipt of a message on stan-
dard input and forwarding of the message over the socket. If messages arrive at the socket (from over the
network) during the delay (sleep), also they suffer from the delay. Howev er, the FIFO behaviour of the pro-
gram is untouched.This option is meant to (crudely) simulate the behaviour of buffering channels, such
that if there are multiple channels we may see random interleavings of the messages on the different chan-
nels.

The -debug [nr] option opens a hardcoded pseudo terminal (pty) on which debugging information is
printed. Theamount of information printed depends on the numeric debug mode given (see the source).

COMMANDS
The following commands can be given on the standard input ofudp. The command keyword (printed in
capitals in this section) is recognized regardless of case (uppercase, lowercase, mixed).

SENDHEX peerhost peerport datahex
send the data (given as hexadecimal string) to peer at portpeerportof hostpeerhost.

LOCALADDR
print aHOSTPORT localportnr line to standard output (as done after startup)

PRINTDAT A
enable printing of data ‘‘as received’’, in the form ofRECV lines

NOPRINTDAT A
disable printing of data ‘‘as received’’, in the form ofRECV lines

PRINTDAT AHEX
enable printing of data in hexadecimal form, in the form ofRECVHEX lines

NOPRINTDAT AHEX
disable printing of data in hexadecimal form, in the form ofRECVHEX lines

DEBUG [nr]
set debugging mode. Debugging mode 0 disables debugging, for the other modes, see the source.

NODEBUG
disable debugging

SunOS 5.8 Last change: 1

User Commands udp (1)

BUGS
For the -[no]delay command line option there is no corresponding command that can be given on standard
input.

There is no option to set the seed of the random number generator used for the-[no]delay command line
option.

SEE ALSO
torx-intro (1), tcp(1), hexcontext(1), unhexify(1)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 oftorx .

SunOS 5.8 Last change: 2

User Commands unhexify (1)

NAME
unhexify − translate from hexadecimal to ascii

SYNOPSIS
unhexify

DESCRIPTION
unhexify reads hexadecimal strings from standard input and writes them in ascii form to standard output.

SEE ALSO
torx-intro (1), tcp(1), udp(1), hexcontext(1)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 oftorx .

SunOS 5.8 Last change: 1

User Commands xtorx-showmsc (1)

NAME
xtorx-showmsc − show a TorX run log as Message Sequence Chart

SYNOPSIS
xtorx-showmsc

DESCRIPTION
The xtorx-showmsc program is invoked by xtorx (1) whenever the user asksxtorx (1) to show an MSC.
The TorX run log is read from standard input.

The xtorx-showmscprogram useslog2msc(1) andmscviewer(1) (via Bmsc(1)) to do its job. The com-
mand line arguments given to xtorx-showmscare passed on toBmsc(1). Thisis used byxtorx (1) to pass a
-r option toBmsc(1).

SEE ALSO
torx-intro (1), log2msc(1), mscviewer(1), torx-log(4)

SunOS 5.8 Last change: Jun 16, 2003 1

User Commands xtorx-showspec (1)

NAME
xtorx-showspec − show a specification file

SYNOPSIS
xtorx-showspecspecification-file

DESCRIPTION
Thextorx-showspec (1)program is invoked by xtorx (1) whenever the user asksxtorx (1) to show the spec-
ification of a primer or mutant (IUT).

The xtorx-showspec(1) program takes a single argument: the file name of the specification that is to be
shown.

xtorx-showspec(1) tries to identify the specification file contents from the file suffix, in order to be able to
show the specification in a nicer way than just as text. Currently, the following file suffixes are recognized:

.bcg Binary Coded Graph file;xtorx-showspec(1) shows it withbcg_edit(1)

.aut Automaton file;xtorx-showspec(1) will check if there is a corresponding.bcg file, and, if so,
show it with bcg_edit(1)

Other files are shown using the command:xterm -e lessfile

The user is expected to extend (adapt, replace)xtorx-showspec(1) when more advanced behaviour is
needed.

BUGS
No check is done whether or not the viewing tools used are present.

SEE ALSO
torx-intro (1), bcg_edit(1), less(1), xterm(1).

SunOS 5.8 Last change: Jan 2, 2001 1

User Commands xtorx (1)

NAME
xtorx − gui for the torx on-the-fly tester

SYNOPSIS
xtorx [options ...] configuration-file ...

DESCRIPTION
xtorx (1) reads the configuration file(s), if given, and opens a window that contains the following from top
to bottom: aMenubar, aButtonbar, an Executed test stepspane, aSpecpane, aVerdict bar and aMessages
pane. Thewindow manager may add aWindow Title, usually at the top.

Many buttons and menu entries are enabled or disabled depending on the state in whichxtorx (1) is. For
example, buttons and menu entries that set test execution parameters are only enabled while no test execu-
tion is taking place, i.e. either whenxtorx (1) has just been started, or after a test execution has come to an
end. Atest exection can come to an end in two ways: 1) when an error is found, the test execution run ends
automatically, and 2) the user can end a running test execution by clicking theStop button in theButton
bar.

The Window Title displays information about the current configuration, primers, and mutants files, and
about currently selected primer and mutant.This same information is also added to theMessages pane at
the start and end of each test run.

TheMenubar contains aFile menu to deal with files (and to clean theMessages pane, and to exit), aPref-
erencesmenu, aPrimersand aMutantsmenu to choose a primer or a mutant (see below), aViewmenu to
view a primer or a mutant source file (when available and/or configured), aTools menu to enable or disable
visualiation tools for the test run, and aHelp menu. ThePrimers, Mutants, View, and Tools menus are con-
text dependend; their menu-entries depend on the configuration file loaded and the primers and mutants
files (again, see below) that are loaded.

The Buttonbar contains the buttons to start and stop a test execution run, and to switch between manual
(single-stepping) and automatic test execution mode. When a test execution has been started,xtorx (1) is
by default in manual mode. In manual mode, the user is in full control, and test steps can be done using the
buttons from theSpecpane. Inautomatic mode,xtorx (1) controls the testing, by repeatedly executing test
steps, making its own decisions about observing and stimulating. The automatic mode can be enabled by
clicking theAuto radio-button in theMode field of theButtonbar,after which automatic testing will imme-
diately begin! Clicking theManual button in theMode field switches back to manual mode. If a positive
integer value has been entered in theStepsbox in theButton bar when the automatic mode is enabled,
xtorx (1) will try to execute the specified number of test steps, after which it will switch back to manual
mode.

The Executed test stepspane contains the trace (steps executed so far) of the current execution run. Each
test step that is executed is appended here, preceded by the test step number.

The Specpane contains the test actions for the current state (possible inputs, or stimuli, and expected out-
puts, or observations), together with buttons to stimulate (Random Input, Selected Input) to observe
(Output), or to do an arbitrary test step, wherextorx decides between stimulating and observing (Ran-
dom). Double-clickingon an input action will execute this action.Additionally, if a trace of a previous
test execution run is replayed, the ‘current’ action of the trace will be shown, together with a button (Use
Tr ace) to re-execute this action.

The Verdict bar displays the status of testing process. If the pane has color red it meansfailure . If the
color is green it meanstest purpose was hitor trace is passed(when an attempt was done to replay a log
as a trace). If the color is orange it meanstest purpose was missedor inconclusive (was unable to com-
pletely replay the given trace).

TheMessages pane is mostly used for logging and debugging purposes. It will contain the output produced
by the SUT (System Under Test), if any, together with debugging messages of various TorX tool compo-
nents. Themessages are grouped together for each test execution run by lines (one above and one below all
messages for the test run) that start with a triangular button, followed by the configuration parameters for

SunOS 5.8 Last change: Jan 2, 2001 1

User Commands xtorx (1)

that test run.Depending on the version of thewish (tcl/tk) interpreter that is being used (xtorx is a tcl/tk
script), it is possible to hide and show the messages for each individual test execution run by clicking the
first (usual left) mouse button on the triangular button. Clickingthe second (usual middle) mouse button on
a triangular button scrolls the window to make its ‘‘partner’’ v isible.

DETAILS
The main window of xtorx (1) is divided vertically in three main panes. The top pane consists of theTitle
bar, theButtonbar and theExecuted test stepspane. Themiddle pane contains theSpecpane, and theVer-
dict bar. The bottom pane justs consists of theMessages pane.

The relative size of these panes can be changed by clicking and dragging the first (usally left) mouse button
in the small square resize buttons that appear on top of the pane borders.How the panes are resized can be
influenced with thePreferences -> OpaquePaneResizesetting.

WINDOW TITLE
The window title displays the current configuration, primers and mutants file(s), and the selected primer
and mutant (if any). Thewindow title is added by the window manager; not all window managers do add
one, though.

MENU BAR
Themenubar contain all required operations for testing. The operations are divided into the categoriesFile,
Preferences, Primers, Mutants, View, Tools, andHelp. We will discuss each of them in its own section.

FILE MENU
TheFile menu contains all operations which involve operations with files.

Open Configuration... Open a configuration file. If theInit Gui From Config and Reset Gui From
Config toggle buttons in thePreferencesmenu are set, a number of settings and
menu entries will be initialised from the information in the configuration file.The
following items will initialised (the correspondingtorx-config(4) keywords appear
between parentheses): log file (LOGFILE), trace file (TRACEFILE), seed
(SEED), primers file and Primers menu (PRIMERS), selected primer
(PRIMER), guides file andGuidesmenu (GUIDES), selected mutant (GUIDE),
mutants file andMutantsmenu (MUTANTS), selected mutant (MUTANT), View
menu (SPECSOURCEandIUTSOURCE), and visualizationTools menu (LOG-
MON).

Open Trace... Choose a trace file that is to be used in the next test execution run.

Close Trace Do not use a (the previously) chosen trace file in the next test execution run.

Open Primers... Select a primer configuration file, and if this is succesful, update thePrimers
menu, and enable thePrimersmenu button and its menu entries.

Close Primers Clear thePrimers menu, and disable thePrimers menu button, and deselect the
primer, if one was chosen from thePrimersmenu.

Reopen Primers Reloads the primer configuration file, to refresh thePrimers menu when the
primer configuration file is changed.

Open Mutants... Select a mutant configuration file, and if this is succesful, update theMutants
menu, and enable theMutantsmenu button and its menu entries.

Close Mutants Clear theMutantsmenu, and disable theMutantsmenu button, and deselect the
mutant, if one was chosen from theMutantsmenu.

Reopen Mutants Reloads the mutant configuration file, to refresh theMutants menu when the
mutant configuration file is changed.

Set Logfile Name... Select the logfile name that is to be used in the next test execution run.

Unset Logfile Name... Clears the logfile name, i.e. do not create a log in the next test execution run.

Clear Messages Clear theMessages pane.

SunOS 5.8 Last change: Jan 2, 2001 2

User Commands xtorx (1)

Save Messages to File...
Save the messages in theMessages pane to the specified file.

Exit Exit the program. This will, however, not exit ‘‘independent’’ v isualization tools,
ev en if they are started fromxtorx (1).

PREFERENCES MENU
In thePreferencesmenu the following options can be enabled or disabled.

Start MSC If this option is set when theStart button is pressed, themscviewer(1) will be
started viaxtorx-showmsc(1) to visualize the test run. (default value: enabled)

Set MSC Window Reuse Button
This option sets the initial value of theReuse button of the mscviewer(1).
(default value: enabled)

Use Bigger Fonts Change all fonts to a different one (that should be bigger). This option is meant
for demo purposes. (default value: disabled)

Init Gui From Config If this option is set, settings indicated in the description of theOpen Configura-
tion... command from theFile menu will be updated if corresponding entries are
present in the configuration file that is opened. (default value: enabled)

Reset Gui From Config
If this option is set, settings indicated in the description of theOpen Configura-
tion... command from theFile menu will be reset, unless theInit Gui Fr om Con-
fig option is enabled, and the configuration file contains corresponding entries.
(default value: enabled)

OpaquePaneResize An unpronounceable option with means that the contents of the panes are moved
as well during resizing of panes (while the mouse button is pressed; otherwise,
only the pane separator lines are moved, and actual resizing of the pane contents is
only done once the mouse button is released). (default value: disabled)

Enable Trace Support Add aUse Trace button and a trace text field to theSpecpane, and anAutoTrace
button next to theAuto button in theButtonbar (by default, these are hidden to
save screen space). It may be necessary to resize thextorx (1) window, to make it
wider, to make these buttons visible. (default value: disabled)

Enable Instantiation Support
Add a Use Instantiation button and an instantiation text entry field to theSpec
pane (by default, these are hidden to save screen space). It may be necessary to
resize thextorx (1) window, to make it wider, to make these buttons visible.
(default value: disabled)

Show Message Buttons
Add aClear Messagesbutton and aSave Messages to File...button to the end of
the Messages pane (by default, these buttons are hidden to save screen space).
(default value: disabled)

Show Refresh Buttons Add aRefreshbutton and aauto- toggle button (by default: enabled) to the end of
theButtonbar. If theauto- toggle button is disabled, theSpecpane (in particular:
the lists of possible inputs and expected outputs) will not automatically be updated
after a test step, but only after theRefresh button has been pressed (by default,
these buttons are hidden to save screen space). (default value: disabled)

PRIMERS MENU
The Primers menu gives a list of primers of which one can be selected. This list is generated from the
primers file that is loaded via theFile -> Open Primers menu entry (or automatically via aPRIMERS
configuration file entry, as described above). If a PRIMER entry is present in the configuration file, it will
be used to set the default. Otherwise,if an entrynone is present in thePrimersmenu, it will be the default.

SunOS 5.8 Last change: Jan 2, 2001 3

User Commands xtorx (1)

Otherwise, initially none of the primers will be selected.

Depending on the details of a particular configuration, the test execution configuration parameters may be
incomplete when no primer is selected, which may cause test execution runs to fail even before a test step
has been done. So, if a test execution run fails in this way, make sure to check if you have forgotten to
select a primer.

A side effect of selecting a primer in the menu can be that additional, primer-specific, configuration file(s)
are loaded, like for example the.torx files generated bymkprimer (1). Sucha file may contain, for exam-
ple, a primer-specificSPECSOURCEentry.

Of course, what exactely happens when a primer is selected depends completely on the contents of the
primers file that was loaded.For a description of what can be specified in a primers file, seextorx-exten-
sion(n). Examplesof primers files can be found in the torx-examples distribution.

GUIDES MENU
TheGuidesmenu gives a list of guides of which one can be selected. This list is generated from the guides
file that is loaded via theFile -> Open Guidesmenu entry (or automatically via aGUIDES configuration
file entry, as described above). If a GUIDE entry is present in the configuration file, it will be used to set
the default. Otherwise,if an entrynone is present in theGuidesmenu, it will be the default. Otherwise,
initially none of the guides will be selected.

Depending on the details of a particular configuration, the test execution configuration parameters may be
incomplete when no guide is selected, which may cause test execution runs to fail even before a test step
has been done. So, if a test execution run fails in this way, make sure to check if you have forgotten to
select a guide.

A side effect of selecting a guide in the menu can be that additional, guide-specific, configuration file(s) are
loaded, like for example the.torx files generated bymkprimer (1). Sucha file may contain, for example, a
guide-specificGUIDESOURCE entry.

Of course, what exactely happens when a guide is selected depends completely on the contents of the
guides file that was loaded.For a description of what can be specified in a guides file, seextorx-exten-
sion(n). Examplesof guides files can be found in the torx-examples distribution.

MUTANTS MENU
The Mutantsmenu gives a list of mutants of which one can be selected. This list is generated from the
mutants file that is loaded via theFile -> Open Mutants menu entry (or automatically via aMUTANTS
configuration file entry, as described above). If a MUTANT entry is present in the configuration file, it will
be used to set the default. Otherwise,if an entrynone is present in theMutantsmenu, it will be the default.
Otherwise, initially none of the mutants will be selected.

Depending on the details of a particular configuration, the test execution configuration parameters may be
incomplete when no mutant is selected, which may cause test execution runs to fail even before a test step
has been done. So, if a test execution run fails in this way, make sure to check if you have forgotten to
select a mutant.

A side effect of selecting a mutant in the menu can be that additional, mutant-specific, configuration file(s)
are loaded, like for example the.torx files generated bymkprimer (1). Sucha file may contain, for exam-
ple, a primer-specificIUTSOURCE entry.

Of course, what exactely happens when a mutant is selected depends completely on the contents of the
mutants file that was loaded.For a description of what can be specified in a mutants file, seextorx-exten-
sion(n). Examplesof mutants files can be found in the torx-examples distribution.

VIEW MENU
The View menu contains two entries to view the source of the specification resp. the implementation (or
mutant).

Primer source show the source file of the primer usingxtorx-showspec(1). Thisbutton is only
enabled if thetorx-config(4) configuration file contained anSPECSOURCE(or,

SunOS 5.8 Last change: Jan 2, 2001 4

User Commands xtorx (1)

deprecated,SOURCESPEC) entry.
As mentioned above in the section about thePrimersmenu, it is possible to set up
a primers file in such a way that selecting a primer from the menu causes an addi-
tional primer-specific configuration file to be loaded, that defines (o.a.) aSPEC-
SOURCEentry for the selected primer.

Mutant source show the source file of the mutant usingxtorx-showspec(1). Thisbutton is only
enabled if thetorx-config(4) configuration file contained anIUTSOURCE (or,
deprecated,SOURCEIUT) entry for the selected primer.
As mentioned above in the section about theMutantsmenu, it is possible to set up
a mutants file in such a way that selecting a mutant from the menu causes an addi-
tional mutant-specific configuration file to be loaded, that defines (o.a.) aIUT-
SOURCEentry for the selected mutant.

TOOLS MENU
TheTools menu contains a list of toggle buttons to enable and disable visualization tools, or more generally,
tools that work on thetorx-log(4) log file of a test execution run. This list is generated fromLOGMON
entries in thetorx-config(4) configuration file(s) when a configuration file is loaded (or from a primer- or
mutant-specific configuration file when a primer or mutant is selected).By default, all entries in the list are
enabled.

HELP MENU
TheHelp menu contains the following entries to get more information and browse (query) and submit prob-
lem reports.

Help on TorX (to be implemented)

About TorX displays a dialog box containing copyright and contact information.

On Version (to be implemented)

Query Problem Reports (using tkgnats)...
Invokes torx-querypr (1) to open atkgnats(1) window to query problem reports.

Query Problem Reports (using web-browser)...
(to be implemented)

Report Problem (using tkgnats)...
Invokes torx-sendpr(1) to open atkgnats(1) window to submit problem reports.
This can be used to report problems about the tool, inconsistencies, etc. to us.

Report Problem (using web-browser)...
(to be implemented)

BUTTON BAR
TheButtonbar contains buttons and text entry fields to control the execution of a test run:

Start button Starta test execution run. This means that thetorx (1) program is started under the
control ofxtorx (1); xtorx (1) is merely a graphical wrapper aroundtorx (1).

Stopbutton Stopthe test execution run, by asking thetorx (1) program that was started via the
Start button to quit (exit).

Seedfield herethe seed can be entered for the random number generator thattorx (1) and the
other TorX components will use. If the user has not filled in this entry when the
Start button is pressed,xtorx (1) will itself randomly choose a value and fill in the
field. Bydefault, this field is empty. Once filled,xtorx (1) will not overwrite it.

Manual mode button swichesto the manual mode of on-the-fly testing.In this mode the user is in com-
plete control, and can use the buttons in theSpecpane. Thisis the default mode,
that is entered every time that theStart button is pressed,

Auto mode button switchesto automatic mode of on-the-fly testing.In this modextorx (1) will make

SunOS 5.8 Last change: Jan 2, 2001 5

User Commands xtorx (1)

all decisions; it is like a user who continously presses theRandom button in the
Specpane. IftheStepsfield is filled with an integer value when theAuto button is
pressed, only the specified number of steps will be done, after whichxtorx (1) will
switch back to manual mode.When an error is found while running in Auto
mode, the test run is ended.Warning: when this mode is selected,xtorx (1) will
immediatelystart (continue) running the test.

AutoTrace mode button
This mode is only available when a trace file is loaded, and this button is only visi-
ble whenPreferences -> Enable Trace Supportis selected.
switches to the automatic trace mode of on-the-fly testing.This mode is like a
user who continously presses theUse Trace button in theSpecpane. IftheSteps
field is filled with an integer value when theAutoTrace button is pressed, only the
specified number of steps will be done, after whichxtorx (1) will switch back to
manual mode. When an error is found while running in AutoTrace mode, the test
run is ended.Warning: when this mode is selected,xtorx (1) will immediately
start (continue) running the test.

Stepsfield this field can be used to specify the number of test steps that should be done (at
most) when theAuto or AutoTrace button is pressed (if an error is found before
the specified number of test steps is done, the test will be ended).

auto- toggle button Thisbutton is only visible if thePreferences-> Show Refresh Buttonssetting is
enabled.
When theauto- toggle button is enabled, the lists of inputs and outputs events in
theSpecpane are automatically updated after each test step. Otherwise, these lists
are only updated after theRefreshbutton is pressed. (default value: enabled)

Refreshbutton Thisbutton is only visible if thePreferences-> Show Refresh Buttonssetting is
enabled.
Update the lists of inputs and outputs events in theSpecpane.

EXECUTED TEST STEPS PANE
The Executed test stepspane displays a trace of the test steps which have been executed: inputs that have
been sent as simulus to, or outputs that have been received as observation from the SUT. Each test step is
preceded by the test step number. The test step that is currently being visualized (or highlighted) by the
tools that were enabled in theTools menu when the test run was started has a yellow background. Itis pos-
sible to change the ‘currently visualized’ test step inxtorx by clicking the third mouse button in a test step,
or dragging the mouse over the test steps with the third button down. Notethat also each of the individual
visualization tools can be used to change the ‘currently visualized’ test step.

SPEC PANE
The Specpane has two lists next to each other, each in its own sub-pane: a list ofInputs and a list of
Outputs. During a test execution run, theInputslist contains the possible input events (possible stimuli that
can be sent to the SUT) for the current state, and theOutputs list contains the expected output events
(observations that are expected from the SUT).If a test execution run is ended because an error is found,
the Inputslist will be empty, and theOutputslist will contain the expected observations. Atthe same time,
the last event in theExecuted test stepspane is the last (erroneous, conflicting, invalid) event that was
received from the SUT.

The relative horizontal sizes of these sub-panes can be changed by clicking and dragging the first (usally
left) mouse button in the small square resize buttons that appears on top of the pane border. How the panes
are resized can be influenced with thePreferences -> OpaquePaneResizesetting.

Under theInputsandOutputslists the following buttons are present to control individual test steps during
the test execution run:

Selected Input send the input event that is selected in theInputslist as stimulus to the SUT.

SunOS 5.8 Last change: Jan 2, 2001 6

User Commands xtorx (1)

Random Input let the program randomly select an input event and send it to the SUT.

Random let the program randomly decide between stimulating and observing, and then,
depending on the result of this ‘‘decision’’, behave as if the Random Input resp.
theOutput button was pressed.

Output get an observation from the SUT, and check if it is in the list of expected output
ev ents.

If instantiation support was enabled (see thePreferences -> Enable Instantiation Supportbutton above),
under the buttons mentioned above another button and a text entry field are added.When an event is
selected in theInputs list, it is copied to the text entry field, where it can be edited. The copied event may
contain a predicate (enclosed between square brackets ‘‘[’ ’ and ‘‘]’ ’) that consists of one or more constraints
on the values of the variables in the event. Theconstraints are separated by ‘‘;’ ’, there may be an optional
‘‘ ;’’ after the last constraint, before the closing ‘‘]’ ’. Whenediting the event, the predicate may be deleted;
the constraints can be used as inspiration when choosing values for the variables. Notethat it is not manda-
tory to choose values for all variables -- it is also possible to change the constraints (or add new ones) to
reduce the number of possible values for the variables, and let ‘‘the system’’ (an instantiator (1)?) then
come up with a single value. Thebutton can be used to try to apply the edited event, in a similar way as the
other buttons in theSpecpane:

Use Instantiation try to apply the action shown in the instantation field as the next input event, i.e.
check if the instantiation is a valid one, and, if so, use it as a stimulus and send it
to the SUT.

If trace support was enabled (see thePreferences -> Enable Trace Supportbutton above), under the but-
tons mentioned above another button and a text field are added. The text field is used to display the subse-
quent event from the trace, and the button can be used to apply it, in a similar way as the other buttons in
theSpecpane:

Use Trace try to apply the action shown in the trace field as the next input or output event, i.e.
if the action in the trace field is an input event, use it as a stimulus and send it to
the SUT, and otherwise, if the action in the trace field is an output event, get an
observation from the SUT and check if it is valid (in the list of output events), and
if it is identical to the action shown in the trace field.

VERDICT B AR
This bar contains a text field in which the verdict will be given at the end of a test execution run. Depend-
ing on the particular verdict, the color if the bar will be changed.
The pane is colored red when an error was found (usually this means that an observation received from the
SUT was not in the list of expected output events) (in tradional terms:fail).
The pane is colored green when atest purpose was hitor, when an attempt was done to replay a log as a
trace, the end of the trace was succesfully reached without finding an error (in tradional terms:pass).
The pane is colored orange when atest purpose was missedor, when an attempt was done to replay a log
as a trace, the actual test run deviated from the trace, but without finding an error (in tradional terms:incon-
clusive).

MESSAGES PANE
TheMessages pane is mostly used for logging and debugging purposes. It will contain the output produced
by the SUT (System Under Test), if any, together with debugging messages of various TorX tool compo-
nents. Themessages are grouped together for each test execution run by lines (one above and one below all
messages for the test run) that start with a triangular button, followed by the configuration parameters for
that test run. Depending on the version of thewish (tcl/tk) interpreter that is being used (xtorx is a tcl/tk
script), it is possible to hide and show the messages for each individual test execution run by clicking the
first (usual left) mouse button on the triangular button. Clickingthe second (usual middle) mouse button on
a triangular button scrolls the window to make its ‘‘partner’’ v isible.

SunOS 5.8 Last change: Jan 2, 2001 7

User Commands xtorx (1)

X DEFAULT S
Currently, it seems, there are no X defaults setting to be used for configuration.

FILES
∗ .if torx (1) torx-config(4) configuration files

∗ .primers primers files

∗ .mutants mutants files

SEE ALSO
torx-intro (1), torx (1), torx-config(4), torx-log(4), xtorx-extension(n), xtorx-showspec(1), xtorx-
showmsc(1), anifsm(1), aniwait(1), jararacy (1), mscviewer(1), torx-querypr (1), torx-sendpr(1)

BUGS
It is not possible to instantiate variables in events by hand when giving theSelected Inputcommand.

Sometimes, during a test execution run,xtorx (1) may get into a state in which all ‘‘useful’’ buttons are dis-
abled. Insuch a case, the only sensible thing to do is to use theFile -> Exit button to exit, and use the
ps(1) andkill (1) command to check for, and kill, runaway TorX processes.

Occasionally it happens that whenxtorx is started, in the window only theMessages pane is visible.The
solution is to use the small square resize button, half of which is hidden under the menu bar, to resize the
panes. WhentheSpecpane is visible again, it is very well possible that there only the Outputs are visible
(the Inputs are hidden as well).The solution is here as well to use the small square resize button that is now
completely at the left of the window, to resize the Outputs pane to make the Inputs visible.

A number of commands in theHelpmenu have remained unimplemented too long.

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 ofxtorx .

SunOS 5.8 Last change: Jan 2, 2001 8

File Formats torx-config(4)

NAME
torx-config − configuration file for torx tester

DESCRIPTION
A torx (1) configuration file contains all information that is needed for a test execution run. Some of the the
configation file entries can be overriden with command line options oftorx (1), as will be indicated in the
ENTRIES section below. Currently, the configuration file contains information that is used by different
components of torx: it contains information for the PRIMER, for the DRIVER, and for the ADAPTER. In
some cases, the same information is used by more than a single component.

For most settings, only one entry should appear in the configuration file(s) oftorx (1). Thesettings for
which multiple entry lines are allowed, are prefixed with an asterisk (∗) in the ENTRIES section below.

Currently, the configuration file has the following format. Each configuration entry consists of a single line.
Such a line starts with a keyword that indicates the kind of entry. Empty lines and lines containing only
whitespace are ignored. Comment lines start with optional whitespace followed by a hash symbol (#).All
relative file- and directory names are interpreted relative to the (location of) the configuation file in which
they appear,not relative to the location from whichtorx (1) is started. If an argument of an entry contains
whitespace, it should be enclosed between curly brackets ‘‘{’ ’ and ‘‘}’ ’ (because we treat each entry line as
a tcl list). Seethe EXAMPLES below to get an idea of how these rules work out in practice.

ENTRIES
The configration file entries are grouped in the following sections: 1) general ones, 2) execution-run related,
3) PRIMER related, 4) ADAPTER related, 5) INSTANTIATOR related, 6) internal, implementation
related: settings that should not need to be changed.

For most settings, only one entry should appear in the configuration file(s) oftorx (1). Thesettings for
which multiple entry lines are allowed, are prefixed with an asterisk (∗) below. Note that this asterisk isnot
part of the entry keyword!

GENERAL
This section contains the general configuration entries that may be useful in general.

∗ INCLUDE filename
Read the entries fromfilenameat the point where this entry is encountered (and then continue pro-
cessing the file in which theINCLUDE entry was encountered).Warning: currentlyNO check is
made against recursive inclusion. Becareful!

EXECUTION-RUN
This section contains the settings that you may want to vary from one test-execution-run to another, even
without varying the other settings, to re-execute with a differentseedor depth. It is no coincidence that
most of these settings can be overruled from the command line oftorx (1).

MAXSTEPS number
(torx (1) options: --depth, --no-depth) The number of steps to do. Also indicates that these steps
should be done in ‘‘automatic’’ mode, whentorx (1) is started.Default value: unset (i.e.torx (1)
will by default be in single-stepping mode).

LOGFILE filename
(torx (1) options: --log, --no-log) The filename of the logfile that should be written. If a relative
filename is given, it is taken to be relative to the directory containg the configuration file.If a file
with the resulting name already exists, the filename will be extended with the sequence˜number̃
wherenumberis the smalles number that makes the filename unique. Default value: unset

∗ LOGMON command
(torx (1) options: --logmon, --no-logmon)torx (1) will start torx log monitoringcommandas a
background process that can continue to run even after torx itself has exited, and provides thecom-
mandwith the text of the log file on its standard input.No LOGFILE need to be set for this to
work. torx (1) captures the standard output and standard error output ofcommand(as long as torx
is running) and prints this on standard error (preceded by a prefix). This is typically used to start

SunOS 5.8 Last change: 1

File Formats torx-config(4)

tools that give a particular ‘‘view’’ of (an aspect of) the test run.Visualization can be such view;
see for example anifsm(1). The commandmay have the form commandwitharguments #
xtorxTools in which case thecommand with argumentswill be run and thextorx Tools menu entry
will be present in thextorx (1) Toolsmenu. Default value: unset

TRACEFILE filename
(torx (1) options: --trace, --no-trace) The filename of the tracefile that should be read. If a relative
filename is given, it is taken to be relative to the directory containg the configuration file.Default
value: empty

SEEDnumber
(torx (1) options: --seed, --no-seed) The seed of the randum number generators used by the compo-
nents of TorX. Default value: 4

PRIMER
This section contains the settings that you usually only have to specify once when you start a test-cam-
paign.

SPECfilename
The filename of the explorer/primer program.The explorer/primer program will be started from
the directory given with theSPECRUNDIR entry. Note that the default value forSPECRUNDIR
is not the current working directory! Default value: unset

∗ SPECFLAGSarguments
(Additional) arguments that will be given as arguments to the explorer/primer program when it is
started. Default value: unset

SPECRUNDIR directory
The directory from which the explorer/primer program will be started.Default value: the directory
containing the explorer/primer program as specified in theSPECentry.

SPECSOURCEfilename
The filename of the specification from which the explorer/primer program was built. If specified,
xtorx (1) will enable the ‘‘Show primer’’ menu entry, and when that menu entry is activated,
xtorx (1) will invokextorx-showspec(1) with thefilenameas argument. Default value: unset

SOURCESPECfilename
Deprecated. UseSPECSOURCEfilenameinstead.

PRIMERS filename
The filename from whichxtorx(1) will initialise its Primers menu (as if it was opened with its
Open Primers... menu entry). If torx (1) is invoked without command line option--gui and if
both PRIMERS andPRIMER are set, it will usePRIMERS to initialise its list of primers, and
usePRIMER to select one from this list, in order to produce the side effects necessary to run the
selected primer. Default value: unset.

PRIMER entryname
The menu entry thatxtorx(1) will select in itsPrimersmenu, or show in its title-bar if noPrimers
menu is present.If torx (1) is invoked without command line option--gui and if bothPRIMERS
and usePRIMER are set, it will usePRIMERS to initialise its list of primers, andPRIMER to
select one from this list, in order to produce the side effects necessary to run the selected primer.
Default value: empty.

GUIDES filename
The filename from whichxtorx(1) will initialise its Guidesmenu (as if it was opened with its
Open Guides...menu entry).If torx (1) is invoked without command line option--gui and if both
GUIDES andGUIDE are set, it will useGUIDES to initialise its list of guides, and useGUIDE
to select one from this list, in order to produce the side effects necessary to run the selected guide.
Default value: unset.

GUIDE entryname

SunOS 5.8 Last change: 2

File Formats torx-config(4)

The menu entry thatxtorx(1) will select in itsGuidesmenu, or show in its title-bar if noGuides
menu is present.If torx (1) is invoked without command line option--gui and if bothGUIDES
andGUIDE are set, it will useGUIDES to initialise its list of guides, and useGUIDE to select
one from this list, in order to produce the side effects necessary to run the selected guide.Default
value: empty.

∗ INPUT gatename ignored encoding-routine[pcoOf-routine]
This feature specifies that the events on LOTOS gate gatenameare to be interpreted as input
ev ents. SeetheADAPTER section for an explanation of the remaining arguments.

∗ OUTPUT gatename
This feature specifies that the events on LOTOS gate gatenameare to be interpreted as output
ev ents. Inaddition, it can have the same additional arguments as theINPUT feature, but these are
all ignored for theOUTPUT feature.

CHOOSEINPUTS boolean
Indicate whether or not the DRIVER should select inputs from the menu, if the user does not
choose. Thisis needed if aniochooseris used to choose values for ‘‘symbolic’’ events in the
Promelaspecification. Allowed values: 0 (false), 1 (true). Default value: 0

LABEL-DEL TA string
The string representation of the action/event that represents thedeltaaction, i.e. quiescence, in the
communication with the explorer/primer component. This value should be parseable as a LOTOS
ev ent. Default value: Delta Note: this value is just a default which is available to primer and
adapter when they are started, and both can choose to ignore it.This value is also used when the
driver has to send a quiescence event to the primer, and the adapter did not include an event.

ADAPTER
This section contains the settings that you usually only have to specify once when you start a test-cam-
paign.

ADAPTOR filename
The filename of the adapter. It will be started as a subprocess oftorx (1). It will be invoked with
the configuration file arguments that are given to torx . Note: theadapter will be started from the
directory given with theADAPTORRUNDIR entry. Note that the default value forADAPTOR-
RUNDIR is not the current working directory (except for the adapters supplied with TorX, for
which the current working directoryis the defaultADAPTORRUNDIR) Default value: adaptor

∗ ADAPTORFLAGS arguments
(Additional) arguments that will be given as arguments to the explorer/primer program when it is
started. Default value: unset

ADAPTORRUNDIR directory
The directory from which theadapter program will be started.Default value: the directory con-
taining theadapter program as specified in theADAPTOR entry.

ADAPTORCONTEXT filename
The filename of the program that will be used to as filter between TorX andadapter when TorX
starts theadapter. The filter works in two ways: both the standard input written to theIUT/SUT
and the standard output read from the IUT/SUT will be filtered by the program.Default value:
unset

IUT filename
The filename of the SUT/IUT. The presence of this feature indicates that the SUT/IUT has to be
started bytorx (1). It will be started as a subprocess oftorx (1), andtorx (1) will have three pipes
to it: to its standard input, standard output and standard error. The standard input and standard
output pipes constitute the PCO addresspipe (see theADDRESS entry, below) Note: the
SUT/IUT will be started from the directory given with the IUTRUNDIR entry. Note that the
default value forIUTRUNDIR is not the current working directory! If this feature is not present,

SunOS 5.8 Last change: 3

File Formats torx-config(4)

TorX supposes that the SUT/IUT is already running, or started outside TorX, and TorX only has to
be able to connect to it. Default value: unset

∗ IUTFLAGS arguments
(Additional) arguments that will be given as arguments to the SUT/IUT program when it is started.
Default value: unset

IUTRUNDIR directory
The directory from which the SUT/IUT program will be started.Default value: the directory con-
taining the SUT/IUT program as specified in theIUT entry.

IUTSOURCE filename
The filename of the specification from which the IUT/SUT program was built. This is particularly
useful when we use a ‘‘simulator’’ as IUT/SUT. If specified,xtorx (1) will enable the ‘‘Show
mutant’’ menu entry, and when that menu entry is activated, xtorx (1) will invoke xtorx-
showspec(1) with thefilenameas argument. Default value: unset

SOURCEIUT filename
Deprecated. UseIUTSOURCE filenameinstead.

MUTANTS filename
The filename from whichxtorx(1) will initialise its Mutantsmenu (as if it was opened with its
Open Mutants... menu entry). If torx (1) is invoked without command line option--gui and if
bothMUTANTS andMUTANT are set,torx will use MUTANTS to initialise its list of mutants,
and useMUTANT to select one from this list, in order to produce the side effects necessary to run
the selected mutant. Default value: unset.

MUTANT entryname
The menu entry thatxtorx(1) will select in itsMutantsmenu, or show in its title-bar if noMutants
menu is present.If torx (1) is invoked without command line option--gui and if bothMUTANTS
andMUTANT are set, it will useMUTANTS to initialise its list of mutants, and useMUTANT to
select one from this list, in order to produce the side effects necessary to run the selected mutant.
Default value: empty.

IUTCONTEXT filename
The filename of the program that will be used to as filter between TorX and IUT/SUT when TorX
starts the IUT/SUT. The filter works in two ways: both the standard input written to the
IUT/SUT and the standard output read from theIUT/SUT will be filtered by the program.This
feature is only useful (and currently only used) when a tcl-style adapter is used.The filter pro-
gram will be invoked with as arguments the IUT program together with its arguments. Thehex-
context(1) program can be used here. Default value: unset

IUTCONTEXTFLAGS flags
Additional arguments for the program given as IUTCONTEXT . For hexcontext(1) a useful flag
is --. Default value: unset

IUTTIMEOUT real
The timeout value for the IUT/SUT, in seconds. Fractionsare allowed. Infinity is denoted with
‘‘ -1’’. Default value: 11 seconds.

USEGCI boolean
Indicate whether or not the GCI-style adapter should be used.If the GCI-style adapter is not used,
the tcl-style adapter will be used.Allowed values: 0 (false, i.e. use tcl-style adapter), 1 (true, i.e.
use GCI). Default value: 0

GCIADAPTER name
Indicate the name of the tcl-package that implements the adapter. This package is expected to be
found either in the library directory of TorX, or in the directory specified in theCODING feature.
Default value: gcitcl

CODING directory

SunOS 5.8 Last change: 4

File Formats torx-config(4)

The directory that contains the conding routines, either in the form of tcl files (when the tcl-style
adapter is used), or in the form of a tcl package (when the gci-style adapter is used).Default
value: unset

∗ INPUT gatename ignored encoding-routine[pcoOf-routine]
This feature specifies that the events on LOTOS gate gatenameare to be interpreted as input
ev ents. Inaddition, it specifies that thetcl routineencoding-routineis to be used to encode events
on gategatename, and the optionalpcoOf-routinehas to be used to map an event on gategate-
nameto its pco (if all events on a gate are mapped onto the same pco, this routine may be omit-
ted). Theencoding-routineroutine is invoked with two arguments: 1) the gatename, and 2) a list
of value-expressions. Theresult should be a string that can be send to the IUT. ThepcoOf-routine
routine is invoked with two arguments: 1) the gatename, and 2) a list of value-expressions. The
result should be a pconame that appears in the configuration file. If featureUSEGCI is set, then
the encoding-routineand pcoOf-routineare ignored, and the GCI-specific configuration is used.
The deprecatedignored field was meant to specify the sort-list of the gate − but it is simply
ignored.

∗ OUTPUT gatename
This feature specifies that the events on LOTOS gate gatenameare to be interpreted as output
ev ents. Inaddition, it can have the same additional arguments as theINPUT feature, but these are
all ignored for theOUTPUT feature.

∗ ADDRESSaddressname protocol[host] [port] [program] [flags]
Specification of an address to connect to the SUT/IUT, with optionalhost, port, program to be
used to connect, andflagsto be given to theprogram. For thehostfield, the special namecurren-
thost can be used as a ‘‘wildcard’’ referring to the current host: that value is substituted by the
result oftorx-hostname(1). If the connectorprogram is omitted, it defaults to a program with the
same name as theprotocol. Theaddressnamecan be used in the encoding- and decoding routines
to be referred to as abstract address name (i.e. to allow change of the actual hostname/port-number
without having to change the coding routines).

Currently implemented values forprotocol:

udp in which casehostandport should be given; theconnectorprogram may be omitted (i.e.
defaults to a program with the same name as theprotocol, i.e. udp and the connector
flagsshould be{--port ${P}} (where${P} is a variable that represents the port number)
for the udp(1) program supplied with TorX. (Seethe first example in the EXAMPLES
section below.)

telnet in which casehostandport should be given, theconnectorprogram andflagsmay be
omitted, and thetelnet(1) program will be used to connect to the IUT.

pipe in which casehost, port, connectorprogram and flags may be omitted, and the pipes
made to IUT when it is started from XtorX are used.

manual (currently only supported for stimulation, not for observation; currently only supported
via the GCI-basedadapter) in which case, for all stimili that have to be giv en on the pco
with this address, TorX will ask the human operator to perform the actual stimulation.

∗ PCO pconame gatenames addressnames decoding-tuple-list
wheregatenamesis either a single gatename (for an uni-directional pco), or an output gatename
followed by an input gatename, enclosed between ‘‘{’ ’ and ‘‘}’ ’ (for a bi-directional pco), and
decoding-tuple-listis a list of white-space separated tuples.Each tuple is enclosed between ‘‘{’’
and ‘‘}’ ’, and contains the fieldsignored, decoding-routine, and optionalregexp. The ignored
field was meant to specify the abstract and concrete types of the data sent over the pco, but this
information has never been put to use. This feature specifies that pcopconamefunctions as uni-
directional or bi-directional pco for events on the given gatenameor gatenames. In addition, this
feature assigns addressaddressnameto this pco (addressnameshould be specified in an

SunOS 5.8 Last change: 5

File Formats torx-config(4)

ADDRESS entry elsewhere in the configuration file).Finally, this feature specifies how to do
observations on this pco: allregexp regular expressions of thedecoding-tuple-listare concatenated.
When an observation is made, for each pco the combined regular expression is tried on the output
received on the pco. For the first pco for which the combined regular expression matches the out-
put received on a pco, the first specifieddecoding-routineof the pco is invoked with two argu-
ments: 1) the pconame, and 2) a list of strings. The first string in this list is the match of the regu-
lar expression on the observed output; the optional remaining strings correspond to sub-expres-
sions of the regular expression. NOTE: it is currently best to specify for each pco exactely one
decoding-routineand oneregexp.

INSTANTIA TOR
This section contains the settings that you usually only have to specify once when you start a test-cam-
paign.

INST filename
The filename of an instantiator. The presence of this feature indicates that the instantiator has to
be started bytorx (1). It will be started as a subprocess oftorx (1), andtorx (1) will have three
pipes to it: to its standard input, standard output and standard error. Over the standard input and
output, torx (1) will issues the commands and expect the responses described intorx-instantia-
tor (5). Note: the instantiator will be started from the directory given with the INSTRUNDIR
entry. Note that the default value forINSTRUNDIR is not the current working directory!Note
that theadaptsim(1) adaptor also honors theINST config entry, and that when TorX starts an
adaptor, it giv es it the same configuration files. If this feature is not present, TorX supposes that no
instantiator is needed. Default value: unset

∗ INSTFLAGS arguments
(Additional) arguments that will be given as arguments to the instantiator program when it is
started. Default value: unset

INSTRUNDIR directory
The directory from which the instantiator program will be started.Default value: the directory
containing the instantiator program as specified in theINST entry.

INTERNAL
It is not advised to change the settings in this section, unless you know very well what you are doing,
because they influence the ‘‘heart’’ of the system − changing a setting here might break the system.

SPECTIMEOUT real
The timeout value for the communication with the explorer/primer, in seconds. Fractionsare
allowed. Infinityis denoted with ‘‘-1’’. Default value: -1 (i.e. infinity).

ADAPTORTIMEOUT real
The timeout value for the communication with the adaptor, in seconds. Fractionsare allowed.
Infinity is denoted with ‘‘-1’’. Default value: -1 (i.e. infinity).

PROMPT string
The prompt used by the non-GUI interface to TorX, i.e. bytorx (1). Notethat currentlyxtorx (1)
uses the prompt string to keep itself synchronised withtorx (1). Default value: "tester> ".

DEBUG number
The level of debugging information that should be printed. Default value: 1

EXAMPLES
The example configuration below is what is used for the LOTOS primer for the Conference Protocol case
study. Note that we have expanded here some of theignored arguments of theINPUT , OUTPUT, and
PCO entries.

#==
IUTTIMEOUT 2
MAXSTEPS 7

SunOS 5.8 Last change: 6

File Formats torx-config(4)

CODING ./CODING/LOTOS

IUTCONTEXT hexcontext --
IUT ./IUT/conf.jan.longrun.sh

SPEC ./LOTOS/primer.sh
SPECSOURCE ./LOTOS/cf-pe-sut.caesar.lot

for input, the conversion function of the INPUT def IS used
for input, the pcoOf function of the INPUT def for CFSAP is NOT used
for input, the pcoOf function of the INPUT def for udp IS used
for output, the conversion function of the OUTPUT def is NOT used
for output, the pcoOf function of the OUTPUT def is NOT used
INPUT CFSAP_in { CFAddr CFsp } enCodingOfCFsp
OUTPUT CFSAP_out{ CFAddr CFsp }
INPUT udp_in { udpAddr udpsp } enCodingOfUdp pcoOfUdp
OUTPUT udp_out { udpAddr udpsp } deCodingOfUdp pcoOfUdp

ADDRESS cf1 pipe
ADDRESS udp1 udp currenthost 1075 {--port ${P}}
ADDRESS udp2 udp currenthost 1076 {--port ${P}}
ADDRESS udp3 udp currenthost 1077 {--port ${P}}

for input, the conversion function of the PCO def is NOT used
for output, the conversion function of the PCO def IS used
PCO cf1 { CFSAP_out CFSAP_in } cf1 { SFsp_nl CFsp_nl2CFsp {RECVHEX[ˆ\n]+\n} }
PCO udp2 { udp_out udp_in } udp2 { udp_nl udp_nl2udpsp {RECVHEX[ˆ\n]+\n} }
PCO udp3 { udp_out udp_in } udp3 { udp_nl udp_nl2udpsp {RECVHEX[ˆ\n]+\n} }

we may want to use several SEEDs, to reproduce errors.
do not specify seed here; use from command line
SEED 4

do not specify logfile here; use from command line
LOGFILE logs/conference.lotos.log

next line used a log file as initial trace
do not specify tracefile here; use from command line
TRACEFILE conf.trace
#==

The example configuration below shows the very minimal that is needed to use a simulator as IUT. We
assume here that the specification is in file sim.lot.We also assume that the specification that is to be used
as simulator-IUT is in impl.lot.Finally, we assume that whenmkprimer (1) was invoked to process sim.lot
and impl.lot, for both files the same input and output gates have been specified with the--inputs and--out-
puts flags ofmkprimer (1).

#==
instead of using INPUT and OUTPUT to specify the input and output gates,
we just include a file generated by mkprimer.
we could just as well include impl.gates: spec.gates and impl.gates
are identical (w.r.t. INPUT and OUTPUT entries that they contain),
because we invoked mkprimer with the same --inputs and --outputs flags
when we invoked in to process spec.lot and impl.lot .
INCLUDE sim.gates

SunOS 5.8 Last change: 7

File Formats torx-config(4)

use the adapter supplied with torx for simulator-as-iut usage
ADAPTOR adaptsim

specify spec and iut, and the source of it
SPEC sim
SPECSOURCE sim.lot
IUT sim
IUTSOURCE sim.lot

This PCO entry is not really used, but without it torx will complain.
PCO ignored
#==

BUGS
The interpretation of relative paths in file and directory names, relative to the configuration file, only works
when torx (1) is started in the directory containing the configuration file (whentorx (1) is started via
xtorx (1) this is the case −xtorx (1) takes care of this).For configuration files included via theINCLUDE
entry, it only works if the included file is in the same directory as the file containing theINCLUDE line.

The INPUT andOUTPUT entries combine information for the Primer with information for the Adapter; it
would be better to separate those (or at least to allow the user to specify this information in separate
entries).

The configuration of thePCO entry should be simplified.

The tcl-list interpretation of the entry lines, resulting in all those ‘‘{’’ and ‘‘}’’, is not very nice.

When a GCI-style Adapter is used, very little from the configuration file is used − instead, configuration
information is hard-coded into the C code of the GCI-style Adapter. This should be changed, such that a
GCI-style Adapter also uses the information from a (the) configuration file, preferably in such a way that
the same configuration file can be used both for a tcl-style and for a GCI-style Adapter.

The use of adaptor/adapter should be normalised!

SEE ALSO
torx-intro (1), torx (1), torx-primer (5), torx-adaptor (5), torx-instantiator (5), xtorx (1), xtorx-
showspec(1), torx-hostname(1), telnet(1), udp(1), hexcontext(1), anifsm(1)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 oftorx .

SunOS 5.8 Last change: 8

File Formats torx-log(4)

NAME
torx-log − log file generated by torx tester

DESCRIPTION
A torx (1) log file should contain all information that is needed for analysis of a test execution run. The log
file consists of a number of lines of text. Eachline starts with a keyword that identifies the type of line.
The keyword is followed by a test-step nummber (except for the keywords CONFIG and
CLICKSPERMS). Theinterpretation of some lines may depend on the particular instantiation of a partic-
ular tool-component, like theSTATE andSTATS lines.

DETAILS
Below follows the list of lines, by keyword.

ABSTRACT test-step-nr iokind-interface action suspension
whereiokind-interfaceis iokind[(pco)] i.e. the iokindinput or output followed by optional inter-
face information, enclosed in parentheses (and). The interface information is[channel:]pco i.e.
the PCO name, optionally preceded by the channel name.Whereaction is, enclosed in parenthe-
ses (and), the action derived from the specification, ‘‘executed’’ by the adapter, and suspensionis,
enclosed in parentheses (and),1 in case of input suspension or quiescent observation, and0 oth-
erwise

CLICKSPERMS nr
the number of Tcl clicks per milli-second (used as primitive high-resolution counter)

CONCRETE test-step-nr iokind-interface ??? ???
the concrete information send over the interface, where both ??? are enclosed in parentheses (and
)

CONFIGSTART
start ofCONFIG section

CONFIG keyword value...
information copied from thetorx-config(4) configuration files

CONFIGEND
end ofCONFIG section

EOF test-step-nr
end-of-lof-file indication

EXPECTED test-step-nr iokind-interface action suspension
abstract action that was expected to be observed, in the same format as theABSTRACT lines

LOG test-step-nr details...
TorX tools componentstorx-primer (5) andtorx-adaptor (5) may add arbitraryLOG lines with
logging information.

MODE test-step-nr mode
wheremodeis eithernormal, for test step done in manual mode, orauto, for test step done in
automatic mode

STATS test-step-nr details...
statistics from the primer component, where thedetails... depend on the particular primer used.
See the sectionLOGFILE ST ATS in intersector(1), mkprimer-cadp (1), andmkprimer-tro-
jka (1)

STATEID test-step-nr details...
(super)state-identifier number(s) from the primer component, where thedetailsdepend on the par-
ticular torx-primer (5) See the sectionLOGFILE ST ATEID in intersector(1), mkprimer-
aut(1), mkprimer-cadp (1), mkprimer-ltsa (1), mkprimer-mcrl2 (1), andmkprimer-trojka (1)

whereepoch-secondsis the unix time format (seconds since start of unix epoch, 1 jan 1970),clicks

SunOS 5.8 Last change: 1

File Formats torx-log(4)

is a high-resolution counter that should count in (approximately) milli-seconds, anddate-stringis
a human-readable date string, as output bydate(1)

VERDICT test-step-nr correctness[observation-objective]
wherecorrectnessis one of (the traditional)pass, fail , or inconclusive, and the optionalobserva-
tion-objectiveindicates the success of reaching the observation-objective (or the test-purpose), so
it is one ofhit or miss

SEE ALSO
torx-intro (1), torx (1), intersector(1), mkprimer-aut (1), mkprimer-cadp (1), mkprimer-ltsa (1),
mkprimer-mcrl2 (1), mkprimer-trojka (1) adaptlog(1),

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 oftorx .

SunOS 5.8 Last change: 2

Standards, Environments, and Macros mkprimer (5)

NAME
mkprimer − support specification language or toolkit

BUGS
(Manual page needs still to be written)

SEE ALSO
torx-intro (1),

SunOS 5.8 Last change: Jan 2, 2001 1

Standards, Environments, and Macros torx-adaptor (5)

NAME
torx-adaptor − a program that implements an interface to the SUT

SYNOPSIS
ADAPTOR

DESCRIPTION
In this man page we discribe the interface of the ADAPTOR module. The interface is very similar to the
one of the PRIMER (Seetorx-primer (5)).

When active, the ADAPTER receives commands from the standard input and writes answers in return to
the standard output. See sectionCOMMANDS for the available commands and answers.When the
ADAPTER is used in the TORX tool it is connected to the DRIVER which has the control and initiative of
all communications. When the ADAPTER is used standalone the user plays the role of the DRIVER.

A command consist of a single line of text. Thekeyword (the first word) of each commands start with a
prefixC_.

An answer consist of a single line of text or a multi-line of text. All single-line answers start with a
keyword that has prefixA_. Usually, the keyword of single-line answer is identical to the command-
keyword, but with theC_ replaced byA_. A multi-line answer has specific markers around the body of the
answer. These markers consist of a single line that starts with a prefixA_, followed by the command-
keyword without the initialC_, followed by_START respectively _END. Each line of the body of a multi
line answer often starts with a keyword (but not always).

Instead of the usual single- or multi-line answer, an A_ERROR answer may occur in case of an error.
Such anA_ERROR answer comes instead of the usual single- or multi-line answer.

Additional message lines containing warnings (to be shown to the test run operator), diagnostics (to appear
in the test run log), and/or debugging output (to be shown to the test run operator) may appear interspersed
with the answer lines described so far. These message lines start withA_WARNING , A_LOG or
A_DEBUG, respectively. Because these message lines may appear arbitrarily intermixed with the ‘‘regu-
lar’’ answer line(s), they do not play a role when the ‘‘end’’ of an answer has to be found: once the com-
mand-specific answer orA_ERROR answer has been read, the user of the ADAPTER may assume that no
other output (specific to to the command) will be generated by the ADAPTER until the next command is
send to it.

If the ADAPTOR decides autonomously that it will stop executing, it may try to indicate this by sending an
A_QUIT answer, just before exiting. For the ADAPTOR, reading end-of-file on its standard input is a rea-
son to stop executing.

In all cases, each command and each answer starts with a keyword that is separated from the remainder of
the line by one or more spaces or tabs − except for two notable exceptions:A_ERROR, where currently
exactely one space should be between the keyword and the category, and the lines between
A_STATE_START and A_STATE_END, that do not start with a keyword (seeDETAILS below). For
most comands and most answers, the text following the keyword has a fixed format; for other commands
and answers it is left unspecificed.

For command and answers that deal with channels, events, predicates, etc. the format of each line is as fol-
lows: the keyword is followed by a (possibly empty) TAB-separated list ofname=value items, where the
namecannot contain TABs or= characters, and thevaluecannot contain TAB characters.For the moment
we assume that, when necessary, we will encode TAB characters for example using C conventions. We
have chosen for this kind of item-lists because this makes it easy to pass information.Using name=value
pairs instead of (for example) a list ofvaluesin a fixed order makes the interface more robust: the order of
items is not important, and the users can simply ignore items whichname they don’t recognize. This
allows one party to send items which the receiving party doesn’t know about. Thismakes it easier to
extend the interface by adding new items and keeping old programs backwards compatible.

SunOS 5.8 Last change: Jan 2, 2001 1

Standards, Environments, and Macros torx-adaptor (5)

For A_ERROR answers, currently the format is as follows: the A_ERROR keyword is followed by a cate-
gory word indicating the category of the error, followed by arbitrary text that describes the error in more
detail. Theidea is that the user of the ADAPTOR can use the category word to get some idea of the nature
of the error. In particular, the idea is that the user can use this to decide whether it makes sense to retry, or
whether it is better to give up.

DETAILS
Here we describe first the syntax of the (textual) messages interchanged over the interface, followed by the
possible message arguments, followed by the possible error categories.

SYNTAX
Below we describes the syntax of the commands and answers, by giving the syntax of just a single interac-
tion.

interaction:
message∗ command message∗ answer-or-error

command: C_name arguments-upto-end-of-linenl

answer-or-error:
single-line-answer| multi-line-answer| error

single-line-answer:
A_name arguments-upto-end-of-linenl

multi-line-answer:
A_name_START nl multi-line-element∗ A_name_END nl

multi-line-element:
message | result-element

result-element:
A_element-name arguments-upto-end-of-linenl

message: debug| log | warning

debug: A_DEBUGtext-upto-end-of-linenl

log: A_LOG text-upto-end-of-linenl

warning: A_WARNING text-upto-end-of-linenl

error: A_ERROR spacecategory: text-upto-end-of-linenl

arguments-upto-end-of-line:
ws∗ | ws+ arguments

arguments: argument| argumenttabarguments

argument: name= value
/∗ value can contain spaces but no tabs∗ /

text-upto-end-of-line:
ws∗ | ws+ arbitrary-text-without-newline

ws: space | tab

ARGUMENTS
At the moment the followingnamesare defined for thename=valuearguments to the commands:

ev ent with as value the LOTOS-like string representation of an event, used wherever ‘‘event’’ i s
used below;

channel with as value a channel name;

iokind whereiokind is a valueinput or output;

suspension with as value either ‘‘0’ ’ or ‘ ‘1’ ’ to indicate a non-suspension resp. suspension event, used

SunOS 5.8 Last change: Jan 2, 2001 2

Standards, Environments, and Macros torx-adaptor (5)

wherever an output ‘‘event’’ is used below (in the future we expect to use it also for input
ev ents)

pco with as value a pco name;

concrete with as value a (string representation of the) concrete value (this string cannot contain tab or
new-line characters);

timestamp with as value a (string representation of the) time

ERRORS
At the moment, for the A_ERROR categorymessages given by the ADAPTER, the following categories
are defined.The user of the ADAPTER (i.e. torx) may use these categories to decide how to react to the
A_ERROR answer (in particular, to decide whether it can cope with it, or whether it is better to give up).

UnknownCommand the command is not known

ArgumentMissing a mandatory argument of the command is missing or incomplete

WrongValue the value of an argument of the command is outside its domain of valid values

ParseErrorEvent the command contains anev ent argument which cannot be parsed

UnknownIOKind the command contains anev ent argument, and theiokind of the event cannot be
computed

Inconsistency the command contains more than a single argument, and the values of (some of) the
arguments conflict which each other

InternalError an internal error occurred during the execution of the command

COMMANDS
Below follows the list of the commands. The commands, and their answers, are described in more detail
below. With each command, and answer, the possible arguments are indicated. Optional arguments are
surrounded by brackets ’[’ and ’]’. Note: the order in which the arguments are named with the commands
doesnotprescribe theorder in which arguments may appear: arguments may appear in any order.

C_CHANNELS [iokind] [channel]
C_PCOS [iokind] [channel] [pco]
C_IOKIND [iokind] [channel]
C_INPUT channel event
C_OUTPUT channel
C_STATE
C_STATES
C_QUIT
C_GETCONFIG

The C_INPUT and C_OUTPUT commands are the most important ones, and have to be implemented cor-
rectly for TorX to work correctly; the other commands are less important, and most of them are mainly
used to get configuration information from the ADAPTOR, only for logging purposes.

In the subsections below, each command is followed by a short explanation of its use. Additional com-
ments are enclosed between /∗ and∗ / after the command.

CHANNELS
The C_CHANNELS command is used to ask the ADAPTOR which channels exist. If the iokind and/or
channel argument is used, then only the respective channels are returned.This command has no side-
effects, and can repeatedly applied without changing the state of the ADAPTOR module.

Command:
C_CHANNELS [iokind] [channel]

Answer (multi-line):
A_CHANNELS_START

SunOS 5.8 Last change: Jan 2, 2001 3

Standards, Environments, and Macros torx-adaptor (5)

A_CHANNEL iokind channel
...
A_CHANNELS_END

Errors (single-line):
A_ERROR Inconsistency/∗ if the iokind and channel fields conflict∗ /
A_ERROR WrongValue/∗ if a given field has value outside domain∗ /

PCOS
The C_PCOS command is used to ask the ADAPTOR which pcos exist. If a pco is used both for input and
output, then there will be two A_PCO lines for it, one withiokind=input and the other withiokind=out-
put. If the iokind , channeland/orpco argument is used, then only the respective pcos are returned.This
command has no side-effects, and can repeatedly be given without changing the state of the ADAPTOR
module.

Command:
C_PCOS [iokind] [channel] [pco]

Answer (multi-line):
A_PCOS_START
A_PCO iokind channel pco
...
A_PCOS_END

Errors (single-line):
A_ERROR Inconsistency/∗ if the iokind, channel and pco fields conflict∗ /
A_ERROR WrongValue/∗ if a given field has value outside domain∗ /

IOKIND
The C_IOKIND command is used to ask the ADAPTOR whether the ADAPTOR has a preference for the
next action to be an input or an output action, or wether the ADAPTOR doesn’t care, and any action kind is
possible. Theidea of this command is to allow the ADAPTOR to indicate that it has observations qeueued.
The command can have an optional suggestion, which will be honoured by the ADAPTOR if possible.
This command has no side-effects, and can repeatedly be given without changing the state of the ADAP-
TOR module. If the ADAPTOR doesn’t care about the action kind when no suggestion was given, it sim-
plu should not return iokind nor channel paratmers in the A_IOKIND answer.

Command:
C_IOKIND [iokind] [channel]

Answers (single-line):
A_IOKIND iokind channel
A_IOKIND /∗ if adaptor doesn’t care and no sugg. given∗ /

Errors (single-line):
A_ERROR Inconsistency/∗ if the iokind and channel fields conflict∗ /
A_ERROR WrongValue/∗ if a given field has value outside domain∗ /

INPUT
The C_INPUT command is used to ask the ADAPTOR to stimulate with a given action. If the action given
cannot be parsed, or if other errors occur when trying to ‘‘do’’ the action, the ADAPTOR will return
A_ERROR (with an explanation of the error), and no action will be done; if the action can be parsed, but is
not ‘‘enabled’’ (i.e. is not in the ‘‘menu of possible input actions of the IUT’’), and therefore cannot be
‘‘ done’’, the ADAPTOR will return A_INPUT_ERROR, and no action will be done; otherwise the ADAP-
TOR will return A_INPUT with the action that has been ‘‘done’’, if possible including the pco on which the
action was done, a timestamp, and the concrete representation of the action.
Questions: are we now mapping input-suspension onto A_INPUT_ERROR? Shouldwe get rid of
A_INPUT_ERROR here, and use either A_ERROR (for IOCO) or A_INPUT_OK withsuspension=1 (for
MIOCO)? Note:currently, it is best to avoid using A_INPUT_ERROR; use A_ERROR instead.

SunOS 5.8 Last change: Jan 2, 2001 4

Standards, Environments, and Macros torx-adaptor (5)

Command:
C_INPUT channel event

Answers (single-line):
A_INPUT_OK channel event [pco] [timestamp] [concrete-event]
A_INPUT_ERROR/∗ if event cannot be done∗ /"

Errors (single-line):
A_ERROR ParseErrorEvent/∗ if the event cannot be parsed∗ /
A_ERROR ArgumentMissing/∗ if no event was given to simulator∗ /
A_ERROR UnknownIOKind/∗ if iokind of event cannot be found∗ /
A_ERROR Inconsistency/∗ if the iokind and channel fields conflict∗ /
A_ERROR WrongValue/∗ if a given field has value outside domain∗ /
A_ERROR InternalError/∗ if internal error occurred∗ /

OUTPUT
The C_OUTPUT command is used to ask the ADAPTOR for an observation on a given channel. Ifobserv-
ing fails, the ADAPTOR will return A_ERROR (with an explanation of the error). Otherwise, the ADAP-
TOR will return A_OUTPUT_OK with the observation, if possible including the pco on which the observa-
tion was done, a timestamp, and the concrete representation of the observation.

Command:
C_OUTPUT channel

Answer (single-line):
A_OUTPUT_OK channel event [pco] [timestamp] [concrete-event]

Errors (single-line):
A_ERROR ArgumentMissing/∗ if no event was given toIOCO or traces∗ /
A_ERROR UnknownIOKind/∗ if iokind of event cannot be found∗ /
A_ERROR WrongValue/∗ if a given field has value outside domain∗ /
A_ERROR InternalError/∗ if internal error occurred∗ /

STATE
The C_STATE command returns a textual representation of the current state. The contents of this textual
representation depend on the implementation of the ADAPTOR. Thiscommand has no side-effects.

Command:
C_STATE

Answer (multi-line):
A_STATE_START
text ...
...
A_STATE_END

STATS
The C_STATS command returns some statistics about the ADAPTOR. Thestatistics consists of a list of
whitespace-separated key-value pairs, where also the key and the value are separated by whitespace.The
value should not contain whitespace. An ADAPTOR should give just one line of statistics (both single- and
multi-line form are allowed).

Command:
C_STATS

Answer (single-line):
A_STATS statistics

Answer (multi-line):
A_STATS_START
A_STATS statistics

SunOS 5.8 Last change: Jan 2, 2001 5

Standards, Environments, and Macros torx-adaptor (5)

...
A_STATS_END

QUIT
The C_QUIT command tells the ADAPTOR to clean up and exit. The ADAPTOR will acknowledge the
command with A_QUIT. The side-effect of this command is that the ADAPTOR module exits.

Command:
C_QUIT

Answer (single-line):
A_QUIT

GETCONFIG
This command has not been implemented yet. It is to be used to get configuration information from the
ADAPTOR.

IMPLEMENT ATION NOTES
For the implementer of an adapter, the most important commands to implement are C_INPUT and C_OUT-
PUT. Commands C_INPUT and C_OUTPUT are needed so the driver can stimulate and observe.

The C_IOKIND command is important, because if it is implemented in the wrong way, the user can no
longer control the tester with the commands intorx (1) or the buttons inxtorx (1). Thebest default imple-
mentations for C_IOKIND are those that either returns A_IOKIND with the same parameters that were
given with the C_IOKIND command, or just returns A_IOKIND without parameters.

If the C_PCOS command is implemented such that it indeed returns a list of the pcos, and the pco parame-
ter is used for the A_INPUT_OK and A_OUTPUT_OK answers, then TorX is able to draw better Message
Sequence Charts.

For all the other commands, the implementer can choose to give simple answers, by returning just the
answer keyword without parameters, for single-line answers, and returning just the answer start and answer
end keywords for multiline answers.Of course, more informational answers proved more feedback during
testing, and may make it more easy to investigate in case of errors -- the information above is mainly meant
to make it easier to quickly implement a ‘‘basic’’ adapter that already ‘‘does the right thing’’.

SEE ALSO
torx-intro (1), mkprimer (1), torx-primer (5), torx-config(4), torx-log(4), torx (1), sh(1)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 oftorx .

SunOS 5.8 Last change: Jan 2, 2001 6

Standards, Environments, and Macros torx-explorer (5)

NAME
torx-explorer − interface to program to explore a labelled transition system

SYNOPSIS
EXPLORER [options]

DESCRIPTION
The EXPLORER module implements an (textual) interface to explore a labelled transition system (lts).

When active, the EXPLORER receives commands from the standard input and writes answers in return to
the standard output. See sectionCOMMANDS and ANSWERS for the available commands and answers.
When a EXPLORER is used in the TORX tool it is connected to a PRIMER which has the control and ini-
tiative of all communications. When the EXPLORER is used as standalone the user plays the role of the
PRIMER.

A command consist of a single line of text. Thefirst character of a command indicates the type of the com-
mand. Thisfirst character is always in lowercase.

An answer consist of a single line of text or a multi-line of text. All single line answers start with the char-
acter of their command turned into uppercase.A multi-line answer has specific markers around the body of
the answer. These markers consist of two characters at a single line, made up from the usual answer prefix
character, with B andE appended, respectively. Each line of the body of a multi line answer starts with a
two character prefix consisting of the usual uppercase answer prefix character, followed by the same char-
acter in lowercase. Eachanswer line can contain multiple fields. Arbitrary whitespace (one or more spaces
or tabs) separates the fields from the (one or two character) prefix at the start of the line. The fields them-
selves are separated by a singe tab character. A fields cannot contain tab characters, is assumed not to start
or end with spaces.

Instead of the usual answer, an error answer may occur in case of an error. Also error answers start with a
two character prefix, consisting of the usual uppercase answer prefix character, followed by the character
‘‘ 0’’.

The following describes the syntax of the commands and answers:

interaction:
message∗ command message∗ answer-or-error

command:
lowercase(name) arguments-upto-end-of-linenl

answer-or-error:
single-line-answer| multi-line-answer| error

single-line-answer:
uppercase(name) arguments-upto-end-of-linenl

multi-line-answer:
uppercase(name)B nl multi-line-element∗ uppercase(name)E nl

multi-line-element:
message | result-element

result-element:
uppercase(element-name) arguments-upto-end-of-linenl

message:
debug| log | warning

debug: A_DEBUGtext-upto-end-of-linenl

log: A_LOG text-upto-end-of-linenl

warning:
A_WARNING text-upto-end-of-linenl

SunOS 5.8 Last change: Jan 10, 2008 1

Standards, Environments, and Macros torx-explorer (5)

error: uppercase(name)0 arguments-upto-end-of-linenl

REPRESENTATION
The interface uses numbers to identify transitions (a.k.a. events) and states.A single number identifies at
the same time both a transition and the state to which the transition ‘‘points’’. If two transitions point to the
same state, they will have different numbers.However, we can still tell that they point to the same state,
because that information is present in the additional information that is given in the output of each interface
command that ‘‘generates’’ new transitions. Thisadditional information contains a field ‘‘identical’’ that
either is empty (if this transition is the first one to ‘‘point’’ to i ts state), or, otherwise, contains the number
of the ‘‘first’ ’ t ransition that pointed to the state.Subsequently generated transitions that point to the same
state all have the same value for this field ‘‘identical’’, so, in a way, a user can treat the value of this field as
the ‘‘canonical’’ i dentification of the state that a transition points to.

Boolean values are represented by the characters ‘‘1’’ and ‘‘0’’ f or respectively true andfalse.

For the variable names, types and predicates that are used in a symbolic explorer we expect the following
representation. Thetypeas used in the fieldfreevars‘‘ looks like’’ an identifier, i.e. it consists of upper and
lowercase characters, digits and underscores.The normalised-varnameas used in the fieldslabel, preds,
andfreevarsis constructed from the type of the ‘‘original’’ variable and a sequence number. By convention
it has the formvar_type$nr as show in the example at the end.The original-varnameas used in the field
freevarsand in thepredicatesof the instantiate command ‘‘looks like’’ an identifier, i.e. it consists of upper
and lowercase characters, digits and underscores.The predicatesused in the instantiate command is a
semi-colon separated list of predicates, where each of the individual predicates in the list should not contain
newlines or semi-colons. One could imagine various syntaxes for the individual predicates in the list,
depending on the purpose of the predicate.Possible purposes are to specify a specific value for a free vari-
able, or to constrain the range of possible values for a free variable. Thecurrent symbolicprimer (1) uses
the instantiate command to specify specific values for free variables. Ituses the syntaxoriginal-varname=
expressionfor the predicates in the semi-colon separated list of predicates, as illustrated in the example at
the end.

COMMMANDS and ANSWERS
The following commands give the core functionality of a non-symbolic explorer, to reset, to expand a state,
to delete states, and to quit:

r
eevent
d event ...
q

A symbolic explorer additionally offers the following commands to instantiate an event, and to ask for solu-
tions to predicates:

i event predicates
p predicates

The command to ask whether a given event matches one of a list of events is implemented in the smile
primer, but currently not used in the symbolic primer.

m event event...
Below we describe these commands in more detail.

RESET
This commands tells the explorer to reset itself, and it returns the (transition pointing to) the initial state.It
takes no parameters. The result is a single-line answer containing the fields describing the initial state:

event, solved, preds, freevars, identical
with

event the event number;

solved a boolean value that indicates whether or not the predicates for the initial state could be solved
(i.e. whether or not it is known if a solution exists for the predicates of the initial state);

preds the normalised (semi-colon separated) predicates of the initial state (normalised by replacing

SunOS 5.8 Last change: Jan 10, 2008 2

Standards, Environments, and Macros torx-explorer (5)

free variables names by names build from the type of the variable and a sequence number, to
make it easier to compare them);

freevars the (space-separated) list of free variables information, which contains for each free variable a
(space-separated) list of three items:normalised-varname, original-varname, and type;

identical the state to which the state reached byevent is identical, or the empty string if this event is the
first one that reaches that state.

Command:
r

Answer:
R eventTAB solvedTAB predsTAB freevarsTAB identical

EXPAND
This commands tells the explorer to expand a given state. It takes as parameter a transition/state number.
The result is a multi-line answer where each line of the body of the answer contains fields describing a tran-
sition and its corresponding resulting state:

event, visible, solved, label, preds, freevars, identical
with

event the event number;

visible a boolean value indicating whether or not the action is visible;

solved a boolean value that indicates whether or not the predicates to reach the resulting state could be
solved (i.e. whether or not it is known if a solution exists for the predicates of the resulting state);

label a string containting a LOTOS-like event, containing normalised variables, if the event introduces
free variables;

preds the normalised (semi-colon separated) predicates of the resulting state (normalised by replacing
free variables names by names build from the type of the variable and a sequence number, to make
it easier to compare them);

freevarsthe (space-separated) list of free variables information, which contains for each free variable a
(space-separated) list of three items:normalised-varname, original-varname, and type;

identical
the state to which the state reached byevent is identical, or the empty string if this event is the first
one that reaches that state.

Command:
eevent

Answer (multi-line):
EB
EeeventTAB visibleTAB solvedTAB labelTAB predsTAB freevarsTAB identical
...
EE

DELETE
This commands tells the explorer that its user is no longer interested in a (list of) events/states, and will
never refer to them in the future. This allows the explorer to delete them, and free memory, if it wants to.
Parameter: a (whitespace separated) list of events/states; result: a single-line answer, containing no result
(currently).

Command:
d event ...

Answer:
D

SunOS 5.8 Last change: Jan 10, 2008 3

Standards, Environments, and Macros torx-explorer (5)

QUIT
This commands tells the explorer to quit. It takes no parameters, and returns no result.

Command:
q

Answer:
Q

INSTANTIATE
This commands tells the explorer to instatiate a given event using a given list of predicates. It takes as
parameter an event, followed by a (semi-colon separated) list of predicates.The resultis a single-line
answer, containing the result of instantiation of the given event using the predicates. If the instantiation is
successful, the result line contains the same fields as a result line of the expand command; if instantiation is
not successful, the error result contains the same fields as the solve command.

The fields of the successful result contain a description of an action and corresponding resulting state:
event, visible, solved, label, preds, freevars, identical

with

event the event number;

visible a boolean value indicating whether or not the action is visible;

solved a boolean value that indicates whether or not the predicates to reach the resulting state could be
solved (i.e. whether or not it is known if a solution exists for the predicates of the resulting state);

label a string containting a LOTOS-like event, containing normalised variables, if the event introduces
free variables;

preds the normalised (semi-colon separated) predicates of the resulting state (normalised by replacing
free variables names by names build from the type of the variable and a sequence number, to make
it easier to compare them);

freevarsthe (space-separated) list of free variables information, which contains for each free variable a
(space-separated) list of three items:normalised-varname, original-varname, and type;

identical
the state to which the state reached byevent is identical, or the empty string if this event is the first
one that reaches that state.

The fields of the error result contain information about the (lack of) success of finding a solution, and, if a
solution was found, the solution itself:

solved, found, preds, msg, err
with

solved a boolean value that indicates whether or not the predicates could be solved;

found a boolean value that indicates whether or not a solution could be found (only of interest when
solvedis 1);

preds the (semi-colon separated) list of predicates that describe the solution found (only of interest when
solvedandfoundare both 1);

msg a (semi-colon separated) list of messages, produced during the narrowing process;

err a (semi-colon separated) list of error messages, produced during the narrowing process.

Command:
i eventWS predicates

Answer (succesfull):
I eventTAB visibleTAB solvedTAB labelTAB predsTAB freevarsTAB identical

Answer (error):
I0 solvedTAB foundTAB predsTAB msgTAB error

SunOS 5.8 Last change: Jan 10, 2008 4

Standards, Environments, and Macros torx-explorer (5)

SOLVE
This commands tells the explorer to solve the given predicates. Thisdoes not influence the state of the
explorer: the explorer is just used as ‘‘A DT desk calculator’’.
Note: this command isnot used by the (symbolic) primer and is currentlyonly there for the convenience of
the user. It may be removed in later versions of this interface.
It takes as parameter a (semi-colon separated) list of predicates. The resultis a single-line answer, contain-
ing information about the success of finding a solution, and, if a solution was found, the solution itself:

solved, found, preds, msg, err
with

solved a boolean value that indicates whether or not the predicates could be solved; (i.e. whether or not it
could find a solution or prove that no solution exists);

found a boolean value that indicates whether or not a solution could be found (only of interest when
solvedis 1);

preds the (semi-colon separated) list of predicates that describe the solution found (only of interest when
solvedandfoundare both 1);

msg a (semi-colon separated) list of messages, produced during the narrowing process;

err a (semi-colon separated) list of error messages, produced during the narrowing process.

Command:
p predicates

Answer:
P solvedTAB foundTAB predsTAB msgTAB error

MATCH
This commands tells the explorer to try to match an event (generally representing a set of events) with a list
of events (numbers) (also, each of them generally representing a set of events).
This could be used by the primer to combine the menu’s of sev eral states.However, currently it is not used,
and it could be removed in later versions of this interface.
It takes as parameter an event, followed by whitespace, followed by a (whitespace separated) list of events.
The result is a single-line answer, containing

found, event
with

found a boolean value indication whether a matching event was found;

event a matching event from the list, if a match was found, or the empty string, otherwise (none of the
ev ents of the list match).

Command:
m event event ...

Answer (sccessfull):
M foundTAB event

Answer (error):
M0 error text upto end of line

OPTIONS
There are no general command line options for the explorer, that apply to each explorer, because its
behaviour can not be parameterised, and therefore does not need command line options. As a consequence,
the command line options are currently explorer specific: they are different for each individual explorer.

EXAMPLE
In this example we show a session with the symbolic explorer for LOTOS (which uses the symbolic
LOTOS simulator smile). In the session we use ther command to get the initial state (transition), which we
explore using thee command; we instantiate one of the events two times, using different values for the free
variables, and we explore the result of both the instantiations, one (10) only one ‘‘step’’ deeper, the other
(5) until we have traverse all internal (invisible) transitions leading from it.

SunOS 5.8 Last change: Jan 10, 2008 5

Standards, Environments, and Macros torx-explorer (5)

One line in the output of that explorer was too long to fit on a single line; we use a continuation mark\ to
indicate that an output line continues on the next line.
$ smileexp cf-pe-sut-smile.cr
r
R 0 1
e 0
EB
Ee 3 1 1 udp_in ! udp2 ! udp_datareq(udp1, var_PDU$1) var_PDU$1 Smile_227_0 PDU
Ee 2 1 1 udp_in ! udp3 ! udp_datareq(udp1, var_PDU$1) var_PDU$1 Smile_226_0 PDU
Ee 1 1 1 CFSAP_in ! cf1 ! join(var_UserTitle$1, var_ConfIdent$1) \

var_UserTitle$1 Smile_224_0 UserTitle var_ConfIdent$1 Smile_225_0 ConfIdent
EE
i 1 Smile_225_0 = ut_A; Smile_224_0 = ci_one
I 4 1 1 CFSAP_in ! cf1 ! join(ut_A, ci_one) Smile_225_0 = ut_A; Smile_224_0 = ci_one 1
e 4
EB
Ee 9 1 1 CFSAP_in ! cf1 ! datareq(var_DataField$1) var_DataField$1 Smile_230_0 DataField
Ee 8 1 1 CFSAP_in ! cf1 ! leave
Ee 7 1 1 udp_in ! udp3 ! udp_datareq(udp1, var_PDU$1) var_PDU$1 Smile_229_0 PDU
Ee 6 1 1 udp_in ! udp2 ! udp_datareq(udp1, var_PDU$1) var_PDU$1 Smile_228_0 PDU
Ee 5 0 1 i ! cf1 ! join(ut_A, ci_one)
EE
i 1 Smile_225_0 = ut_B; Smile_224_0 = ci_two
I 10 1 1 CFSAP_in ! cf1 ! join(ut_B, ci_two) Smile_225_0= ut_B ; Smile_224_0 = ci_two 1
e 10
EB
Ee 15 1 1 CFSAP_in ! cf1 ! datareq(var_DataField$1) var_DataField$1 Smile_233_0 DataField
Ee 14 1 1 CFSAP_in ! cf1 ! leave
Ee 13 1 1 udp_in ! udp3 ! udp_datareq(udp1, var_PDU$1) var_PDU$1 Smile_232_0 PDU
Ee 12 1 1 udp_in ! udp2 ! udp_datareq(udp1, var_PDU$1) var_PDU$1 Smile_231_0 PDU
Ee 11 0 1 i ! cf1 ! join(ut_B, ci_two)
EE
e 5
EB
Ee 21 0 1 i ! udp1 ! udp_datareq(udp2, PDU_J(ut_A, ci_one))
Ee 20 0 1 i ! udp1 ! udp_datareq(udp3, PDU_J(ut_A, ci_one))
Ee 19 1 1 udp_in ! udp3 ! udp_datareq(udp1, var_PDU$1) var_PDU$1 Smile_236_0 PDU
Ee 18 1 1 udp_in ! udp2 ! udp_datareq(udp1, var_PDU$1) var_PDU$1 Smile_235_0 PDU
Ee 17 1 1 CFSAP_in ! cf1 ! datareq(var_DataField$1) var_DataField$1 Smile_234_0 DataField
Ee 16 1 1 CFSAP_in ! cf1 ! leave
EE
e 20
EB
Ee 27 0 1 i ! udp1 ! udp_datareq(udp2, PDU_J(ut_A, ci_one))
Ee 26 1 1 udp_out ! udp3 ! udp_dataind(udp1, PDU_J(ut_A, ci_one))
Ee 25 1 1 udp_in ! udp2 ! udp_datareq(udp1, var_PDU$1) var_PDU$1 Smile_239_0 PDU
Ee 24 1 1 udp_in ! udp3 ! udp_datareq(udp1, var_PDU$1) var_PDU$1 Smile_238_0 PDU
Ee 23 1 1 CFSAP_in ! cf1 ! datareq(var_DataField$1) var_DataField$1 Smile_237_0 DataField
Ee 22 1 1 CFSAP_in ! cf1 ! leave
EE
e 21
EB
Ee 33 0 1 i ! udp1 ! udp_datareq(udp3, PDU_J(ut_A, ci_one))

SunOS 5.8 Last change: Jan 10, 2008 6

Standards, Environments, and Macros torx-explorer (5)

Ee 32 1 1 udp_out ! udp2 ! udp_dataind(udp1, PDU_J(ut_A, ci_one))
Ee 31 1 1 udp_in ! udp2 ! udp_datareq(udp1, var_PDU$1) var_PDU$1 Smile_242_0 PDU
Ee 30 1 1 udp_in ! udp3 ! udp_datareq(udp1, var_PDU$1) var_PDU$1 Smile_241_0 PDU
Ee 29 1 1 CFSAP_in ! cf1 ! datareq(var_DataField$1) var_DataField$1 Smile_240_0 DataField
Ee 28 1 1 CFSAP_in ! cf1 ! leave
EE
e 27
EB
Ee 39 1 1 udp_out ! udp2 ! udp_dataind(udp1, PDU_J(ut_A, ci_one))
Ee 38 1 1 udp_out ! udp3 ! udp_dataind(udp1, PDU_J(ut_A, ci_one))
Ee 37 1 1 udp_in ! udp3 ! udp_datareq(udp1, var_PDU$1) var_PDU$1 Smile_245_0 PDU
Ee 36 1 1 udp_in ! udp2 ! udp_datareq(udp1, var_PDU$1) var_PDU$1 Smile_244_0 PDU
Ee 35 1 1 CFSAP_in ! cf1 ! datareq(var_DataField$1) var_DataField$1 Smile_243_0 DataField
Ee 34 1 1 CFSAP_in ! cf1 ! leave
EE
e 33
EB
Ee 45 1 1 udp_out ! udp3 ! udp_dataind(udp1, PDU_J(ut_A, ci_one))
Ee 44 1 1 udp_out ! udp2 ! udp_dataind(udp1, PDU_J(ut_A, ci_one))
Ee 43 1 1 udp_in ! udp3 ! udp_datareq(udp1, var_PDU$1) var_PDU$1 Smile_248_0 PDU
Ee 42 1 1 udp_in ! udp2 ! udp_datareq(udp1, var_PDU$1) var_PDU$1 Smile_247_0 PDU
Ee 41 1 1 CFSAP_in ! cf1 ! datareq(var_DataField$1) var_DataField$1 Smile_246_0 DataField
Ee 40 1 1 CFSAP_in ! cf1 ! leave
EE
q
Q

NOTE
The interface can likely be simplified with respect to thefreevarsfields: we should investigate whether or
not we can ‘hide’ the ‘original’ free-variable names inside the explorer, and reduce the three-tuples of

normalised-varname, original-varname, type
to tuples of

varname, type

Question: would it be wise to change the interface such that the ‘‘identical’’ fi elds in the output of com-
mands that ‘‘generate’’ events are never empty, but always contains the canonical state identifier -- which is
identical to the transition identifier for transitions that are the ‘‘first’ ’ to point to a state?In that case, the
user canalwaysuse the value of the field ‘‘identical’’ as canonical state identification (instead of having to
check first if it is empty, and in that case using the transition identifier).

SEE ALSO
torx-intro (1), mkprimer (1), torx-adaptor (5), torx-primer (5), torx-config(4), torx-log(4), torx (1)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 oftorx .

SunOS 5.8 Last change: Jan 10, 2008 7

Standards, Environments, and Macros torx-instantiator (5)

NAME
torx-instantiator − a program that implements an instantiator

SYNOPSIS
INSTANTIA TOR

NOTE
This is all very new (and experimental), such that the defaultinstantiator (1) does not (yet) use this inter-
face!

DESCRIPTION
In this man page we discribe the interface of the INSTANTIATOR module. Theinterface is very similar to
the one of the PRIMER and the ADAPTOR (Seetorx-primer (5) andtorx-adaptor (5)).

When active, the INSTANTIATOR receives commands from the standard input and writes answers in
return to the standard output. See sectionCOMMANDS for the available commands and answers.When
the INSTANTIATOR is used in the TORX tool it is connected to the DRIVER which has the control and
initiative of all communications. When the INSTANTIATOR is used standalone the user plays the role of
the DRIVER.

A command consist of a single line of text. Thekeyword (the first word) of each commands start with a
prefixC_.

An answer consist of a single line of text or a multi-line of text. All single-line answers start with a
keyword that has prefixA_. Usually, the keyword of single-line answer is identical to the command-
keyword, but with theC_ replaced byA_. A multi-line answer has specific markers around the body of the
answer. These markers consist of a single line that starts with a prefixA_, followed by the command-
keyword without the initialC_, followed by_START respectively _END. Each line of the body of a multi
line answer often starts with a keyword (but not always).

Instead of the usual single- or multi-line answer, an A_ERROR answer may occur in case of an error.
Such anA_ERROR answer comes instead of the usual single- or multi-line answer.

Additional message lines containing warnings (to be shown to the test run operator), diagnostics (to appear
in the test run log), and/or debugging output (to be shown to the test run operator) may appear interspersed
with the answer lines described so far. These message lines start withA_WARNING , A_LOG or
A_DEBUG, respectively. Because these message lines may appear arbitrarily intermixed with the ‘‘regu-
lar’’ answer line(s), they do not play a role when the ‘‘end’’ of an answer has to be found: once the com-
mand-specific answer orA_ERROR answer has been read, the user of the INSTANTIATOR may assume
that no other output (specific to to the command) will be generated by the INSTANTIATOR until the next
command is send to it.

If the INSTANTIATOR decides autonomously that it will stop executing, it may try to indicate this by
sending anA_QUIT answer, just before exiting. For the INSTANTIATOR, reading end-of-file on its stan-
dard input is a reason to stop executing.

In all cases, each command and each answer starts with a keyword that is separated from the remainder of
the line by one or more spaces or tabs − except for two notable exceptions:A_ERROR, where currently
exactely one space should be between the keyword and the category, and the lines between
A_STATE_START and A_STATE_END, that do not start with a keyword (seeDETAILS below). For
most comands and most answers, the text following the keyword has a fixed format; for other commands
and answers it is left unspecificed.

For command and answers that deal with channels, events, predicates, etc. the format of each line is as fol-
lows: the keyword is followed by a (possibly empty) TAB-separated list ofname=value items, where the
namecannot contain TABs or= characters, and thevaluecannot contain TAB characters.For the moment
we assume that, when necessary, we will encode TAB characters for example using C conventions. We
have chosen for this kind of item-lists because this makes it easy to pass information.Using name=value
pairs instead of (for example) a list ofvaluesin a fixed order makes the interface more robust: the order of
items is not important, and the users can simply ignore items whichname they don’t recognize. This

SunOS 5.8 Last change: 1

Standards, Environments, and Macros torx-instantiator (5)

allows one party to send items which the receiving party doesn’t know about. Thismakes it easier to
extend the interface by adding new items and keeping old programs backwards compatible.

For A_ERROR answers, currently the format is as follows: the A_ERROR keyword is followed by a cate-
gory word indicating the category of the error, followed by arbitrary text that describes the error in more
detail. Theidea is that the user of the INSTANTIATOR can use the category word to get some idea of the
nature of the error. In particular, the idea is that the user can use this to decide whether it makes sense to
retry, or whether it is better to give up.

DETAILS
Here we describe first the syntax of the (textual) messages interchanged over the interface, followed by the
possible message arguments, followed by the possible error categories.

SYNTAX
Below we describes the syntax of the commands and answers, by giving the syntax of just a single interac-
tion.

interaction:
message∗ command message∗ answer-or-error

command: C_name arguments-upto-end-of-linenl

answer-or-error:
single-line-answer| multi-line-answer| error

single-line-answer:
A_name arguments-upto-end-of-linenl

multi-line-answer:
A_name_START nl multi-line-element∗ A_name_END nl

multi-line-element:
message | result-element

result-element:
A_element-name arguments-upto-end-of-linenl

message: debug| log | warning

debug: A_DEBUGtext-upto-end-of-linenl

log: A_LOG text-upto-end-of-linenl

warning: A_WARNING text-upto-end-of-linenl

error: A_ERROR spacecategory: text-upto-end-of-linenl

arguments-upto-end-of-line:
ws∗ | ws+ arguments

arguments: argument| argumenttabarguments

argument: name= value
/∗ value can contain spaces but no tabs∗ /

text-upto-end-of-line:
ws∗ | ws+ arbitrary-text-without-newline

ws: space | tab

ARGUMENTS
At the moment the followingnamesare defined for thename=valuearguments to the commands:

ev ent with as value the LOTOS-like string representation of an event, used wherever ‘‘event’’ i s
used below;

channel with as value a channel name;

SunOS 5.8 Last change: 2

Standards, Environments, and Macros torx-instantiator (5)

iokind whereiokind is a valueinput or output;

suspension with as value either ‘‘0’ ’ or ‘ ‘1’ ’ to indicate a non-suspension resp. suspension event, used
wherever an output ‘‘event’’ is used below (in the future we expect to use it also for input
ev ents)

pco with as value a pco name;

concrete with as value a (string representation of the) concrete value (this string cannot contain tab or
new-line characters);

timestamp with as value a (string representation of the) time

ERRORS
At the moment, for the A_ERROR categorymessages given by the INSTANTIATOR, the following cate-
goriesare defined. The user of the INSTANTIATOR (i.e. torx) may use these categories to decide how to
react to theA_ERROR answer (in particular, to decide whether it can cope with it, or whether it is better to
give up).

UnknownCommand the command is not known

ArgumentMissing a mandatory argument of the command is missing or incomplete

WrongValue the value of an argument of the command is outside its domain of valid values

ParseErrorEvent the command contains anev ent argument which cannot be parsed

UnknownIOKind the command contains anev ent argument, and theiokind of the event cannot be
computed

Inconsistency the command contains more than a single argument, and the values of (some of) the
arguments conflict which each other

InternalError an internal error occurred during the execution of the command

COMMANDS
Below follows the list of the commands. The commands, and their answers, are described in more detail
below. With each command, and answer, the possible arguments are indicated. Optional arguments are
surrounded by brackets ’[’ and ’]’. Note: the order in which the arguments are named with the commands
doesnotprescribe theorder in which arguments may appear: arguments may appear in any order.

C_EVENT [event] predicates
C_GETCONFIG

The C_EVENT command is the most important one, and has to be implemented correctly for TorX to work
correctly; the other commands are less important, and most of them are mainly used to get configuration
information from the INSTANTIATOR, only for logging purposes.

In the subsections below, each command is followed by a short explanation of its use. Additional com-
ments are enclosed between /∗ and∗ / after the command.

EVENT
The C_EVENT command is used to ask the INSTANTIATOR to generate a solution for the given predi-
cates. Otherfields may be given, and will appear unchanged in the answer. This command has no side-
effects, and can repeatedly be applied without changing the state of the INSTANTIATOR module.

Command:
C_EVENT [event] predicates

Answer (single-line):
A_EVENT [event] predicates

Errors (single-line):
A_ERROR WrongValue/∗ if a given field has value outside domain∗ /

SunOS 5.8 Last change: 3

Standards, Environments, and Macros torx-instantiator (5)

GETCONFIG
This command has not been implemented yet. It is to be used to get configuration information from the
INSTANTIATOR.

IMPLEMENT ATION NOTES
For the implementer of an instantiator, the most important command to implement is C_EVENT.

For all the other commands, the implementer can choose to give simple answers, by returning just the
answer keyword without parameters, for single-line answers, and returning just the answer start and answer
end keywords for multiline answers.Of course, more informational answers proved more feedback during
testing, and may make it more easy to investigate in case of errors -- the information above is mainly meant
to make it easier to quickly implement a ‘‘basic’’ i nstantiator that already ‘‘does the right thing’’.

SEE ALSO
torx-intro (1), mkprimer (1), torx-primer (5), torx-adaptor (5), torx-config(4), torx-log(4), torx (1), sh(1)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 oftorx .

SunOS 5.8 Last change: 4

Standards, Environments, and Macros torx-primer (5)

NAME
torx-primer − interface to program that derives test primitives from labelled transition system

SYNOPSIS
PRIMER [options]

DESCRIPTION
In this man page we discribe the interface of the PRIMER module. The PRIMER module, a UNIX pro-
gram together with the EXPLORER module, implements an (textual) interface of a labelled transition sys-
tem (lts).

When active, the PRIMER receives commands from the standard input and writes answers in return to the
standard output. See sectionCOMMANDS and ANSWERS for the available commands and answers.
When the PRIMER is used in the TORX tool it is connected to the DRIVER which has the control and ini-
tiative of all communications.When the PRIMER is used as standalone the user plays the role of the
DRIVER.

A command consist of a single line of text. Thekeyword of all commands start with a prefixC_.

A answer consist of a single line of text or a multi-line of text. All single line answers start with a prefix
A_. A multi-line answer has specific markers around the body of the answer. These markers consist of a
single keyword at a single line, made up from the usual answer keyword, with _START and _END
appended, respectively. Each line of the body of a multi line answer often starts with a keyword (but not
always). Usually, the PRIMER answers to a command with the identical command-keyword, but with the
C_ replaced byA_. Instead of the usual answer, an A_ERROR answer may occur in case of an error.

The following describes the syntax of the commands and answers:

interaction:
message∗ command message∗ answer-or-error

command:
C_name arguments-upto-end-of-linenl

answer-or-error:
single-line-answer| multi-line-answer| error

single-line-answer:
A_name arguments-upto-end-of-linenl

multi-line-answer:
A_name_START nl multi-line-element∗ A_name_END nl

multi-line-element:
message | result-element

result-element:
A_element-name arguments-upto-end-of-linenl

message:
debug| log | warning

debug: A_DEBUGtext-upto-end-of-linenl

log: A_LOG text-upto-end-of-linenl

warning:
A_WARNING text-upto-end-of-linenl

error: A_ERRORtext-upto-end-of-linenl

SunOS 5.8 Last change: Jan 2, 2001 1

Standards, Environments, and Macros torx-primer (5)

For some commands and some answers, the text following the keyword has a fixed format; for other com-
mands and answers it is left unspecificed.

For command and answers that deal with channels, events, predicates, etc. the format of each such line is as
follows: the keyword is followed by a (possibly empty) TAB-spearated list ofname=valueitems, where the
namecannot contain TABs or= characters, and thevalue cannot contain TAB characters. Note that the
order of thename=value items is left unspecified, i.e. they may appear in any order, even though the pre-
sentation below, in the detailed specification of the commands and their answers, might suggest otherwise.
For the moment we assume that, when necessary, we will encode TAB characters for example using C con-
ventions. We hav echosen for this kind of item-lists because this makes it easy to pass information.Using
name=valuepairs instead of (for example) a list ofvaluesin a fixed order makes the interface more robust:
the order of items is not important, and, provided the users ignore items whichnamethey don’t recognize.
This allows one party to send items which the receiving party doesn’t know about. Thismakes it easier to
extend the interface by adding new items and keeping old programs backwards compatible.

At the moment the followingnamesof thename=valueitems, are defined:

ev ent
with as value the LOTOS-like string representation of an event, used wherever ‘‘event’’ is used
below;

channel
with as value a channel name;

iokind
whereiokind is a valueinput or output;

suspension
with as value either ‘‘0’ ’ or ‘ ‘1’ ’ to indicate a non-suspension resp. suspension event, used wher-
ev er an output ‘‘event’’ is used below (in the future we expect to use it also for input events)

super
with as value a number that is used to represent a state-vector;

init
with as value a comma-separated list of those state numbers that were directly reached by an
observable transition;

trans
with as value a comma-separated list of those state numbers that were reached frominit via (an)
internal (non-observable) transition(s).

Note1:
‘‘ predicates’’ is currently only implemented in the genericprimer (1).

Note2:
we may want to split the ‘‘predicates’’ i nto two (or more?) groups, depending on the complexity of
the operation that we want (need) to perform on them.We could for example have one group that
consists of equations, for which we need a single solution (witness), and another group consists of
equations, for which we need proof that no solution exists.

Note3:
The lists of comma-separated state numbers ofinit and trans may contain abbreviations of the
form first-last as abbreviation of strictly increasing sequences of the formfirst, (first+1), (first+2),
..., (last-2), (last-1), last, wherelast is equal to or greater than (first+1).

Answers are outputted after the receival of a command, but always before the command-specific answer or
A_ERROR answer. I.e. once the command-specific answer or A_ERROR answer has been read, the user of

SunOS 5.8 Last change: Jan 2, 2001 2

Standards, Environments, and Macros torx-primer (5)

the PRIMER may assume that no other output will be generated by the PRIMER until the next command is
send to it.

Besides the "normal" (expected) answers the PRIMER can also respond with error and warning messages
as answers.

Currently known errors:
A_ERROR UnknownCommand
A_ERROR ArgumentMissing

/∗ if arguments are missing or incomplete∗ /
A_ERROR ParseErrorEvent

/∗ if the event cannot be parsed∗ /
A_ERROR UnknownIOKind

/∗ if iokind of event cannot be found∗ /
A_ERROR Inconsistency

/∗ if fields conflict∗ /
A_ERROR WrongValue

/∗ if a given field has value outside domain∗ /
A_ERROR InternalError

/∗ if internal error occurred∗ /

In principle, each answer of the PRIMER can contain one or more diagnostic lines, indicating errors, warn-
ings, end-of-test, or guidance information. Below some examples of ansers:

A_WARNING
A_EOT
A_GUIDANCE_VERDICT INCONSISTENT
A_GUIDANCE_VERDICT INCONCLUSIVE
A_GUIDANCE_VERDICT PASS

For logging of debugging information the following answers may appear anywhere.
A_DEBUG
A_LOG

OPTIONS
The PRIMER module support the following commandline options:

-s number
the seed for the random number generator

-i gates1,gate2,gate3,...
the list of input gates. Note there are no spaces between the gates!

-o gates1,gate2,gate3,...
the list of output gates. Note there are no spaces between the gates!

-S algorithm
the algorithm which can beioco, traces or simulation. By default this isioco. Note that this
option is only implemented in LOTOS PRIMERs.

-d delta-event-tag
thedelta-event-tagis used for quiescense in the interface. By default the tag is ‘‘Delta’’. Note that
this option is not needed for thetracesalgorithm, and that this option is only implemented in the
LOTOS PRIMERs.

SunOS 5.8 Last change: Jan 2, 2001 3

Standards, Environments, and Macros torx-primer (5)

COMMMANDS and ANSWERS
The core functionality of the PRIMER is given by the following commands which use the syntax described
above (DESCRIPTION). (Thebrackets [and] indicate optional elements):

C_IOKIND [iokind] [channel]
C_GETINPUT [channel] [event] [predicates]
C_INPUT [channel] [event] [predicates]
C_OUTPUT [channel] [event] [predicates]
C_QUIT

Below follows the list of the all commands, which are described in more detail in the following subsections:
C_CHANNELS [iokind] [channel]
C_IOKIND [iokind] [channel]
C_GETINPUT [channel] [event] [predicates]
C_INPUT [channel] [event] [predicates]
C_GETOUTPUT [channel] [event] [predicates]
C_OUTPUT [channel] [event] [predicates]
C_INPUTS [channel]
C_OUTPUTS [channel]
C_STATE
C_STATEID
C_GOTO [super]
C_STATS
C_QUIT
C_GUIDANCE_INFO
C_GUIDANCE_QUIT
C_GETCONFIG
C_EOT

In the subsections below each command is followed by a short explanation of its use. Additional comments
are enclosed between /∗ and∗ / after the command.

CHANNELS
This command has only been implemented for the Smile PRIMER. The C_CHANNELS command is used
to ask the PRIMER which channels exist. If the iokind and/orchannel argument is used, then only the
respective channels are returned. This command has no side-effects, and can repeatedly be given without
changing the state of the EXPLORER and PRIMER modules.

Commands:
C_CHANNELS [iokind] [channel]

Answers:
A_CHANNELS_START

A_CHANNEL iokind channel...
...

A_CHANNELS_END
A_ERROR Inconsistency

/∗ if the iokind and channel fields conflict∗ /
A_ERROR WrongValue

/∗ if a given field has value outside domain∗ /

where iokind is either INPUT or OUTPUT.

SunOS 5.8 Last change: Jan 2, 2001 4

Standards, Environments, and Macros torx-primer (5)

IOKIND
The C_IOKIND command is used to ask the PRIMER whether the next action should be an input or an out-
put action. The command can have an optional suggestion, which will be honoured by the PRIMER if pos-
sible. Thiscommand has no side-effects (apart from calling the random number generator), and can repeat-
edly be given without changing the state of the EXPLORER and PRIMER modules.

Commands:
C_IOKIND [iokind] [channel]

Answers:
A_IOKIND iokind channel
A_ERROR Inconsistency

/∗ if the iokind and channel fields conflict∗ /
A_ERROR WrongValue

/∗ if a given field has value outside domain∗ /

where iokind is either INPUT or OUTPUT.

GETINPUT
The C_GETINPUT command is used to ask the PRIMER for an input transitionwithout doing a transition
(the transition is done with the C_INPUT command). The command can have an optional suggestion for
the action, which will be honoured by the PRIMER if the action is in the current list of input actions; if no
action is given, an action will be randomly chosen from the ’current’ list of input actions.If the action
given as suggestion cannot be parsed, the PRIMER will return A_ERROR (with an explanation of the
error); otherwise it will return the given or chosen action.

Commands:
C_GETINPUT [channel] [event] [predicates]

Answers:
A_GETINPUT_OK channel event predicates
A_GETINPUT_ERROR

/∗ if event is not in menu∗ /
A_ERROR ParseErrorEvent

/∗ if the event cannot be parsed∗ /
A_ERROR ArgumentMissing

/∗ if no event was given to simulator∗ /
A_ERROR UnknownIOKind

/∗ if iokind of event cannot be found∗ /
A_ERROR Inconsistency

/∗ if the iokind and channel fields conflict∗ /
A_ERROR WrongValue

/∗ if a given field has value outside domain∗ /
A_ERROR InternalError

/∗ if internal error occurred∗ /

INPUT
The C_INPUT command is used to ask the PRIMER to do an input transition.The command is given the
action that has to be done, which should be in the current list of input actions (if not, A_INPUT_ERROR
will be returned). If the action given cannot be parsed, the PRIMER will return A_ERROR (with an expla-
nation of the error), and no transition will be done; otherwise it will return the action that is ’done’.

Commands:

SunOS 5.8 Last change: Jan 2, 2001 5

Standards, Environments, and Macros torx-primer (5)

C_INPUT [channel] event [predicates]

Answers:
A_INPUT_OK channel event predicates
A_INPUT_ERROR

/∗ if event is not in menu∗ /
A_ERROR ParseErrorEvent

/∗ if the event cannot be parsed∗ /
A_ERROR ArgumentMissing

/∗ if no event was given∗ /
A_ERROR UnknownIOKind

/∗ if iokind of event cannot be found∗ /
A_ERROR Inconsistency

/∗ if the iokind and channel fields conflict∗ /
A_ERROR WrongValue

/∗ if a given field has value outside domain∗ /
A_ERROR InternalError

/∗ if internal error occurred∗ /

GETOUTPUT
The C_GETOUTPUT command is used to ask the PRIMER for an output transitionwithout doing a transi-
tion (the transition is done with the C_OUTPUT command).If the command does not contain an action,
the SIMULATOR will randomly choose an action, and theIOCO and traces version will return an error
message; if the command does contain an action, the PRIMER will check if it can ’do’ the action (but will
not actually do the action).If the action cannot be parsed, the PRIMER will return A_ERROR (with an
explanation of the error). Otherwise, if the action can be performed, the PRIMER will return A_GETOUT-
PUT_OK; if the action cannot be performed (i.e. if the action is not in the list of current output actions)
A_GETOUTPUT_ERROR will be returned.

Commands:
C_GETOUTPUT [channel] [event] [predicates]

Answers:
A_GETOUTPUT_OK channel event predicates
A_GETOUTPUT_ERROR

/∗ if the event is not in menu ofIOCO ∗ /
A_ERROR ParseErrorEvent

/∗ if the event cannot be parsed∗ /
A_ERROR ArgumentMissing

/∗ if no event was given to IOCO or traces∗ /
A_ERROR UnknownIOKind

/∗ if iokind of event cannot be found∗ /
A_ERROR Inconsistency

/∗ if the channel and event fields conflict∗ /
A_ERROR WrongValue

/∗ if a given field has value outside domain∗ /
A_ERROR InternalError

/∗ if internal error occurred∗ /

OUTPUT
The C_OUTPUT command is used to ask the PRIMER to do an output transition.If the command does not
contain an action, the SIMULATOR will randomly choose which action to do, and theIOCO and traces

SunOS 5.8 Last change: Jan 2, 2001 6

Standards, Environments, and Macros torx-primer (5)

version will return an error message; if the command does contain an action, the PRIMER will attempt to
’do’ the action. If the action cannot be parsed, the PRIMER will return A_ERROR (with an explanation of
the error). Otherwise, if the action can be performed, the PRIMER will return A_OUTPUT_OK; if the
action cannot be performed (i.e. if the action is not in the list of current output actions) A_OUT-
PUT_ERROR will be returned.

Commands:
C_OUTPUT [channel] [event] [predicates]

Answers:
A_OUTPUT_OK channel event predicates
A_OUTPUT_ERROR

/∗ if the event is not in menu ofIOCO ∗ /
A_ERROR ParseErrorEvent

/∗ if the event cannot be parsed∗ /
A_ERROR ArgumentMissing

/∗ if no event was given to IOCO or traces∗ /
A_ERROR UnknownIOKind

/∗ if iokind of event cannot be found∗ /
A_ERROR Inconsistency

/∗ if the channel and event fields conflict∗ /
A_ERROR WrongValue

/∗ if a given field has value outside domain∗ /
A_ERROR InternalError

/∗ if internal error occurred∗ /

INPUTS
The C_INPUTS command returns the list of current input actions. This list can be restricted with the
optional channel argument. Thiscommand has no side-effects.

Command:
C_INPUTS [channel]

Answer (multi-line):
A_INPUTS_START

A_EVENT channel event predicates
...

A_INPUTS_END
A_ERROR WrongValue

/∗ if a given field has value outside domain∗ /
A_ERROR Inconsistency

/∗ if the channel has wrong iokind∗ /

OUTPUTS
The C_OUTPUTS command returns the list of current output actions.This list can be restricted with the
optional channel argument. Thiscommand has no side-effects.

Command:
C_OUTPUTS [channel]

Answer (multi-line):
A_OUTPUTS_START

A_EVENT channel event predicates

SunOS 5.8 Last change: Jan 2, 2001 7

Standards, Environments, and Macros torx-primer (5)

...
A_OUTPUTS_END
A_ERROR WrongValue

/∗ if a given field has value outside domain∗ /
A_ERROR Inconsistency

/∗ if the channel has wrong iokind∗ /

STATE
The C_STATE command returns a textual representation of the current state. The contents of this textual
representation depend on the implementation of the PRIMER. For the Open/Caesar implementation, the
representation consists of two lines of ’legenda’, followed by a line for each state in the current ’state-vec-
tor’. Thiscommand has no side-effects.

Command:
C_STATE

Answer (multi-line):
A_STATE_START

text ...
...

A_STATE_END

STATEID
The C_STATEID command returns the current state identifier. The state identifier consists of a single num-
ber (super) that represents (identifies) the current state(-vector), together with a list of comma-separated
state numbers of those states in the current state(-vector) that were directly reached via an observable tran-
sition (init), and a list of comma-separated state numbers of those states in the current state(-vector) that
were reached from theinit states via an internal (non-observable) transition (trans). In the lists of state
numbers (sub)sequences of strictly increasing state numbers, where each element in the sequence is equal
to the previous element plus one, may be abbreviated tofirst-last with first and last the first and last ele-
ments of the (sub)sequence.A PRIMER should give just one line state identifier (both single- and multi-
line form are allowed). TheCOMBINAT OR combines the state identifier of its primers, by giving the lines
of its primers in a multi-line answer. When it does so, it prefixes the statistics of each primer with a name-
value field identity that contains a white-space separated list of two white-space separated name-value
pairs: one that gives the id of the primer (key: id) and a second one that gives the role of the primer (key:
role, values: SPEC, GUIDE, TEST), both as specified in the configuration value of the combinator. This
command has no side-effects.

Command:
C_STATEID

Answer (single-line):
A_STATEID super init trans

Answer (multi-line):
A_STATEID_START

A_STATEID identity super init trans
...

A_STATEID_END

SunOS 5.8 Last change: Jan 2, 2001 8

Standards, Environments, and Macros torx-primer (5)

GOTO
The C_GOTO command goes to the state identified by the given super state identifier. This state identifer
must have been retrieved earlier using a STATEID command. This command does have a side-effect.

Command:
C_GOTO super

Answer (single-line):
A_GOTO_OK
A_GOTO_ERROR A_GOTO_ERROR UnknownStateID super

/∗ if an unknown super state was given∗ /
A_ERROR ArgumentMissing

/∗ if no super field was given∗ /

Note that the GOTO command is a rather recent addition. As an unfortunate result of that, the
A_GOTO_ERROR response currently has different parameters in the various implementations that we
have. The CADP primer only returns A_GOTO_ERROR, whereas the ’generic’ primer also returns the
string UnknownStateID and the failing argument super state.We hope to make this more uniform once we
have more experience with this interface command.

STATS
The C_STATS command returns some statistics about the PRIMER (like: numer of states in state-vector,
number of explored states, number of transitions etc.).The statistics consists of a list of whitespace-sepa-
rated key-value pairs, where also the key and the value are separated by whitespace. The value should not
contain whitespace.A PRIMER should give just one line of statistics (both single- and multi-line form are
allowed). TheCOMBINAT OR combines the statistics of its primers, by giving the lines of its primers in a
multi-line answer. When it does so, it prefixes the statistics of each primer with two name-value pairs: one
that gives the id of the primer (key: id) and a second one that gives the role of the primer (key: role, values:
SPEC, GUIDE, TEST), both as specified in the configuration value of the combinator.

Command:
C_STATS

Answer (single-line):
A_STATS statistics

Answer (multi-line):
A_STATS_START

A_STATS statistics
...

A_STATS_END

QUIT
The C_QUIT command tells the PRIMER to clean up and exit. The PRIMER will acknowledge the com-
mand with A_QUIT. The side-effect of this command is that the PRIMER module exits.

Note: when this command is send to the COMBINAT OR it will send a C_QUIT command to each of the
PRIMERs that it controls, and then clean up and exit, without waiting for the responses of thePRIMERs.
In this respect this command differs from the C_GUIDANCE_QUIT command (see below).

Command:
C_QUIT

SunOS 5.8 Last change: Jan 2, 2001 9

Standards, Environments, and Macros torx-primer (5)

Answer:
A_QUIT

GUIDANCE_INFO
This command is currently not used by the DRIVER; it has been implemented in the COMBINAT OR. The
C_GUIDANCE_INFO command asks the COMBINAT OR to giv e the (tab-separated) ‘‘id’ ’ and ‘‘role’’
(SPEC, GUIDE, or TEST) for each of the PRIMERs that it is responsible for.

Command:
C_GUIDANCE_INFO

Answer:
A_GUIDANCE_INFO_START

A_GUIDANCE_INFO id role
...

A_GUIDANCE_INFO_END

GUIDANCE_QUIT
This command is currently not used by the DRIVER; it has been implemented in the COMBINAT OR. The
C_GUIDANCE_QUIT command asks the COMBINAT OR to send a C_QUIT command to each of the
PRIMERs that it is responsible for, and wait for the answers. In this respect this command differs from the
C_QUIT command (see above).

Command:
C_GUIDANCE_QUIT

Answer:
A_GUIDANCE_QUIT

GETCONFIG
This command has not been implemented yet. Get configuration information from the COMBINAT OR
(and via it, from its primers) or the primer.

EOT
This command is currently not used by the DRIVER; it has been implemented in the PRIMER and COM-
BINAT OR. The C_EOT command asks the PRIMER whether ’end-of-test’ has been reached.The
PRIMER will return A_EOT_YES if the lists of current actions are empty, or if the list of input actions is
empty and the list of output actions contains only ‘delta‘. This command has no side-effects.

Command:
C_EOT

Answer:
A_EOT_YES
A_EOT_NO

SEE ALSO
torx-intro (1), mkprimer (1), torx-adaptor (5), torx-config(4), torx-log(4), torx (1)

SunOS 5.8 Last change: Jan 2, 2001 10

Standards, Environments, and Macros torx-primer (5)

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 oftorx .

SunOS 5.8 Last change: Jan 2, 2001 11

Misc. Reference Manual Pages xtorx-extension (n)

NAME
xtorx-extension − api to specify the Mutants, Primers and Guides menus of xtorx

SYNOPSIS
MUTANT entry title setCommand unsetCommand
PRIMER entry title setCommand unsetCommand
GUIDE entry title setCommand unsetCommand
setCommand flagsVarName configVarName
unsetCommand flagsVarName configVarName

DESCRIPTION
Thextorx-primers andxtorx-mutants configuration file are actuallytcl scripts, that allow the user to reg-
ister primers and mutants withxtorx (1). Theuser is free to use whatever tcl commands needed in the
xtorx-primers , xtorx-guides andxtorx-mutants scripts, as long as the net effect is that sourcing the script
results in the invocation of thePRIMER , GUIDE and/or MUTANT routines that are necessary: one
invocation for each primer respectively mutant that is to be registered. Additionally, the script should pro-
vide the commands used in thesetCommandandunsetCommandarguments ofPRIMER , GUIDE and/or
MUTANT .

To register a primer means: invoking PRIMER with two text strings, and two tcl commands.To register a
guide means: invoking GUIDE with two text strings, and two tcl commands.To register a mutant means:
invoking MUTANT with two text strings, and two tcl commands.The entry string will appear in the
Primers, Guides respectively Mutants menu; thetitle string will appear in theWindow Title when the
primer, guide or mutant is selected (and thus: active). An entrystring containing just the single word none
is special: it will be the one that is initially selected (active). ThesetCommandwill be invoked by xtorx (1)
when the primer, guide or mutant is selected (chosen) by the user, and theunsetCommandwhen the primer,
guide or mutant is deselected by the user. When xtorx (1) invokes setCommandand unsetCommandit
extends them with two arguments:flagsVarNameandconfigVarName. Both these arguments can be used to
change the command that will be used to invoke torx (1). TheflagsVarNameargument can be used to insert
options (flags) and theconfigVarNameargument can be used to insert configuration files into the command
line that will be used to invoke torx (1). How they can be used is shown in the examples, below.

In addition to manipulating the command line arguments oftorx (1), the commands that are called byset-
CommandandunsetCommandcan, as needed, change the environment in whichtorx (1) will be invoked,
by creating and/or deleting files, and/or by setting and unsetting environment variables. Usually, the set-
Commandcommand will make a change in the environment, such that whentorx (1) is invoked, the right
mutant is activated, and theunsetCommandcommand will undo this change in the environment, such that a
subsequent invocation oftorx (1) will cause the ‘‘default’’ i mplementation to be activated, and such that a
subsequent invocation of asetCommandcommand will activate its corresponding mutant.

EXAMPLES
The examples below all register mutants. Adapting them to primers or guides is left as an exercise to the
reader.

The following example registers a single mutant.When the mutant is selected, the environment variable
MUTANTis set to 1. HeresetCommandandunsetCommandjust contain a tcl command.

proc setMut {flagsvar configvar} {
global env
set env(MUTANT) 1

}
proc unsetMut {flagsvar configvar} {

global env
set env(MUTANT) 0

}
MUTANT mut1 mut1 setMut unsetMut

SunOS 5.8 Last change: 1

Misc. Reference Manual Pages xtorx-extension (n)

In the example below, setCommandandunsetCommandare more than just proc names: here thesetCom-
mandconsists of a a string containing a command together with an additional argument. Inthis case the
command mentioned insetCommandmust of course handle this additional argument. Thefollowing exam-
ple registers two mutants, mut1 and mut2, for which the environment variableMUTANT is set to 1 respec-
tively 2. When no mutant is selected, environment variableMUTANTwill not be set.

proc setMut {nr flagsvar configvar} {
global env
set env(MUTANT) $nr

}
proc unsetMut {flagsvar configvar} {

global env
catch {unset env(MUTANT)}

}
MUTANT mut1 mut1 "setMut 1" unsetMut
MUTANT mut2 mut2 "setMut 2" unsetMut

Finally, we show how tcl commands can be used to register a number of mutants, and how the torxConfig-
VarNameargument can be used to manipulate thetorx (1) command line by adding an additional (mutant
specific) configuration file.

proc setMut {nr flagsvar configvar} {
global env
upvar $flagsvar flags
upvar $configvar config
set env(MUTANT) $nr
if {[file exists "myMutant.$nr.config"]} {

set config "myMutant.$nr.config"
}

}
proc unsetMut {nr flagsvar configvar} {

global env
upvar $flagsvar flags
upvar $configvar config
catch {unset env(MUTANT)}
catch { unset config }

}
foreach m {0 1 2 3 4 5 6 7 8 9} {

MUTANT mut$m Mut$m "setMut $m" "unsetMut $m"
}

SEE ALSO
torx-intro (1), xtorx (1)

BUGS
The output produced byputs string respectively puts stderr string commands in thextorx-primers con-
figuration file is written to standard output respecitvely standard error; it would be nice to redirect it to the
xtorx (1) Messages pane or to a dialog box.

It is important to putcatch aroundputs commands, becauseputs may fail when the window from which
xtorx (1) was started is no longer there.

Currentlyxtorx (1) contains separate entries to load the primers, guides and mutants; these could be com-
bined.

SunOS 5.8 Last change: 2

Misc. Reference Manual Pages xtorx-extension (n)

All primers, guides and mutants files are loaded in the sametcl name space, which means that a file opened
later in xtorx (1) may redefine (override) routines defined in a file opened earlier − it is up to the user to
avoid problems by choosing unique names.

If there are multiple entries namednone in a menu, the last one will be the one that is selected initially.

CONTACT
By Email: <torx_support@cs.utwente.nl>

VERSION
This manual page documents version 3.9.0 ofxtorx .

SunOS 5.8 Last change: 3

